unique.hpp 23.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708

// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard.
// Copyright (C) 2005-2011 Daniel James
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_UNORDERED_DETAIL_UNIQUE_HPP_INCLUDED
#define BOOST_UNORDERED_DETAIL_UNIQUE_HPP_INCLUDED

#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif

#include <boost/unordered/detail/table.hpp>
#include <boost/unordered/detail/emplace_args.hpp>
#include <boost/unordered/detail/extract_key.hpp>
#include <boost/throw_exception.hpp>
#include <stdexcept>

namespace boost { namespace unordered { namespace detail {

    template <typename A, typename T> struct node;
    template <typename T> struct ptr_node;
    template <typename Types> struct table_impl;

    template <typename A, typename T>
    struct node :
        boost::unordered::detail::value_base<T>
    {
        typedef typename ::boost::unordered::detail::rebind_wrap<
            A, node<A, T> >::type::pointer link_pointer;

        link_pointer next_;
        std::size_t hash_;

        node() :
            next_(),
            hash_(0)
        {}

        void init(link_pointer)
        {
        }
    };

    template <typename T>
    struct ptr_node :
        boost::unordered::detail::value_base<T>,
        boost::unordered::detail::ptr_bucket
    {
        typedef boost::unordered::detail::ptr_bucket bucket_base;
        typedef ptr_bucket* link_pointer;

        std::size_t hash_;

        ptr_node() :
            bucket_base(),
            hash_(0)
        {}

        void init(link_pointer)
        {
        }
    };

    // If the allocator uses raw pointers use ptr_node
    // Otherwise use node.

    template <typename A, typename T, typename NodePtr, typename BucketPtr>
    struct pick_node2
    {
        typedef boost::unordered::detail::node<A, T> node;

        typedef typename boost::unordered::detail::allocator_traits<
            typename boost::unordered::detail::rebind_wrap<A, node>::type
        >::pointer node_pointer;

        typedef boost::unordered::detail::bucket<node_pointer> bucket;
        typedef node_pointer link_pointer;
    };

    template <typename A, typename T>
    struct pick_node2<A, T,
        boost::unordered::detail::ptr_node<T>*,
        boost::unordered::detail::ptr_bucket*>
    {
        typedef boost::unordered::detail::ptr_node<T> node;
        typedef boost::unordered::detail::ptr_bucket bucket;
        typedef bucket* link_pointer;
    };

    template <typename A, typename T>
    struct pick_node
    {
        typedef boost::unordered::detail::allocator_traits<
            typename boost::unordered::detail::rebind_wrap<A,
                boost::unordered::detail::ptr_node<T> >::type
        > tentative_node_traits;

        typedef boost::unordered::detail::allocator_traits<
            typename boost::unordered::detail::rebind_wrap<A,
                boost::unordered::detail::ptr_bucket >::type
        > tentative_bucket_traits;

        typedef pick_node2<A, T,
            typename tentative_node_traits::pointer,
            typename tentative_bucket_traits::pointer> pick;

        typedef typename pick::node node;
        typedef typename pick::bucket bucket;
        typedef typename pick::link_pointer link_pointer;
    };

    template <typename A, typename T, typename H, typename P>
    struct set
    {
        typedef boost::unordered::detail::set<A, T, H, P> types;

        typedef T value_type;
        typedef H hasher;
        typedef P key_equal;
        typedef T key_type;

        typedef typename boost::unordered::detail::rebind_wrap<
                A, value_type>::type allocator;

        typedef boost::unordered::detail::allocator_traits<allocator> traits;
        typedef boost::unordered::detail::pick_node<allocator, value_type> pick;
        typedef typename pick::node node;
        typedef typename pick::bucket bucket;
        typedef typename pick::link_pointer link_pointer;

        typedef boost::unordered::detail::table_impl<types> table;
        typedef boost::unordered::detail::set_extractor<value_type> extractor;
    };

    template <typename A, typename K, typename M, typename H, typename P>
    struct map
    {
        typedef boost::unordered::detail::map<A, K, M, H, P> types;

        typedef std::pair<K const, M> value_type;
        typedef H hasher;
        typedef P key_equal;
        typedef K key_type;

        typedef typename boost::unordered::detail::rebind_wrap<
                A, value_type>::type allocator;

        typedef boost::unordered::detail::allocator_traits<allocator> traits;
        typedef boost::unordered::detail::pick_node<allocator, value_type> pick;
        typedef typename pick::node node;
        typedef typename pick::bucket bucket;
        typedef typename pick::link_pointer link_pointer;

        typedef boost::unordered::detail::table_impl<types> table;
        typedef boost::unordered::detail::map_extractor<key_type, value_type>
            extractor;
    };

    template <typename Types>
    struct table_impl : boost::unordered::detail::table<Types>
    {
        typedef boost::unordered::detail::table<Types> table;
        typedef typename table::value_type value_type;
        typedef typename table::bucket bucket;
        typedef typename table::buckets buckets;
        typedef typename table::node_pointer node_pointer;
        typedef typename table::node_allocator node_allocator;
        typedef typename table::node_allocator_traits node_allocator_traits;
        typedef typename table::bucket_pointer bucket_pointer;
        typedef typename table::link_pointer link_pointer;
        typedef typename table::previous_pointer previous_pointer;
        typedef typename table::hasher hasher;
        typedef typename table::key_equal key_equal;
        typedef typename table::key_type key_type;
        typedef typename table::node_constructor node_constructor;
        typedef typename table::extractor extractor;
        typedef typename table::iterator iterator;

        typedef std::pair<iterator, bool> emplace_return;

        // Constructors

        table_impl(std::size_t n,
                hasher const& hf,
                key_equal const& eq,
                node_allocator const& a)
          : table(n, hf, eq, a)
        {}

        table_impl(table_impl const& x)
          : table(x, node_allocator_traits::
                select_on_container_copy_construction(x.node_alloc())) {}

        table_impl(table_impl const& x,
                node_allocator const& a)
          : table(x, a)
        {}

        table_impl(table_impl& x,
                boost::unordered::detail::move_tag m)
          : table(x, m)
        {}

        table_impl(table_impl& x,
                node_allocator const& a,
                boost::unordered::detail::move_tag m)
          : table(x, a, m)
        {}

        // Accessors

        template <class Key, class Pred>
        node_pointer find_node_impl(
                std::size_t hash,
                Key const& k,
                Pred const& eq) const
        {
            std::size_t bucket_index = hash % this->bucket_count_;
            node_pointer n = this->get_start(bucket_index);

            for (;;)
            {
                if (!n) return n;

                std::size_t node_hash = n->hash_;
                if (hash == node_hash)
                {
                    if (eq(k, this->get_key(n->value())))
                        return n;
                }
                else
                {
                    if (node_hash % this->bucket_count_ != bucket_index)
                        return node_pointer();
                }

                n = static_cast<node_pointer>(n->next_);
            }
        }

        std::size_t count(key_type const& k) const
        {
            return this->find_node(k) ? 1 : 0;
        }

        value_type& at(key_type const& k) const
        {
            if (this->size_) {
                node_pointer it = this->find_node(k);
                if (it) return it->value();
            }

            boost::throw_exception(
                std::out_of_range("Unable to find key in unordered_map."));
        }

        std::pair<iterator, iterator>
            equal_range(key_type const& k) const
        {
            node_pointer n = this->find_node(k);
            return std::make_pair(iterator(n),
                iterator(n ? static_cast<node_pointer>(n->next_) : n));
        }

        // equals

        bool equals(table_impl const& other) const
        {
            if(this->size_ != other.size_) return false;
            if(!this->size_) return true;
    
            for(node_pointer n1 = this->get_start(); n1;
                n1 = static_cast<node_pointer>(n1->next_))
            {
                node_pointer n2 = other.find_matching_node(n1);

#if !defined(BOOST_UNORDERED_DEPRECATED_EQUALITY)
                if(!n2 || n1->value() != n2->value())
                    return false;
#else
                if(!n2 || !extractor::compare_mapped(
                        n1->value(), n2->value()))
                    return false;
#endif
            }
    
            return true;
        }

        // Emplace/Insert

        inline node_pointer add_node(
                node_constructor& a,
                std::size_t hash)
        {
            node_pointer n = a.release();
            n->hash_ = hash;
    
            bucket_pointer b = this->get_bucket(hash % this->bucket_count_);

            if (!b->next_)
            {
                previous_pointer start_node = this->get_previous_start();
                
                if (start_node->next_) {
                    this->get_bucket(
                        static_cast<node_pointer>(start_node->next_)->hash_ %
                            this->bucket_count_)->next_ = n;
                }

                b->next_ = start_node;
                n->next_ = start_node->next_;
                start_node->next_ = static_cast<link_pointer>(n);
            }
            else
            {
                n->next_ = b->next_->next_;
                b->next_->next_ = static_cast<link_pointer>(n);
            }

            ++this->size_;
            return n;
        }

        value_type& operator[](key_type const& k)
        {
            typedef typename value_type::second_type mapped_type;
    
            std::size_t hash = this->hash_function()(k);
            node_pointer pos = this->find_node(hash, k);
    
            if (pos) return pos->value();
    
            // Create the node before rehashing in case it throws an
            // exception (need strong safety in such a case).
            node_constructor a(this->node_alloc());
            a.construct_node();
#if defined(BOOST_UNORDERED_VARIADIC_MOVE)
            a.construct_value(boost::unordered::piecewise_construct,
                boost::make_tuple(k), boost::make_tuple());
#else
            a.construct_value(
                boost::unordered::detail::create_emplace_args(
                    boost::unordered::piecewise_construct,
                    boost::make_tuple(k),
                    boost::make_tuple()));
#endif
    
            this->reserve_for_insert(this->size_ + 1);
            return add_node(a, hash)->value();
        }

#if defined(BOOST_NO_RVALUE_REFERENCES)
        emplace_return emplace(boost::unordered::detail::emplace_args1<
                boost::unordered::detail::please_ignore_this_overload> const&)
        {
            BOOST_ASSERT(false);
            return emplace_return(iterator(this->begin()), false);
        }
#endif

        template <BOOST_UNORDERED_EMPLACE_TEMPLATE>
        emplace_return emplace(BOOST_UNORDERED_EMPLACE_ARGS)
        {
#if defined(BOOST_UNORDERED_VARIADIC_MOVE)
            return emplace_impl(
                extractor::extract(BOOST_UNORDERED_EMPLACE_FORWARD),
                BOOST_UNORDERED_EMPLACE_FORWARD);

#else
            return emplace_impl(
                extractor::extract(args.a0, args.a1),
                BOOST_UNORDERED_EMPLACE_FORWARD);
#endif
        }

#if !defined(BOOST_UNORDERED_VARIADIC_MOVE)
        template <typename A0>
        emplace_return emplace(
                boost::unordered::detail::emplace_args1<A0> const& args)
        {
            return emplace_impl(extractor::extract(args.a0), args);
        }
#endif

        template <BOOST_UNORDERED_EMPLACE_TEMPLATE>
        emplace_return emplace_impl(key_type const& k,
            BOOST_UNORDERED_EMPLACE_ARGS)
        {
            std::size_t hash = this->hash_function()(k);
            node_pointer pos = this->find_node(hash, k);
    
            if (pos) return emplace_return(iterator(pos), false);
    
            // Create the node before rehashing in case it throws an
            // exception (need strong safety in such a case).
            node_constructor a(this->node_alloc());
            a.construct_node();
            a.construct_value(BOOST_UNORDERED_EMPLACE_FORWARD);
    
            // reserve has basic exception safety if the hash function
            // throws, strong otherwise.
            this->reserve_for_insert(this->size_ + 1);
            return emplace_return(iterator(this->add_node(a, hash)), true);
        }

        emplace_return emplace_impl_with_node(node_constructor& a)
        {
            key_type const& k = this->get_key(a.value());
            std::size_t hash = this->hash_function()(k);
            node_pointer pos = this->find_node(hash, k);

            if (pos) return emplace_return(iterator(pos), false);

            // reserve has basic exception safety if the hash function
            // throws, strong otherwise.
            this->reserve_for_insert(this->size_ + 1);
            return emplace_return(iterator(this->add_node(a, hash)), true);
        }

        template <BOOST_UNORDERED_EMPLACE_TEMPLATE>
        emplace_return emplace_impl(no_key, BOOST_UNORDERED_EMPLACE_ARGS)
        {
            // Don't have a key, so construct the node first in order
            // to be able to lookup the position.
            node_constructor a(this->node_alloc());
            a.construct_node();
            a.construct_value(BOOST_UNORDERED_EMPLACE_FORWARD);
            return emplace_impl_with_node(a);
        }

        ////////////////////////////////////////////////////////////////////////
        // Insert range methods
        //
        // if hash function throws, or inserting > 1 element, basic exception
        // safety strong otherwise

        template <class InputIt>
        void insert_range(InputIt i, InputIt j)
        {
            if(i != j)
                return insert_range_impl(extractor::extract(*i), i, j);
        }

        template <class InputIt>
        void insert_range_impl(key_type const& k, InputIt i, InputIt j)
        {
            node_constructor a(this->node_alloc());

            // Special case for empty buckets so that we can use
            // max_load_ (which isn't valid when buckets_ is null).
            if (!this->buckets_) {
                insert_range_empty(a, k, i, j);
                if (++i == j) return;
            }

            do {
                // Note: can't use get_key as '*i' might not be value_type - it
                // could be a pair with first_types as key_type without const or
                // a different second_type.
                //
                // TODO: Might be worth storing the value_type instead of the
                // key here. Could be more efficient if '*i' is expensive. Could
                // be less efficient if copying the full value_type is
                // expensive.
                insert_range_impl2(a, extractor::extract(*i), i, j);
            } while(++i != j);
        }

        template <class InputIt>
        void insert_range_empty(node_constructor& a, key_type const& k,
            InputIt i, InputIt j)
        {
            std::size_t hash = this->hash_function()(k);
            a.construct_node();
            a.construct_value2(*i);
            this->reserve_for_insert(this->size_ +
                boost::unordered::detail::insert_size(i, j));
            this->add_node(a, hash);
        }

        template <class InputIt>
        void insert_range_impl2(node_constructor& a, key_type const& k,
            InputIt i, InputIt j)
        {
            // No side effects in this initial code
            std::size_t hash = this->hash_function()(k);
            node_pointer pos = this->find_node(hash, k);
    
            if (!pos) {
                a.construct_node();
                a.construct_value2(*i);
    
                if(this->size_ + 1 >= this->max_load_)
                    this->reserve_for_insert(this->size_ +
                        boost::unordered::detail::insert_size(i, j));
    
                // Nothing after this point can throw.
                this->add_node(a, hash);
            }
        }

        template <class InputIt>
        void insert_range_impl(no_key, InputIt i, InputIt j)
        {
            node_constructor a(this->node_alloc());

            do {
                a.construct_node();
                a.construct_value2(*i);
                emplace_impl_with_node(a);
            } while(++i != j);
        }

        ////////////////////////////////////////////////////////////////////////
        // Erase
        //
        // no throw

        std::size_t erase_key(key_type const& k)
        {
            if(!this->size_) return 0;

            std::size_t hash = this->hash_function()(k);
            std::size_t bucket_index = hash % this->bucket_count_;
            bucket_pointer bucket = this->get_bucket(bucket_index);

            previous_pointer prev = bucket->next_;
            if (!prev) return 0;

            for (;;)
            {
                if (!prev->next_) return 0;
                std::size_t node_hash =
                    static_cast<node_pointer>(prev->next_)->hash_;
                if (node_hash % this->bucket_count_ != bucket_index)
                    return 0;
                if (node_hash == hash &&
                        this->key_eq()(k, this->get_key(
                        static_cast<node_pointer>(prev->next_)->value())))
                    break;
                prev = static_cast<previous_pointer>(prev->next_);
            }

            node_pointer pos = static_cast<node_pointer>(prev->next_);
            node_pointer end = static_cast<node_pointer>(pos->next_);
            prev->next_ = pos->next_;
            this->fix_buckets(bucket, prev, end);
            return this->delete_nodes(pos, end);
        }

        node_pointer erase(node_pointer r)
        {
            BOOST_ASSERT(r);
            node_pointer next = static_cast<node_pointer>(r->next_);

            bucket_pointer bucket = this->get_bucket(
                r->hash_ % this->bucket_count_);
            previous_pointer prev = unlink_node(*bucket, r);

            this->fix_buckets(bucket, prev, next);

            this->delete_node(r);

            return next;
        }

        node_pointer erase_range(node_pointer r1, node_pointer r2)
        {
            if (r1 == r2) return r2;

            std::size_t bucket_index = r1->hash_ % this->bucket_count_;
            previous_pointer prev = unlink_nodes(
                *this->get_bucket(bucket_index), r1, r2);
            this->fix_buckets_range(bucket_index, prev, r1, r2);
            this->delete_nodes(r1, r2);

            return r2;
        }

        static previous_pointer unlink_node(bucket& b, node_pointer n)
        {
            return unlink_nodes(b, n, static_cast<node_pointer>(n->next_));
        }

        static previous_pointer unlink_nodes(bucket& b,
                node_pointer begin, node_pointer end)
        {
            previous_pointer prev = b.next_;
            link_pointer begin_void = static_cast<link_pointer>(begin);
            while(prev->next_ != begin_void)
                prev = static_cast<previous_pointer>(prev->next_);
            prev->next_ = static_cast<link_pointer>(end);
            return prev;
        }

        ////////////////////////////////////////////////////////////////////////
        // copy_buckets_to
        //
        // Basic exception safety. If an exception is thrown this will
        // leave dst partially filled and the buckets unset.

        static void copy_buckets_to(buckets const& src, buckets& dst)
        {
            BOOST_ASSERT(!dst.buckets_);

            dst.create_buckets();

            node_constructor a(dst.node_alloc());

            node_pointer n = src.get_start();
            previous_pointer prev = dst.get_previous_start();

            while(n) {
                a.construct_node();
                a.construct_value2(n->value());

                node_pointer node = a.release();
                node->hash_ = n->hash_;
                prev->next_ = static_cast<link_pointer>(node);
                ++dst.size_;
                n = static_cast<node_pointer>(n->next_);

                prev = place_in_bucket(dst, prev);
            }
        }

        ////////////////////////////////////////////////////////////////////////
        // move_buckets_to
        //
        // Basic exception safety. The source nodes are left in an unusable
        // state if an exception throws.

        static void move_buckets_to(buckets& src, buckets& dst)
        {
            BOOST_ASSERT(!dst.buckets_);

            dst.create_buckets();

            node_constructor a(dst.node_alloc());

            node_pointer n = src.get_start();
            previous_pointer prev = dst.get_previous_start();

            while(n) {
                a.construct_node();
                a.construct_value2(boost::move(n->value()));

                node_pointer node = a.release();
                node->hash_ = n->hash_;
                prev->next_ = static_cast<link_pointer>(node);
                ++dst.size_;
                n = static_cast<node_pointer>(n->next_);

                prev = place_in_bucket(dst, prev);
            }
        }

        // strong otherwise exception safety
        void rehash_impl(std::size_t num_buckets)
        {
            BOOST_ASSERT(this->size_);

            buckets dst(this->node_alloc(), num_buckets);
            dst.create_buckets();

            previous_pointer src_start = this->get_previous_start();
            previous_pointer dst_start = dst.get_previous_start();

            dst_start->next_ = src_start->next_;
            src_start->next_ = link_pointer();
            dst.size_ = this->size_;
            this->size_ = 0;

            previous_pointer prev = dst.get_previous_start();
            while (prev->next_)
                prev = place_in_bucket(dst, prev);

            // Swap the new nodes back into the container and setup the
            // variables.
            dst.swap(*this); // no throw
        }

        // Iterate through the nodes placing them in the correct buckets.
        // pre: prev->next_ is not null.
        static previous_pointer place_in_bucket(buckets& dst,
                previous_pointer prev)
        {
            node_pointer n = static_cast<node_pointer>(prev->next_);
            bucket_pointer b = dst.get_bucket(n->hash_ % dst.bucket_count_);

            if (!b->next_) {
                b->next_ = prev;
                return static_cast<previous_pointer>(n);
            }
            else {
                prev->next_ = n->next_;
                n->next_ = b->next_->next_;
                b->next_->next_ = static_cast<link_pointer>(n);
                return prev;
            }
        }
    };
}}}

#endif