zip_iterator.hpp 17.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
// Copyright David Abrahams and Thomas Becker 2000-2006. Distributed
// under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_ZIP_ITERATOR_TMB_07_13_2003_HPP_
# define BOOST_ZIP_ITERATOR_TMB_07_13_2003_HPP_

#include <stddef.h>
#include <boost/iterator.hpp>
#include <boost/iterator/iterator_traits.hpp>
#include <boost/iterator/iterator_facade.hpp>
#include <boost/iterator/iterator_adaptor.hpp> // for enable_if_convertible
#include <boost/iterator/iterator_categories.hpp>
#include <boost/detail/iterator.hpp>

#include <boost/iterator/detail/minimum_category.hpp>

#include <boost/tuple/tuple.hpp>

#include <boost/type_traits/is_same.hpp>
#include <boost/mpl/and.hpp>
#include <boost/mpl/apply.hpp>
#include <boost/mpl/eval_if.hpp>
#include <boost/mpl/lambda.hpp>
#include <boost/mpl/placeholders.hpp>
#include <boost/mpl/aux_/lambda_support.hpp>

namespace boost {

  // Zip iterator forward declaration for zip_iterator_base
  template<typename IteratorTuple>
  class zip_iterator;

  // One important design goal of the zip_iterator is to isolate all
  // functionality whose implementation relies on the current tuple
  // implementation. This goal has been achieved as follows: Inside
  // the namespace detail there is a namespace tuple_impl_specific.
  // This namespace encapsulates all functionality that is specific
  // to the current Boost tuple implementation. More precisely, the
  // namespace tuple_impl_specific provides the following tuple
  // algorithms and meta-algorithms for the current Boost tuple
  // implementation:
  //
  // tuple_meta_transform
  // tuple_meta_accumulate
  // tuple_transform
  // tuple_for_each
  //
  // If the tuple implementation changes, all that needs to be
  // replaced is the implementation of these four (meta-)algorithms.

  namespace detail
  {

    // Functors to be used with tuple algorithms
    //
    template<typename DiffType>
    class advance_iterator
    {
    public:
      advance_iterator(DiffType step) : m_step(step) {}
      
      template<typename Iterator>
      void operator()(Iterator& it) const
      { it += m_step; }

    private:
      DiffType m_step;
    };
    //
    struct increment_iterator
    {
      template<typename Iterator>
      void operator()(Iterator& it)
      { ++it; }
    };
    //
    struct decrement_iterator
    {
      template<typename Iterator>
      void operator()(Iterator& it)
      { --it; }
    };
    //
    struct dereference_iterator
    {
      template<typename Iterator>
      struct apply
      { 
        typedef typename
          iterator_traits<Iterator>::reference
        type;
      };

      template<typename Iterator>
        typename apply<Iterator>::type operator()(Iterator const& it)
      { return *it; }
    };
           

    // The namespace tuple_impl_specific provides two meta-
    // algorithms and two algorithms for tuples.
    //
    namespace tuple_impl_specific
    {
      // Meta-transform algorithm for tuples
      //
      template<typename Tuple, class UnaryMetaFun>
      struct tuple_meta_transform;
      
      template<typename Tuple, class UnaryMetaFun>
      struct tuple_meta_transform_impl
      {
          typedef tuples::cons<
              typename mpl::apply1<
                  typename mpl::lambda<UnaryMetaFun>::type
                , typename Tuple::head_type
              >::type
            , typename tuple_meta_transform<
                  typename Tuple::tail_type
                , UnaryMetaFun 
              >::type
          > type;
      };

      template<typename Tuple, class UnaryMetaFun>
      struct tuple_meta_transform
        : mpl::eval_if<
              boost::is_same<Tuple, tuples::null_type>
            , mpl::identity<tuples::null_type>
            , tuple_meta_transform_impl<Tuple, UnaryMetaFun>
        >
      {
      };
      
      // Meta-accumulate algorithm for tuples. Note: The template 
      // parameter StartType corresponds to the initial value in 
      // ordinary accumulation.
      //
      template<class Tuple, class BinaryMetaFun, class StartType>
      struct tuple_meta_accumulate;
      
      template<
          typename Tuple
        , class BinaryMetaFun
        , typename StartType
      >
      struct tuple_meta_accumulate_impl
      {
         typedef typename mpl::apply2<
             typename mpl::lambda<BinaryMetaFun>::type
           , typename Tuple::head_type
           , typename tuple_meta_accumulate<
                 typename Tuple::tail_type
               , BinaryMetaFun
               , StartType 
             >::type
         >::type type;
      };

      template<
          typename Tuple
        , class BinaryMetaFun
        , typename StartType
      >
      struct tuple_meta_accumulate
        : mpl::eval_if<
#if BOOST_WORKAROUND(BOOST_MSVC, < 1300)
              mpl::or_<
#endif 
                  boost::is_same<Tuple, tuples::null_type>
#if BOOST_WORKAROUND(BOOST_MSVC, < 1300)
                , boost::is_same<Tuple,int>
              >
#endif 
            , mpl::identity<StartType>
            , tuple_meta_accumulate_impl<
                  Tuple
                , BinaryMetaFun
                , StartType
              >
          >
      {
      };  

#if defined(BOOST_NO_FUNCTION_TEMPLATE_ORDERING)                            \
    || (                                                                    \
      BOOST_WORKAROUND(BOOST_INTEL_CXX_VERSION, != 0) && defined(_MSC_VER)  \
    )
// Not sure why intel's partial ordering fails in this case, but I'm
// assuming int's an MSVC bug-compatibility feature.
      
# define BOOST_TUPLE_ALGO_DISPATCH
# define BOOST_TUPLE_ALGO(algo) algo##_impl
# define BOOST_TUPLE_ALGO_TERMINATOR , int
# define BOOST_TUPLE_ALGO_RECURSE , ...
#else 
# define BOOST_TUPLE_ALGO(algo) algo
# define BOOST_TUPLE_ALGO_TERMINATOR
# define BOOST_TUPLE_ALGO_RECURSE
#endif
      
      // transform algorithm for tuples. The template parameter Fun
      // must be a unary functor which is also a unary metafunction
      // class that computes its return type based on its argument
      // type. For example:
      //
      // struct to_ptr
      // {
      //     template <class Arg>
      //     struct apply
      //     {
      //          typedef Arg* type;
      //     }
      //
      //     template <class Arg>
      //     Arg* operator()(Arg x);
      // };
      template<typename Fun>
      tuples::null_type BOOST_TUPLE_ALGO(tuple_transform)
          (tuples::null_type const&, Fun BOOST_TUPLE_ALGO_TERMINATOR)
      { return tuples::null_type(); }

      template<typename Tuple, typename Fun>
      typename tuple_meta_transform<
          Tuple
        , Fun
      >::type
      
      BOOST_TUPLE_ALGO(tuple_transform)(
        const Tuple& t, 
        Fun f
        BOOST_TUPLE_ALGO_RECURSE
      )
      { 
          typedef typename tuple_meta_transform<
              BOOST_DEDUCED_TYPENAME Tuple::tail_type
            , Fun
          >::type transformed_tail_type;

        return tuples::cons<
            BOOST_DEDUCED_TYPENAME mpl::apply1<
                Fun, BOOST_DEDUCED_TYPENAME Tuple::head_type
             >::type
           , transformed_tail_type
        >( 
            f(boost::tuples::get<0>(t)), tuple_transform(t.get_tail(), f)
        );
      }

#ifdef BOOST_TUPLE_ALGO_DISPATCH
      template<typename Tuple, typename Fun>
      typename tuple_meta_transform<
          Tuple
        , Fun
      >::type
      
      tuple_transform(
        const Tuple& t, 
        Fun f
      )
      {
          return tuple_transform_impl(t, f, 1);
      }
#endif
      
      // for_each algorithm for tuples.
      //
      template<typename Fun>
      Fun BOOST_TUPLE_ALGO(tuple_for_each)(
          tuples::null_type
        , Fun f BOOST_TUPLE_ALGO_TERMINATOR
      )
      { return f; }

      
      template<typename Tuple, typename Fun>
      Fun BOOST_TUPLE_ALGO(tuple_for_each)(
          Tuple& t
        , Fun f BOOST_TUPLE_ALGO_RECURSE)
      { 
          f( t.get_head() );
          return tuple_for_each(t.get_tail(), f);
      }
      
#ifdef BOOST_TUPLE_ALGO_DISPATCH
      template<typename Tuple, typename Fun>
      Fun
      tuple_for_each(
        Tuple& t, 
        Fun f
      )
      {
          return tuple_for_each_impl(t, f, 1);
      }
#endif
      
      // Equality of tuples. NOTE: "==" for tuples currently (7/2003)
      // has problems under some compilers, so I just do my own.
      // No point in bringing in a bunch of #ifdefs here. This is
      // going to go away with the next tuple implementation anyway.
      //
      inline bool tuple_equal(tuples::null_type, tuples::null_type)
      { return true; }

      template<typename Tuple1, typename Tuple2>
        bool tuple_equal(
            Tuple1 const& t1, 
            Tuple2 const& t2
        )
      { 
          return t1.get_head() == t2.get_head() && 
          tuple_equal(t1.get_tail(), t2.get_tail());
      }
    }
    //
    // end namespace tuple_impl_specific

    template<typename Iterator>
    struct iterator_reference
    {
        typedef typename iterator_traits<Iterator>::reference type;
    };

#ifdef BOOST_MPL_CFG_NO_FULL_LAMBDA_SUPPORT
    // Hack because BOOST_MPL_AUX_LAMBDA_SUPPORT doesn't seem to work
    // out well.  Instantiating the nested apply template also
    // requires instantiating iterator_traits on the
    // placeholder. Instead we just specialize it as a metafunction
    // class.
    template<>
    struct iterator_reference<mpl::_1>
    {
        template <class T>
        struct apply : iterator_reference<T> {};
    };
#endif
    
    // Metafunction to obtain the type of the tuple whose element types
    // are the reference types of an iterator tuple.
    //
    template<typename IteratorTuple>
    struct tuple_of_references
      : tuple_impl_specific::tuple_meta_transform<
            IteratorTuple, 
            iterator_reference<mpl::_1>
          >
    {
    };

    // Metafunction to obtain the minimal traversal tag in a tuple
    // of iterators.
    //
    template<typename IteratorTuple>
    struct minimum_traversal_category_in_iterator_tuple
    {
      typedef typename tuple_impl_specific::tuple_meta_transform<
          IteratorTuple
        , iterator_traversal<>
      >::type tuple_of_traversal_tags;
          
      typedef typename tuple_impl_specific::tuple_meta_accumulate<
          tuple_of_traversal_tags
        , minimum_category<>
        , random_access_traversal_tag
      >::type type;
    };

#if BOOST_WORKAROUND(BOOST_MSVC, < 1300) // ETI workaround
      template <>
      struct minimum_traversal_category_in_iterator_tuple<int>
      {
          typedef int type;
      };
#endif
      
      // We need to call tuple_meta_accumulate with mpl::and_ as the
      // accumulating functor. To this end, we need to wrap it into
      // a struct that has exactly two arguments (that is, template
      // parameters) and not five, like mpl::and_ does.
      //
      template<typename Arg1, typename Arg2>
      struct and_with_two_args
        : mpl::and_<Arg1, Arg2>
      {
      };
    
# ifdef BOOST_MPL_CFG_NO_FULL_LAMBDA_SUPPORT
  // Hack because BOOST_MPL_AUX_LAMBDA_SUPPORT doesn't seem to work
  // out well.  In this case I think it's an MPL bug
      template<>
      struct and_with_two_args<mpl::_1,mpl::_2>
      {
          template <class A1, class A2>
          struct apply : mpl::and_<A1,A2>
          {};
      };
# endif 

    ///////////////////////////////////////////////////////////////////
    //
    // Class zip_iterator_base
    //
    // Builds and exposes the iterator facade type from which the zip 
    // iterator will be derived.
    //
    template<typename IteratorTuple>
    struct zip_iterator_base
    {
     private:
        // Reference type is the type of the tuple obtained from the
        // iterators' reference types.
        typedef typename 
        detail::tuple_of_references<IteratorTuple>::type reference;
      
        // Value type is the same as reference type.
        typedef reference value_type;
      
        // Difference type is the first iterator's difference type
        typedef typename iterator_traits<
            typename tuples::element<0, IteratorTuple>::type
            >::difference_type difference_type;
      
        // Traversal catetgory is the minimum traversal category in the 
        // iterator tuple.
        typedef typename 
        detail::minimum_traversal_category_in_iterator_tuple<
            IteratorTuple
        >::type traversal_category;
     public:
      
        // The iterator facade type from which the zip iterator will
        // be derived.
        typedef iterator_facade<
            zip_iterator<IteratorTuple>,
            value_type,  
            traversal_category,
            reference,
            difference_type
        > type;
    };

    template <>
    struct zip_iterator_base<int>
    {
        typedef int type;
    };
  }
  
  /////////////////////////////////////////////////////////////////////
  //
  // zip_iterator class definition
  //
  template<typename IteratorTuple>
  class zip_iterator : 
    public detail::zip_iterator_base<IteratorTuple>::type
  {  

   // Typedef super_t as our base class. 
   typedef typename 
     detail::zip_iterator_base<IteratorTuple>::type super_t;

   // iterator_core_access is the iterator's best friend.
   friend class iterator_core_access;

  public:
    
    // Construction
    // ============
    
    // Default constructor
    zip_iterator() { }

    // Constructor from iterator tuple
    zip_iterator(IteratorTuple iterator_tuple) 
      : m_iterator_tuple(iterator_tuple) 
    { }

    // Copy constructor
    template<typename OtherIteratorTuple>
    zip_iterator(
       const zip_iterator<OtherIteratorTuple>& other,
       typename enable_if_convertible<
         OtherIteratorTuple,
         IteratorTuple
         >::type* = 0
    ) : m_iterator_tuple(other.get_iterator_tuple())
    {}

    // Get method for the iterator tuple.
    const IteratorTuple& get_iterator_tuple() const
    { return m_iterator_tuple; }

  private:
    
    // Implementation of Iterator Operations
    // =====================================
    
    // Dereferencing returns a tuple built from the dereferenced
    // iterators in the iterator tuple.
    typename super_t::reference dereference() const
    { 
      return detail::tuple_impl_specific::tuple_transform( 
        get_iterator_tuple(),
        detail::dereference_iterator()
       );
    }

    // Two zip iterators are equal if all iterators in the iterator
    // tuple are equal. NOTE: It should be possible to implement this
    // as
    //
    // return get_iterator_tuple() == other.get_iterator_tuple();
    //
    // but equality of tuples currently (7/2003) does not compile
    // under several compilers. No point in bringing in a bunch
    // of #ifdefs here.
    //
    template<typename OtherIteratorTuple>   
    bool equal(const zip_iterator<OtherIteratorTuple>& other) const
    {
      return detail::tuple_impl_specific::tuple_equal(
        get_iterator_tuple(),
        other.get_iterator_tuple()
        );
    }

    // Advancing a zip iterator means to advance all iterators in the
    // iterator tuple.
    void advance(typename super_t::difference_type n)
    { 
      detail::tuple_impl_specific::tuple_for_each(
          m_iterator_tuple,
          detail::advance_iterator<BOOST_DEDUCED_TYPENAME super_t::difference_type>(n)
          );
    }
    // Incrementing a zip iterator means to increment all iterators in
    // the iterator tuple.
    void increment()
    { 
      detail::tuple_impl_specific::tuple_for_each(
        m_iterator_tuple,
        detail::increment_iterator()
        );
    }
    
    // Decrementing a zip iterator means to decrement all iterators in
    // the iterator tuple.
    void decrement()
    { 
      detail::tuple_impl_specific::tuple_for_each(
        m_iterator_tuple,
        detail::decrement_iterator()
        );
    }
    
    // Distance is calculated using the first iterator in the tuple.
    template<typename OtherIteratorTuple>
      typename super_t::difference_type distance_to(
        const zip_iterator<OtherIteratorTuple>& other
        ) const
    { 
        return boost::tuples::get<0>(other.get_iterator_tuple()) - 
            boost::tuples::get<0>(this->get_iterator_tuple());
    }
  
    // Data Members
    // ============
    
    // The iterator tuple.
    IteratorTuple m_iterator_tuple;
 
  };

  // Make function for zip iterator
  //
  template<typename IteratorTuple> 
  zip_iterator<IteratorTuple> 
  make_zip_iterator(IteratorTuple t)
  { return zip_iterator<IteratorTuple>(t); }

}

#endif