c_microstrip.cpp 29 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 * c_microstrip.cpp - coupled microstrip class implementation
 *
 * Copyright (C) 2002 Claudio Girardi <claudio.girardi@ieee.org>
 * Copyright (C) 2005, 2006 Stefan Jahn <stefan@lkcc.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this package; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
 * Boston, MA 02110-1301, USA.
 *
 */

/* c_microstrip.c - Puts up window for coupled microstrips and
 * performs the associated calculations
 * Based on the original microstrip.c by Gopal Narayanan
 */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>

34 35 36 37
#include <units.h>
#include <transline.h>
#include <microstrip.h>
#include <c_microstrip.h>
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989

C_MICROSTRIP::C_MICROSTRIP() : TRANSLINE()
{
    m_name = "Coupled_MicroStrip";
    aux_ms = NULL;
}


C_MICROSTRIP::~C_MICROSTRIP()
{
    if( aux_ms )
        delete aux_ms;
}


/*
 * delta_u_thickness_single() computes the thickness effect on
 * normalized width for a single microstrip line
 *
 * References: H. A. Atwater, "Simplified Design Equations for
 * Microstrip Line Parameters", Microwave Journal, pp. 109-115,
 * November 1989.
 */
double C_MICROSTRIP::delta_u_thickness_single( double u, double t_h )
{
    double delta_u;

    if( t_h > 0.0 )
    {
        delta_u =
            (1.25 * t_h /
             M_PI) *
            ( 1.0 +
             log( ( 2.0 +
                   (4.0 * M_PI * u -
                    2.0) / ( 1.0 + exp( -100.0 * ( u - 1.0 / (2.0 * M_PI) ) ) ) ) / t_h ) );
    }
    else
    {
        delta_u = 0.0;
    }
    return delta_u;
}


/*
 * delta_u_thickness() - compute the thickness effect on normalized
 * width for coupled microstrips
 *
 * References: Rolf Jansen, "High-Speed Computation of Single and
 * Coupled Microstrip Parameters Including Dispersion, High-Order
 * Modes, Loss and Finite Strip Thickness", IEEE Trans. MTT, vol. 26,
 * no. 2, pp. 75-82, Feb. 1978
 */
void C_MICROSTRIP::delta_u_thickness()
{
    double e_r, u, g, t_h;
    double delta_u, delta_t, delta_u_e, delta_u_o;

    e_r = er;
    u   = w / h;        /* normalized line width */
    g   = s / h;        /* normalized line spacing */
    t_h = t / h;        /* normalized strip thickness */

    if( t_h > 0.0 )
    {
        /* single microstrip correction for finite strip thickness */
        delta_u = delta_u_thickness_single( u, t_h );
        delta_t = t_h / (g * e_r);
        /* thickness correction for the even- and odd-mode */
        delta_u_e = delta_u * ( 1.0 - 0.5 * exp( -0.69 * delta_u / delta_t ) );
        delta_u_o = delta_u_e + delta_t;
    }
    else
    {
        delta_u_e = delta_u_o = 0.0;
    }

    w_t_e = w + delta_u_e * h;
    w_t_o = w + delta_u_o * h;
}


/*
 * compute various parameters for a single line
 */
void C_MICROSTRIP::compute_single_line()
{
    if( aux_ms == NULL )
        aux_ms = new MICROSTRIP();

    /* prepare parameters for single microstrip computations */
    aux_ms->er = er;
    aux_ms->w  = w;
    aux_ms->h  = h;
    aux_ms->t  = 0.0;

    //aux_ms->t = t;
    aux_ms->ht   = 1e12;    /* arbitrarily high */
    aux_ms->f    = f;
    aux_ms->murC = murC;
    aux_ms->microstrip_Z0();
    aux_ms->dispersion();
}


/*
 * filling_factor_even() - compute the filling factor for the coupled
 * microstrips even-mode without cover and zero conductor thickness
 */
double C_MICROSTRIP::filling_factor_even( double u, double g, double e_r )
{
    double v, v3, v4, a_e, b_e, q_inf;

    v   = u * (20.0 + g * g) / (10.0 + g * g) + g* exp( -g );
    v3  = v * v * v;
    v4  = v3 * v;
    a_e = 1.0 + log( (v4 + v * v / 2704.0) / (v4 + 0.432) ) / 49.0 + log( 1.0 + v3 / 5929.741 )
          / 18.7;
    b_e = 0.564 * pow( ( (e_r - 0.9) / (e_r + 3.0) ), 0.053 );

    /* filling factor, with width corrected for thickness */
    q_inf = pow( (1.0 + 10.0 / v), -a_e * b_e );

    return q_inf;
}


/**
 * filling_factor_odd() - compute the filling factor for the coupled
 * microstrips odd-mode without cover and zero conductor thickness
 */
double C_MICROSTRIP::filling_factor_odd( double u, double g, double e_r )
{
    double b_o, c_o, d_o, q_inf;

    b_o = 0.747 * e_r / (0.15 + e_r);
    c_o = b_o - (b_o - 0.207) * exp( -0.414 * u );
    d_o = 0.593 + 0.694 * exp( -0.562 * u );

    /* filling factor, with width corrected for thickness */
    q_inf = exp( -c_o * pow( g, d_o ) );

    return q_inf;
}


/*
 * delta_q_cover_even() - compute the cover effect on filling factor
 * for the even-mode
 */
double C_MICROSTRIP::delta_q_cover_even( double h2h )
{
    double q_c;

    if( h2h <= 39 )
    {
        q_c = tanh( 1.626 + 0.107 * h2h - 1.733 / sqrt( h2h ) );
    }
    else
    {
        q_c = 1.0;
    }

    return q_c;
}


/*
 * delta_q_cover_odd() - compute the cover effect on filling factor
 * for the odd-mode
 */
double C_MICROSTRIP::delta_q_cover_odd( double h2h )
{
    double q_c;

    if( h2h <= 7 )
    {
        q_c = tanh( 9.575 / (7.0 - h2h) - 2.965 + 1.68 * h2h - 0.311 * h2h * h2h );
    }
    else
    {
        q_c = 1.0;
    }

    return q_c;
}


/**
 * er_eff_static() - compute the static effective dielectric constants
 *
 * References: Manfred Kirschning and Rolf Jansen, "Accurate
 * Wide-Range Design Equations for the Frequency-Dependent
 * Characteristic of Parallel Coupled Microstrip Lines", IEEE
 * Trans. MTT, vol. 32, no. 1, Jan. 1984
 */
void C_MICROSTRIP::er_eff_static()
{
    double u_t_e, u_t_o, g, h2, h2h;
    double a_o, t_h, q, q_c, q_t, q_inf;
    double er_eff_single;

    /* compute zero-thickness single line parameters */
    compute_single_line();
    er_eff_single = aux_ms->er_eff_0;

    h2    = ht;
    u_t_e = w_t_e / h;      /* normalized even_mode line width */
    u_t_o = w_t_o / h;      /* normalized odd_mode line width */
    g     = s / h;          /* normalized line spacing */
    h2h   = h2 / h;         /* normalized cover height */
    t_h   = t / h;          /* normalized strip thickness */

    /* filling factor, computed with thickness corrected width */
    q_inf = filling_factor_even( u_t_e, g, er );
    /* cover effect */
    q_c = delta_q_cover_even( h2h );
    /* thickness effect */
    q_t = aux_ms->delta_q_thickness( u_t_e, t_h );
    /* resultant filling factor */
    q = (q_inf - q_t) * q_c;
    /* static even-mode effective dielectric constant */
    er_eff_e_0 = 0.5 * (er + 1.0) + 0.5 * (er - 1.0) * q;

    /* filling factor, with width corrected for thickness */
    q_inf = filling_factor_odd( u_t_o, g, er );
    /* cover effect */
    q_c = delta_q_cover_odd( h2h );
    /* thickness effect */
    q_t = aux_ms->delta_q_thickness( u_t_o, t_h );
    /* resultant filling factor */
    q = (q_inf - q_t) * q_c;

    a_o = 0.7287 * ( er_eff_single - 0.5 * (er + 1.0) ) * ( 1.0 - exp( -0.179 * u_t_o ) );

    /* static odd-mode effective dielectric constant */
    er_eff_o_0 = (0.5 * (er + 1.0) + a_o - er_eff_single) * q + er_eff_single;
}


/**
 * delta_Z0_even_cover() - compute the even-mode impedance correction
 * for a homogeneous microstrip due to the cover
 *
 * References: S. March, "Microstrip Packaging: Watch the Last Step",
 * Microwaves, vol. 20, no. 13, pp. 83.94, Dec. 1981.
 */
double C_MICROSTRIP::delta_Z0_even_cover( double g, double u, double h2h )
{
    double f_e, g_e, delta_Z0_even;
    double x, y, A, B, C, D, E, F;

    A   = -4.351 / pow( 1.0 + h2h, 1.842 );
    B   = 6.639 / pow( 1.0 + h2h, 1.861 );
    C   = -2.291 / pow( 1.0 + h2h, 1.90 );
    f_e = 1.0 - atanh( A + (B + C * u) * u );

    x   = pow( 10.0, 0.103 * g - 0.159 );
    y   = pow( 10.0, 0.0492 * g - 0.073 );
    D   = 0.747 / sin( 0.5 * M_PI * x );
    E   = 0.725 * sin( 0.5 * M_PI * y );
    F   = pow( 10.0, 0.11 - 0.0947 * g );
    g_e = 270.0 * ( 1.0 - tanh( D + E * sqrt( 1.0 + h2h ) - F / (1.0 + h2h) ) );

    delta_Z0_even = f_e * g_e;

    return delta_Z0_even;
}


/**
 * delta_Z0_odd_cover() - compute the odd-mode impedance correction
 * for a homogeneous microstrip due to the cover
 *
 * References: S. March, "Microstrip Packaging: Watch the Last Step",
 * Microwaves, vol. 20, no. 13, pp. 83.94, Dec. 1981.
 */
double C_MICROSTRIP::delta_Z0_odd_cover( double g, double u, double h2h )
{
    double f_o, g_o, delta_Z0_odd;
    double G, J, K, L;

    J   = tanh( pow( 1.0 + h2h, 1.585 ) / 6.0 );
    f_o = pow( u, J );

    G = 2.178 - 0.796 * g;
    if( g > 0.858 )
    {
        K = log10( 20.492 * pow( g, 0.174 ) );
    }
    else
    {
        K = 1.30;
    }
    if( g > 0.873 )
    {
        L = 2.51 * pow( g, -0.462 );
    }
    else
    {
        L = 2.674;
    }
    g_o = 270.0 * ( 1.0 - tanh( G + K * sqrt( 1.0 + h2h ) - L / (1.0 + h2h) ) );

    delta_Z0_odd = f_o * g_o;

    return delta_Z0_odd;
}


/**
 * Z0_even_odd() - compute the static even- and odd-mode static
 * impedances
 *
 * References: Manfred Kirschning and Rolf Jansen, "Accurate
 * Wide-Range Design Equations for the Frequency-Dependent
 * Characteristic of Parallel Coupled Microstrip Lines", IEEE
 * Trans. MTT, vol. 32, no. 1, Jan. 1984
 */
void C_MICROSTRIP::Z0_even_odd()
{
    double er_eff, h2, u_t_e, u_t_o, g, h2h;
    double Q_1, Q_2, Q_3, Q_4, Q_5, Q_6, Q_7, Q_8, Q_9, Q_10;
    double delta_Z0_e_0, delta_Z0_o_0, Z0_single, er_eff_single;

    h2    = ht;
    u_t_e = w_t_e / h;      /* normalized even-mode line width */
    u_t_o = w_t_o / h;      /* normalized odd-mode line width */
    g     = s / h;          /* normalized line spacing */
    h2h   = h2 / h;         /* normalized cover height */

    Z0_single     = aux_ms->Z0_0;
    er_eff_single = aux_ms->er_eff_0;

    /* even-mode */
    er_eff = er_eff_e_0;
    Q_1    = 0.8695 * pow( u_t_e, 0.194 );
    Q_2    = 1.0 + 0.7519 * g + 0.189 * pow( g, 2.31 );
    Q_3    = 0.1975 +
             pow( ( 16.6 +
                   pow( (8.4 / g),
                       6.0 ) ),
                 -0.387 ) + log( pow( g, 10.0 ) / ( 1.0 + pow( g / 3.4, 10.0 ) ) ) / 241.0;
    Q_4 = 2.0 * Q_1 /
          ( Q_2 * ( exp( -g ) * pow( u_t_e, Q_3 ) + ( 2.0 - exp( -g ) ) * pow( u_t_e, -Q_3 ) ) );
    /* static even-mode impedance */
    Z0_e_0 = Z0_single *
             sqrt( er_eff_single / er_eff ) / (1.0 - sqrt( er_eff_single ) * Q_4 * Z0_single / ZF0);
    /* correction for cover */
    delta_Z0_e_0 = delta_Z0_even_cover( g, u_t_e, h2h ) / sqrt( er_eff );

    Z0_e_0 = Z0_e_0 - delta_Z0_e_0;

    /* odd-mode */
    er_eff = er_eff_o_0;
    Q_5    = 1.794 + 1.14 * log( 1.0 + 0.638 / ( g + 0.517 * pow( g, 2.43 ) ) );
    Q_6    = 0.2305 + log( pow( g, 10.0 ) / ( 1.0 + pow( g / 5.8, 10.0 ) ) ) / 281.3 + log(
         1.0 + 0.598 * pow( g, 1.154 ) ) / 5.1;
    Q_7    = (10.0 + 190.0 * g * g) / (1.0 + 82.3 * g * g * g);
    Q_8    = exp( -6.5 - 0.95 * log( g ) - pow( g / 0.15, 5.0 ) );
    Q_9    = log( Q_7 ) * (Q_8 + 1.0 / 16.5);
    Q_10   = ( Q_2 * Q_4 - Q_5 * exp( log( u_t_o ) * Q_6 * pow( u_t_o, -Q_9 ) ) ) / Q_2;

    /* static odd-mode impedance */
    Z0_o_0 = Z0_single *
             sqrt( er_eff_single /
                   er_eff ) / (1.0 - sqrt( er_eff_single ) * Q_10 * Z0_single / ZF0);
    /* correction for cover */
    delta_Z0_o_0 = delta_Z0_odd_cover( g, u_t_o, h2h ) / sqrt( er_eff );

    Z0_o_0 = Z0_o_0 - delta_Z0_o_0;
}


/*
 * er_eff_freq() - compute er_eff as a function of frequency
 */
void C_MICROSTRIP::er_eff_freq()
{
    double P_1, P_2, P_3, P_4, P_5, P_6, P_7;
    double P_8, P_9, P_10, P_11, P_12, P_13, P_14, P_15;
    double F_e, F_o;
    double er_eff, u, g, f_n;

    u = w / h;          /* normalize line width */
    g = s / h;          /* normalize line spacing */

    /* normalized frequency [GHz * mm] */
    f_n = f * h / 1e06;

    er_eff = er_eff_e_0;
    P_1    = 0.27488 + ( 0.6315 + 0.525 / pow( 1.0 + 0.0157 * f_n, 20.0 ) ) * u - 0.065683 * exp(
        -8.7513 * u );
    P_2    = 0.33622 * ( 1.0 - exp( -0.03442 * er ) );
    P_3    = 0.0363 * exp( -4.6 * u ) * ( 1.0 - exp( -pow( f_n / 38.7, 4.97 ) ) );
    P_4    = 1.0 + 2.751 * ( 1.0 - exp( -pow( er / 15.916, 8.0 ) ) );
    P_5    = 0.334 * exp( -3.3 * pow( er / 15.0, 3.0 ) ) + 0.746;
    P_6    = P_5 * exp( -pow( f_n / 18.0, 0.368 ) );
    P_7    = 1.0 +
             4.069* P_6* pow( g, 0.479 ) * exp( -1.347 * pow( g, 0.595 ) - 0.17 * pow( g, 2.5 ) );

    F_e = P_1 * P_2 * pow( (P_3 * P_4 + 0.1844 * P_7) * f_n, 1.5763 );
    /* even-mode effective dielectric constant */
    er_eff_e = er - (er - er_eff) / (1.0 + F_e);

    er_eff = er_eff_o_0;
    P_8    = 0.7168 * ( 1.0 + 1.076 / ( 1.0 + 0.0576 * (er - 1.0) ) );
    P_9    = P_8 - 0.7913 *
             ( 1.0 - exp( -pow( f_n / 20.0, 1.424 ) ) ) * atan( 2.481 * pow( er / 8.0, 0.946 ) );
    P_10 = 0.242 * pow( er - 1.0, 0.55 );
    P_11 = 0.6366 * (exp( -0.3401 * f_n ) - 1.0) * atan( 1.263 * pow( u / 3.0, 1.629 ) );
    P_12 = P_9 + (1.0 - P_9) / ( 1.0 + 1.183 * pow( u, 1.376 ) );
    P_13 = 1.695 * P_10 / (0.414 + 1.605 * P_10);
    P_14 = 0.8928 + 0.1072 * ( 1.0 - exp( -0.42 * pow( f_n / 20.0, 3.215 ) ) );
    P_15 = fabs( 1.0 - 0.8928 * (1.0 + P_11) * P_12 * exp( -P_13 * pow( g, 1.092 ) ) / P_14 );

    F_o = P_1 * P_2 * pow( (P_3 * P_4 + 0.1844) * f_n * P_15, 1.5763 );
    /* odd-mode effective dielectric constant */
    er_eff_o = er - (er - er_eff) / (1.0 + F_o);
}


/*
 * conductor_losses() - compute microstrips conductor losses per unit
 * length
 */
void C_MICROSTRIP::conductor_losses()
{
    double e_r_eff_e_0, e_r_eff_o_0, Z0_h_e, Z0_h_o, delta;
    double K, R_s, Q_c_e, Q_c_o, alpha_c_e, alpha_c_o;

    e_r_eff_e_0 = er_eff_e_0;
    e_r_eff_o_0 = er_eff_o_0;
    Z0_h_e = Z0_e_0 * sqrt( e_r_eff_e_0 );  /* homogeneous stripline impedance */
    Z0_h_o = Z0_o_0 * sqrt( e_r_eff_o_0 );  /* homogeneous stripline impedance */
    delta  = skindepth;

    if( f > 0.0 )
    {
        /* current distribution factor (same for the two modes) */
        K = exp( -1.2 * pow( (Z0_h_e + Z0_h_o) / (2.0 * ZF0), 0.7 ) );
        /* skin resistance */
        R_s = 1.0 / (sigma * delta);
        /* correction for surface roughness */
        R_s *= 1.0 + ( (2.0 / M_PI) * atan( 1.40 * pow( (rough / delta), 2.0 ) ) );

        /* even-mode strip inductive quality factor */
        Q_c_e = (M_PI * Z0_h_e * w * f) / (R_s * C0 * K);
        /* even-mode losses per unith length */
        alpha_c_e = ( 20.0 * M_PI / log( 10.0 ) ) * f * sqrt( e_r_eff_e_0 ) / (C0 * Q_c_e);

        /* odd-mode strip inductive quality factor */
        Q_c_o = (M_PI * Z0_h_o * w * f) / (R_s * C0 * K);
        /* odd-mode losses per unith length */
        alpha_c_o = ( 20.0 * M_PI / log( 10.0 ) ) * f * sqrt( e_r_eff_o_0 ) / (C0 * Q_c_o);
    }
    else
    {
        alpha_c_e = alpha_c_o = 0.0;
    }

    atten_cond_e = alpha_c_e * l;
    atten_cond_o = alpha_c_o * l;
}


/*
 * dielectric_losses() - compute microstrips dielectric losses per
 * unit length
 */
void C_MICROSTRIP::dielectric_losses()
{
    double e_r, e_r_eff_e_0, e_r_eff_o_0;
    double alpha_d_e, alpha_d_o;

    e_r = er;
    e_r_eff_e_0 = er_eff_e_0;
    e_r_eff_o_0 = er_eff_o_0;

    alpha_d_e =
        ( 20.0 * M_PI /
         log( 10.0 ) ) *
        (f / C0) * ( e_r / sqrt( e_r_eff_e_0 ) ) * ( (e_r_eff_e_0 - 1.0) / (e_r - 1.0) ) * tand;
    alpha_d_o =
        ( 20.0 * M_PI /
         log( 10.0 ) ) *
        (f / C0) * ( e_r / sqrt( e_r_eff_o_0 ) ) * ( (e_r_eff_o_0 - 1.0) / (e_r - 1.0) ) * tand;

    atten_dielectric_e = alpha_d_e * l;
    atten_dielectric_o = alpha_d_o * l;
}


/*
 * c_microstrip_attenuation() - compute attenuation of coupled
 * microstrips
 */
void C_MICROSTRIP::attenuation()
{
    skindepth = skin_depth();
    conductor_losses();
    dielectric_losses();
}


/*
 * line_angle() - calculate strips electrical lengths in radians
 */
void C_MICROSTRIP::line_angle()
{
    double e_r_eff_e, e_r_eff_o;
    double v_e, v_o, lambda_g_e, lambda_g_o;

    e_r_eff_e = er_eff_e;
    e_r_eff_o = er_eff_o;

    /* even-mode velocity */
    v_e = C0 / sqrt( e_r_eff_e );
    /* odd-mode velocity */
    v_o = C0 / sqrt( e_r_eff_o );
    /* even-mode wavelength */
    lambda_g_e = v_e / f;
    /* odd-mode wavelength */
    lambda_g_o = v_o / f;
    /* electrical angles */
    ang_l_e = 2.0 * M_PI * l / lambda_g_e;  /* in radians */
    ang_l_o = 2.0 * M_PI * l / lambda_g_o;  /* in radians */
}


void C_MICROSTRIP::syn_err_fun( double* f1,
                                double* f2,
                                double  s_h,
                                double  w_h,
                                double  e_r,
                                double  w_h_se,
                                double  w_h_so )
{
    double g, h;

    g = cosh( 0.5 * M_PI * s_h );
    h = cosh( M_PI * w_h + 0.5 * M_PI * s_h );

    *f1 = (2.0 / M_PI) * acosh( (2.0 * h - g + 1.0) / (g + 1.0) );
    *f2 = (2.0 / M_PI) * acosh( (2.0 * h - g - 1.0) / (g - 1.0) );
    if( e_r <= 6.0 )
    {
        *f2 += ( 4.0 / ( M_PI * (1.0 + e_r / 2.0) ) ) * acosh( 1.0 + 2.0 * w_h / s_h );
    }
    else
    {
        *f2 += (1.0 / M_PI) * acosh( 1.0 + 2.0 * w_h / s_h );
    }
    *f1 -= w_h_se;
    *f2 -= w_h_so;
}


/*
 * synth_width - calculate widths given Z0 and e_r
 * from Akhtarzad S. et al., "The design of coupled microstrip lines",
 * IEEE Trans. MTT-23, June 1975 and
 * Hinton, J.H., "On design of coupled microstrip lines", IEEE Trans.
 * MTT-28, March 1980
 */
void C_MICROSTRIP::synth_width()
{
    double Z0, e_r;
    double w_h_se, w_h_so, w_h, a, ce, co, s_h;
    double f1, f2, ft1, ft2, j11, j12, j21, j22, d_s_h, d_w_h, err;
    double eps = 1e-04;

    f1  = f2 = 0;
    e_r = er;

    Z0 = Z0e / 2.0;
    /* Wheeler formula for single microstrip synthesis */
    a = exp( Z0 * sqrt( e_r + 1.0 ) / 42.4 ) - 1.0;
    w_h_se = 8.0 * sqrt( a * ( (7.0 + 4.0 / e_r) / 11.0 ) + ( (1.0 + 1.0 / e_r) / 0.81 ) ) / a;

    Z0 = Z0o / 2.0;
    /* Wheeler formula for single microstrip synthesis */
    a = exp( Z0 * sqrt( e_r + 1.0 ) / 42.4 ) - 1.0;
    w_h_so = 8.0 * sqrt( a * ( (7.0 + 4.0 / e_r) / 11.0 ) + ( (1.0 + 1.0 / e_r) / 0.81 ) ) / a;

    ce = cosh( 0.5 * M_PI * w_h_se );
    co = cosh( 0.5 * M_PI * w_h_so );
    /* first guess at s/h */
    s_h = (2.0 / M_PI) * acosh( (ce + co - 2.0) / (co - ce) );
    /* first guess at w/h */
    w_h = acosh( (ce * co - 1.0) / (co - ce) ) / M_PI - s_h / 2.0;

    s = s_h * h;
    w = w_h * h;

    syn_err_fun( &f1, &f2, s_h, w_h, e_r, w_h_se, w_h_so );

    /* rather crude Newton-Rhapson; we need this beacuse the estimate of */
    /* w_h is often quite far from the true value (see Akhtarzad S. et al.) */
    do {
        /* compute Jacobian */
        syn_err_fun( &ft1, &ft2, s_h + eps, w_h, e_r, w_h_se, w_h_so );
        j11 = (ft1 - f1) / eps;
        j21 = (ft2 - f2) / eps;
        syn_err_fun( &ft1, &ft2, s_h, w_h + eps, e_r, w_h_se, w_h_so );
        j12 = (ft1 - f1) / eps;
        j22 = (ft2 - f2) / eps;

        /* compute next step */
        d_s_h = (-f1 * j22 + f2 * j12) / (j11 * j22 - j21 * j12);
        d_w_h = (-f2 * j11 + f1 * j21) / (j11 * j22 - j21 * j12);

        //g_print("j11 = %e\tj12 = %e\tj21 = %e\tj22 = %e\n", j11, j12, j21, j22);
        //g_print("det = %e\n", j11*j22 - j21*j22);
        //g_print("d_s_h = %e\td_w_h = %e\n", d_s_h, d_w_h);

        s_h += d_s_h;
        w_h += d_w_h;

        /* chech the error */
        syn_err_fun( &f1, &f2, s_h, w_h, e_r, w_h_se, w_h_so );

        err = sqrt( f1 * f1 + f2 * f2 );
        /* converged ? */
    } while( err > 1e-04 );


    s = s_h * h;
    w = w_h * h;
}


/*
 * Z0_dispersion() - calculate frequency dependency of characteristic
 * impedances
 */
void C_MICROSTRIP::Z0_dispersion()
{
    double Q_0;
    double Q_11, Q_12, Q_13, Q_14, Q_15, Q_16, Q_17, Q_18, Q_19, Q_20, Q_21;
    double Q_22, Q_23, Q_24, Q_25, Q_26, Q_27, Q_28, Q_29;
    double r_e, q_e, p_e, d_e, C_e;
    double e_r_eff_o_f, e_r_eff_o_0;
    double e_r_eff_single_f, e_r_eff_single_0, Z0_single_f;
    double f_n, g, u, e_r;
    double R_1, R_2, R_7, R_10, R_11, R_12, R_15, R_16, tmpf;

    e_r = er;

    u = w / h;          /* normalize line width */
    g = s / h;          /* normalize line spacing */

    /* normalized frequency [GHz * mm] */
    f_n = f * h / 1e06;

    e_r_eff_single_f = aux_ms->er_eff;
    e_r_eff_single_0 = aux_ms->er_eff_0;
    Z0_single_f = aux_ms->Z0;

    e_r_eff_o_f = er_eff_o;
    e_r_eff_o_0 = er_eff_o_0;

    Q_11 = 0.893 * ( 1.0 - 0.3 / ( 1.0 + 0.7 * (e_r - 1.0) ) );
    Q_12 = 2.121 * ( pow( f_n / 20.0, 4.91 ) / ( 1.0 + Q_11 * pow( f_n / 20.0, 4.91 ) ) ) * exp(
        -2.87 * g ) * pow( g, 0.902 );
    Q_13 = 1.0 + 0.038 * pow( e_r / 8.0, 5.1 );
    Q_14 = 1.0 + 1.203 * pow( e_r / 15.0, 4.0 ) / ( 1.0 + pow( e_r / 15.0, 4.0 ) );
    Q_15 = 1.887 *
           exp( -1.5 *
               pow( g,
                    0.84 ) ) *
           pow( g,
                Q_14 ) /
           ( 1.0 + 0.41 *
            pow( f_n / 15.0, 3.0 ) * pow( u, 2.0 / Q_13 ) / ( 0.125 + pow( u, 1.626 / Q_13 ) ) );
    Q_16 = ( 1.0 + 9.0 / ( 1.0 + 0.403 * pow( e_r - 1.0, 2 ) ) ) * Q_15;
    Q_17 = 0.394 *
           ( 1.0 -
            exp( -1.47 * pow( u / 7.0, 0.672 ) ) ) * ( 1.0 - exp( -4.25 * pow( f_n / 20.0, 1.87 ) ) );
    Q_18 = 0.61 * ( 1.0 - exp( -2.13 * pow( u / 8.0, 1.593 ) ) ) / ( 1.0 + 6.544 * pow( g, 4.17 ) );
    Q_19 = 0.21 * g * g * g * g /
           ( ( 1.0 + 0.18 * pow( g, 4.9 ) ) * (1.0 + 0.1 * u * u) * ( 1.0 + pow( f_n / 24.0, 3.0 ) ) );
    Q_20 = ( 0.09 + 1.0 / ( 1.0 + 0.1 * pow( e_r - 1, 2.7 ) ) ) * Q_19;
    Q_21 =
        fabs( 1.0 - 42.54 *
             pow( g, 0.133 ) * exp( -0.812 * g ) * pow( u, 2.5 ) / ( 1.0 + 0.033 * pow( u, 2.5 ) ) );

    r_e = pow( f_n / 28.843, 12 );
    q_e = 0.016 + pow( 0.0514 * e_r * Q_21, 4.524 );
    p_e = 4.766 * exp( -3.228 * pow( u, 0.641 ) );
    d_e = 5.086 * q_e *
          ( r_e /
           (0.3838 + 0.386 *
            q_e) ) *
          ( exp( -22.2 *
                pow( u,
                     1.92 ) ) /
           (1.0 + 1.2992 * r_e) ) * ( pow( e_r - 1.0, 6.0 ) / ( 1.0 + 10 * pow( e_r - 1.0, 6.0 ) ) );
    C_e = 1.0 + 1.275 *
          ( 1.0 -
           exp( -0.004625 * p_e *
               pow( e_r,
                    1.674 ) * pow( f_n / 18.365, 2.745 ) ) ) - Q_12 + Q_16 - Q_17 + Q_18 + Q_20;


    R_1  = 0.03891 * pow( e_r, 1.4 );
    R_2  = 0.267 * pow( u, 7.0 );
    R_7  = 1.206 - 0.3144 * exp( -R_1 ) * ( 1.0 - exp( -R_2 ) );
    R_10 = 0.00044 * pow( e_r, 2.136 ) + 0.0184;
    tmpf = pow( f_n / 19.47, 6.0 );
    R_11 = tmpf / (1.0 + 0.0962 * tmpf);
    R_12 = 1.0 / (1.0 + 0.00245 * u * u);
    R_15 = 0.707* R_10* pow( f_n / 12.3, 1.097 );
    R_16 = 1.0 + 0.0503 * e_r * e_r * R_11 * ( 1.0 - exp( -pow( u / 15.0, 6.0 ) ) );
    Q_0  = R_7 * ( 1.0 - 1.1241 * (R_12 / R_16) * exp( -0.026 * pow( f_n, 1.15656 ) - R_15 ) );

    /* even-mode frequency-dependent characteristic impedances */
    Z0e = Z0_e_0 * pow( 0.9408 * pow( e_r_eff_single_f, C_e ) - 0.9603, Q_0 ) / pow(
         (0.9408 - d_e) * pow( e_r_eff_single_0, C_e ) - 0.9603, Q_0 );

    Q_29 = 15.16 / ( 1.0 + 0.196 * pow( e_r - 1.0, 2.0 ) );
    tmpf = pow( e_r - 1.0, 3.0 );
    Q_28 = 0.149 * tmpf / (94.5 + 0.038 * tmpf);
    tmpf = pow( e_r - 1.0, 1.5 );
    Q_27 = 0.4 * pow( g, 0.84 ) * ( 1.0 + 2.5 * tmpf / (5.0 + tmpf) );
    tmpf = pow( (e_r - 1.0) / 13.0, 12.0 );
    Q_26 = 30.0 - 22.2 * ( tmpf / (1.0 + 3.0 * tmpf) ) - Q_29;
    tmpf = (e_r - 1.0) * (e_r - 1.0);
    Q_25 = ( 0.3 * f_n * f_n / (10.0 + f_n * f_n) ) * ( 1.0 + 2.333 * tmpf / (5.0 + tmpf) );
    Q_24 =
        2.506* Q_28* pow( u,
                          0.894 ) *
        pow( (1.0 + 1.3 * u) * f_n / 99.25, 4.29 ) / ( 3.575 + pow( u, 0.894 ) );
    Q_23 = 1.0 + 0.005 * f_n * Q_27 /
           ( ( 1.0 + 0.812 * pow( f_n / 15.0, 1.9 ) ) * (1.0 + 0.025 * u * u) );
    Q_22 = 0.925 * pow( f_n / Q_26, 1.536 ) / ( 1.0 + 0.3 * pow( f_n / 30.0, 1.536 ) );

    /* odd-mode frequency-dependent characteristic impedances */
    Z0o = Z0_single_f +
          (Z0_o_0 *
           pow( e_r_eff_o_f / e_r_eff_o_0,
                Q_22 ) - Z0_single_f * Q_23) / (1.0 + Q_24 + pow( 0.46 * g, 2.2 ) * Q_25);
}


void C_MICROSTRIP::calc()
{
    /* compute thickness corrections */
    delta_u_thickness();
    /* get effective dielectric constants */
    er_eff_static();
    /* impedances for even- and odd-mode */
    Z0_even_odd();
    /* calculate freq dependence of er_eff_e, er_eff_o */
    er_eff_freq();
    /* calculate frequency  dependence of Z0e, Z0o */
    Z0_dispersion();
    /* calculate losses */
    attenuation();
    /* calculate electrical lengths */
    line_angle();
}


/*
 * get_microstrip_sub
 * get and assign microstrip substrate parameters
 * into microstrip structure
 */
void C_MICROSTRIP::get_c_microstrip_sub()
{
    er    = getProperty( EPSILONR_PRM );
    murC  = getProperty( MURC_PRM );
    h     = getProperty( H_PRM );
    ht    = getProperty( H_T_PRM );
    t     = getProperty( T_PRM );
    sigma = 1.0/getProperty( RHO_PRM );
    tand  = getProperty( TAND_PRM );
    rough = getProperty( ROUGH_PRM );
}


/*
 * get_c_microstrip_comp
 * get and assign microstrip component parameters
 * into microstrip structure
 */
void C_MICROSTRIP::get_c_microstrip_comp()
{
    f = getProperty( FREQUENCY_PRM );
}


/*
 * get_c_microstrip_elec
 * get and assign microstrip electrical parameters
 * into microstrip structure
 */
void C_MICROSTRIP::get_c_microstrip_elec()
{
    Z0e     = getProperty( Z0_E_PRM );
    Z0o     = getProperty( Z0_O_PRM );
    ang_l_e = getProperty( ANG_L_PRM );
    ang_l_o = getProperty( ANG_L_PRM );
}


/*
 * get_c_microstrip_phys
 * get and assign microstrip physical parameters
 * into microstrip structure
 */
void C_MICROSTRIP::get_c_microstrip_phys()
{
    w = getProperty( PHYS_WIDTH_PRM );
    s = getProperty( PHYS_S_PRM );
    l = getProperty( PHYS_LEN_PRM );
}


void C_MICROSTRIP::show_results()
{
    setProperty( Z0_E_PRM, Z0e );
    setProperty( Z0_O_PRM , Z0o );
    setProperty( ANG_L_PRM, sqrt( ang_l_e * ang_l_o ) );

    setResult( 0, er_eff_e, "" );
    setResult( 1, er_eff_o, "" );
    setResult( 2, atten_cond_e, "dB" );
    setResult( 3, atten_cond_o, "dB" );
    setResult( 4, atten_dielectric_e, "dB" );
    setResult( 5, atten_dielectric_o, "dB" );

    setResult( 6, skindepth / UNIT_MICRON, "m" );
}


/*
 * analysis function
 */
void C_MICROSTRIP::analyze()
{
    /* Get and assign substrate parameters */
    get_c_microstrip_sub();
    /* Get and assign component parameters */
    get_c_microstrip_comp();
    /* Get and assign physical parameters */
    get_c_microstrip_phys();

    /* compute coupled microstrip parameters */
    calc();
    /* print results in the subwindow */
    show_results();
}


void C_MICROSTRIP::syn_fun( double* f1,
                            double* f2,
                            double  s_h,
                            double  w_h,
                            double  Z0_e,
                            double  Z0_o )
{
    s = s_h * h;
    w = w_h * h;

    /* compute coupled microstrip parameters */
    calc();

    *f1 = Z0e - Z0_e;
    *f2 = Z0o - Z0_o;
}


/*
 * synthesis function
 */
void C_MICROSTRIP::synthesize()
{
    double Z0_e, Z0_o;
    double f1, f2, ft1, ft2, j11, j12, j21, j22, d_s_h, d_w_h, err;
    double eps = 1e-04;
    double w_h, s_h, le, lo;

    /* Get and assign substrate parameters */
    get_c_microstrip_sub();

    /* Get and assign component parameters */
    get_c_microstrip_comp();

    /* Get and assign electrical parameters */
    get_c_microstrip_elec();

    /* Get and assign physical parameters */
    /* at present it is required only for getting strips length */
    get_c_microstrip_phys();


    /* required value of Z0_e and Z0_o */
    Z0_e = Z0e;
    Z0_o = Z0o;

    /* calculate width and use for initial value in Newton's method */
    synth_width();
    w_h = w / h;
    s_h = s / h;
    f1  = f2 = 0;

    /* rather crude Newton-Rhapson */
    do {
        /* compute Jacobian */
        syn_fun( &ft1, &ft2, s_h + eps, w_h, Z0_e, Z0_o );
        j11 = (ft1 - f1) / eps;
        j21 = (ft2 - f2) / eps;
        syn_fun( &ft1, &ft2, s_h, w_h + eps, Z0_e, Z0_o );
        j12 = (ft1 - f1) / eps;
        j22 = (ft2 - f2) / eps;

        /* compute next step; increments of s_h and w_h */
        d_s_h = (-f1 * j22 + f2 * j12) / (j11 * j22 - j21 * j12);
        d_w_h = (-f2 * j11 + f1 * j21) / (j11 * j22 - j21 * j12);

        s_h += d_s_h;
        w_h += d_w_h;

        /* compute the error with the new values of s_h and w_h */
        syn_fun( &f1, &f2, s_h, w_h, Z0_e, Z0_o );
        err = sqrt( f1 * f1 + f2 * f2 );

        /* converged ? */
    } while( err > 1e-04 );

    /* denormalize computed width and spacing */
    s = s_h * h;
    w = w_h * h;

    setProperty( PHYS_WIDTH_PRM, w );
    setProperty( PHYS_S_PRM, s );

    /* calculate physical length */
    ang_l_e = getProperty( ANG_L_PRM );
    ang_l_o = getProperty( ANG_L_PRM );
    le = C0 / f / sqrt( er_eff_e ) * ang_l_e / 2.0 / M_PI;
    lo = C0 / f / sqrt( er_eff_o ) * ang_l_o / 2.0 / M_PI;
    l  = sqrt( le * lo );
    setProperty( PHYS_LEN_PRM, l );

    calc();
    /* print results in the subwindow */
    show_results();
}