polygon_90_touch.hpp 17.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
/*
  Copyright 2008 Intel Corporation

  Use, modification and distribution are subject to the Boost Software License,
  Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
  http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_90_TOUCH_HPP
#define BOOST_POLYGON_POLYGON_90_TOUCH_HPP
namespace boost { namespace polygon{

  template <typename Unit>
  struct touch_90_operation {
    typedef interval_data<Unit> Interval;

    class TouchScanEvent {
    private:
      typedef std::map<Unit, std::set<int> > EventData;
      EventData eventData_;
    public:

      // The TouchScanEvent::iterator is a lazy algorithm that accumulates
      // polygon ids in a set as it is incremented through the
      // scan event data structure.
      // The iterator provides a forward iterator semantic only.
      class iterator {
      private:
        typename EventData::const_iterator itr_;
        std::pair<Interval, std::set<int> > ivlIds_;
        bool incremented_;
      public:
        inline iterator() : itr_(), ivlIds_(), incremented_(false) {}
        inline iterator(typename EventData::const_iterator itr,
                        Unit prevPos, Unit curPos, const std::set<int>& ivlIds) : itr_(itr), ivlIds_(), incremented_(false) {
          ivlIds_.second = ivlIds;
          ivlIds_.first = Interval(prevPos, curPos);
        }
        inline iterator(const iterator& that) : itr_(), ivlIds_(), incremented_(false) { (*this) = that; }
        inline iterator& operator=(const iterator& that) {
          itr_ = that.itr_;
          ivlIds_.first = that.ivlIds_.first;
          ivlIds_.second = that.ivlIds_.second;
          incremented_ = that.incremented_;
          return *this;
        }
        inline bool operator==(const iterator& that) { return itr_ == that.itr_; }
        inline bool operator!=(const iterator& that) { return itr_ != that.itr_; }
        inline iterator& operator++() {
          //std::cout << "increment\n";
          //std::cout << "state\n";
          //for(std::set<int>::iterator itr = ivlIds_.second.begin(); itr != ivlIds_.second.end(); ++itr) {
          //   std::cout << (*itr) << " ";
          //} std::cout << std::endl;
          //std::cout << "update\n";
          for(std::set<int>::const_iterator itr = (*itr_).second.begin();
              itr != (*itr_).second.end(); ++itr) {
            //std::cout << (*itr) <<  " ";
            std::set<int>::iterator lb = ivlIds_.second.find(*itr);
            if(lb != ivlIds_.second.end()) {
              ivlIds_.second.erase(lb);
            } else {
              ivlIds_.second.insert(*itr);
            }
          }
          //std::cout << std::endl;
          //std::cout << "new state\n";
          //for(std::set<int>::iterator itr = ivlIds_.second.begin(); itr != ivlIds_.second.end(); ++itr) {
          //   std::cout << (*itr) << " ";
          //} std::cout << std::endl;
          ++itr_;
          //ivlIds_.first = Interval(ivlIds_.first.get(HIGH), itr_->first);
          incremented_ = true;
          return *this;
        }
        inline const iterator operator++(int){
          iterator tmpItr(*this);
          ++(*this);
          return tmpItr;
        }
        inline std::pair<Interval, std::set<int> >& operator*() {
          if(incremented_) ivlIds_.first = Interval(ivlIds_.first.get(HIGH), itr_->first);
          incremented_ = false;
          if(ivlIds_.second.empty())(++(*this));
          if(incremented_) ivlIds_.first = Interval(ivlIds_.first.get(HIGH), itr_->first);
          incremented_ = false;
          return ivlIds_; }
      };

      inline TouchScanEvent() : eventData_() {}
      template<class iT>
      inline TouchScanEvent(iT begin, iT end) : eventData_() {
        for( ; begin != end; ++begin){
          insert(*begin);
        }
      }
      inline TouchScanEvent(const TouchScanEvent& that) : eventData_(that.eventData_) {}
      inline TouchScanEvent& operator=(const TouchScanEvent& that){
        eventData_ = that.eventData_;
        return *this;
      }

      //Insert an interval polygon id into the EventData
      inline void insert(const std::pair<Interval, int>& intervalId){
        insert(intervalId.first.low(), intervalId.second);
        insert(intervalId.first.high(), intervalId.second);
      }

      //Insert an position and polygon id into EventData
      inline void insert(Unit pos, int id) {
        typename EventData::iterator lb = eventData_.lower_bound(pos);
        if(lb != eventData_.end() && lb->first == pos) {
          std::set<int>& mr (lb->second);
          std::set<int>::iterator mri = mr.find(id);
          if(mri == mr.end()) {
            mr.insert(id);
          } else {
            mr.erase(id);
          }
        } else {
          lb = eventData_.insert(lb, std::pair<Unit, std::set<int> >(pos, std::set<int>()));
          (*lb).second.insert(id);
        }
      }

      //merge this scan event with that by inserting its data
      inline void insert(const TouchScanEvent& that){
        typename EventData::const_iterator itr;
        for(itr = that.eventData_.begin(); itr != that.eventData_.end(); ++itr) {
          eventData_[(*itr).first].insert(itr->second.begin(), itr->second.end());
        }
      }

      //Get the begin iterator over event data
      inline iterator begin() const {
        //std::cout << "begin\n";
        if(eventData_.empty()) return end();
        typename EventData::const_iterator itr = eventData_.begin();
        Unit pos = itr->first;
        const std::set<int>& idr = itr->second;
        ++itr;
        return iterator(itr, pos, itr->first, idr);
      }

      //Get the end iterator over event data
      inline iterator end() const { return iterator(eventData_.end(), 0, 0, std::set<int>()); }

      inline void clear() { eventData_.clear(); }

      inline Interval extents() const {
        if(eventData_.empty()) return Interval();
        return Interval((*(eventData_.begin())).first, (*(eventData_.rbegin())).first);
      }
    };

    //declaration of a map of scan events by coordinate value used to store all the
    //polygon data for a single layer input into the scanline algorithm
    typedef std::pair<std::map<Unit, TouchScanEvent>, std::map<Unit, TouchScanEvent> > TouchSetData;

    class TouchOp {
    public:
      typedef std::map<Unit, std::set<int> > ScanData;
      typedef std::pair<Unit, std::set<int> > ElementType;
    protected:
      ScanData scanData_;
      typename ScanData::iterator nextItr_;
    public:
      inline TouchOp () : scanData_(), nextItr_() { nextItr_ = scanData_.end(); }
      inline TouchOp (const TouchOp& that) : scanData_(that.scanData_), nextItr_() { nextItr_ = scanData_.begin(); }
      inline TouchOp& operator=(const TouchOp& that);

      //moves scanline forward
      inline void advanceScan() { nextItr_ = scanData_.begin(); }

      //proceses the given interval and std::set<int> data
      //the output data structre is a graph, the indicies in the vector correspond to graph nodes,
      //the integers in the set are vector indicies and are the nodes with which that node shares an edge
      template <typename graphT>
      inline void processInterval(graphT& outputContainer, Interval ivl, const std::set<int>& ids, bool leadingEdge) {
        //print();
        typename ScanData::iterator lowItr = lookup_(ivl.low());
        typename ScanData::iterator highItr = lookup_(ivl.high());
        //std::cout << "Interval: " << ivl << std::endl;
        //for(std::set<int>::const_iterator itr = ids.begin(); itr != ids.end(); ++itr)
        //   std::cout << (*itr) << " ";
        //std::cout << std::endl;
        //add interval to scan data if it is past the end
        if(lowItr == scanData_.end()) {
          //std::cout << "case0" << std::endl;
          lowItr = insert_(ivl.low(), ids);
          evaluateBorder_(outputContainer, ids, ids);
          highItr = insert_(ivl.high(), std::set<int>());
          return;
        }
        //ensure that highItr points to the end of the ivl
        if(highItr == scanData_.end() || (*highItr).first > ivl.high()) {
          //std::cout << "case1" << std::endl;
          //std::cout << highItr->first << std::endl;
          std::set<int> value = std::set<int>();
          if(highItr != scanData_.begin()) {
            --highItr;
            //std::cout << highItr->first << std::endl;
            //std::cout << "high set size " << highItr->second.size() << std::endl;
            value = highItr->second;
          }
          nextItr_ = highItr;
          highItr = insert_(ivl.high(), value);
        } else {
          //evaluate border with next higher interval
          //std::cout << "case1a" << std::endl;
          if(leadingEdge)evaluateBorder_(outputContainer, highItr->second, ids);
        }
        //split the low interval if needed
        if(lowItr->first > ivl.low()) {
          //std::cout << "case2" << std::endl;
          if(lowItr != scanData_.begin()) {
            //std::cout << "case3" << std::endl;
            --lowItr;
            nextItr_ = lowItr;
            //std::cout << lowItr->first << " " << lowItr->second.size() << std::endl;
            lowItr = insert_(ivl.low(), lowItr->second);
          } else {
            //std::cout << "case4" << std::endl;
            nextItr_ = lowItr;
            lowItr = insert_(ivl.low(), std::set<int>());
          }
        } else {
          //evaluate border with next higher interval
          //std::cout << "case2a" << std::endl;
          typename ScanData::iterator nextLowerItr = lowItr;
          if(leadingEdge && nextLowerItr != scanData_.begin()){
            --nextLowerItr;
            evaluateBorder_(outputContainer, nextLowerItr->second, ids);
          }
        }
        //std::cout << "low: " << lowItr->first << " high: " << highItr->first << std::endl;
        //print();
        //process scan data intersecting interval
        for(typename ScanData::iterator itr = lowItr; itr != highItr; ){
          //std::cout << "case5" << std::endl;
          //std::cout << itr->first << std::endl;
          std::set<int>& beforeIds = itr->second;
          ++itr;
          evaluateInterval_(outputContainer, beforeIds, ids, leadingEdge);
        }
        //print();
        //merge the bottom interval with the one below if they have the same count
        if(lowItr != scanData_.begin()){
          //std::cout << "case6" << std::endl;
          typename ScanData::iterator belowLowItr = lowItr;
          --belowLowItr;
          if(belowLowItr->second == lowItr->second) {
            //std::cout << "case7" << std::endl;
            scanData_.erase(lowItr);
          }
        }
        //merge the top interval with the one above if they have the same count
        if(highItr != scanData_.begin()) {
          //std::cout << "case8" << std::endl;
          typename ScanData::iterator beforeHighItr = highItr;
          --beforeHighItr;
          if(beforeHighItr->second == highItr->second) {
            //std::cout << "case9" << std::endl;
            scanData_.erase(highItr);
            highItr = beforeHighItr;
            ++highItr;
          }
        }
        //print();
        nextItr_ = highItr;
      }

//       inline void print() const {
//         for(typename ScanData::const_iterator itr = scanData_.begin(); itr != scanData_.end(); ++itr) {
//           std::cout << itr->first << ": ";
//           for(std::set<int>::const_iterator sitr = itr->second.begin();
//               sitr != itr->second.end(); ++sitr){
//             std::cout << *sitr << " ";
//           }
//           std::cout << std::endl;
//         }
//       }

    private:
      inline typename ScanData::iterator lookup_(Unit pos){
        if(nextItr_ != scanData_.end() && nextItr_->first >= pos) {
          return nextItr_;
        }
        return nextItr_ = scanData_.lower_bound(pos);
      }

      inline typename ScanData::iterator insert_(Unit pos, const std::set<int>& ids){
        //std::cout << "inserting " << ids.size() << " ids at: " << pos << std::endl;
        return nextItr_ = scanData_.insert(nextItr_, std::pair<Unit, std::set<int> >(pos, ids));
      }

      template <typename graphT>
      inline void evaluateInterval_(graphT& outputContainer, std::set<int>& ids,
                                    const std::set<int>& changingIds, bool leadingEdge) {
        for(std::set<int>::const_iterator ciditr = changingIds.begin(); ciditr != changingIds.end(); ++ciditr){
          //std::cout << "evaluateInterval " << (*ciditr) << std::endl;
          evaluateId_(outputContainer, ids, *ciditr, leadingEdge);
        }
      }
      template <typename graphT>
      inline void evaluateBorder_(graphT& outputContainer, const std::set<int>& ids, const std::set<int>& changingIds) {
        for(std::set<int>::const_iterator ciditr = changingIds.begin(); ciditr != changingIds.end(); ++ciditr){
          //std::cout << "evaluateBorder " << (*ciditr) << std::endl;
          evaluateBorderId_(outputContainer, ids, *ciditr);
        }
      }
      template <typename graphT>
      inline void evaluateBorderId_(graphT& outputContainer, const std::set<int>& ids, int changingId) {
        for(std::set<int>::const_iterator scanItr = ids.begin(); scanItr != ids.end(); ++scanItr) {
          //std::cout << "create edge: " << changingId << " " << *scanItr << std::endl;
          if(changingId != *scanItr){
            outputContainer[changingId].insert(*scanItr);
            outputContainer[*scanItr].insert(changingId);
          }
        }
      }
      template <typename graphT>
      inline void evaluateId_(graphT& outputContainer, std::set<int>& ids, int changingId, bool leadingEdge) {
        //std::cout << "changingId: " << changingId << std::endl;
        //for( std::set<int>::iterator itr = ids.begin(); itr != ids.end(); ++itr){
        //   std::cout << *itr << " ";
        //}std::cout << std::endl;
        std::set<int>::iterator lb = ids.lower_bound(changingId);
        if(lb == ids.end() || (*lb) != changingId) {
          if(leadingEdge) {
            //std::cout << "insert\n";
            //insert and add to output
            for(std::set<int>::iterator scanItr = ids.begin(); scanItr != ids.end(); ++scanItr) {
              //std::cout << "create edge: " << changingId << " " << *scanItr << std::endl;
              if(changingId != *scanItr){
                outputContainer[changingId].insert(*scanItr);
                outputContainer[*scanItr].insert(changingId);
              }
            }
            ids.insert(changingId);
          }
        } else {
          if(!leadingEdge){
            //std::cout << "erase\n";
            ids.erase(lb);
          }
        }
      }
    };

    template <typename graphT>
    static inline void processEvent(graphT& outputContainer, TouchOp& op, const TouchScanEvent& data, bool leadingEdge) {
      for(typename TouchScanEvent::iterator itr = data.begin(); itr != data.end(); ++itr) {
        //std::cout << "processInterval" << std::endl;
        op.processInterval(outputContainer, (*itr).first, (*itr).second, leadingEdge);
      }
    }

    template <typename graphT>
    static inline void performTouch(graphT& outputContainer, const TouchSetData& data) {
      typename std::map<Unit, TouchScanEvent>::const_iterator leftItr = data.first.begin();
      typename std::map<Unit, TouchScanEvent>::const_iterator rightItr = data.second.begin();
      typename std::map<Unit, TouchScanEvent>::const_iterator leftEnd = data.first.end();
      typename std::map<Unit, TouchScanEvent>::const_iterator rightEnd = data.second.end();
      TouchOp op;
      while(leftItr != leftEnd || rightItr != rightEnd) {
        //std::cout << "loop" << std::endl;
        op.advanceScan();
        //rightItr cannont be at end if leftItr is not at end
        if(leftItr != leftEnd && rightItr != rightEnd &&
           leftItr->first <= rightItr->first) {
          //std::cout << "case1" << std::endl;
          //std::cout << leftItr ->first << std::endl;
          processEvent(outputContainer, op, leftItr->second, true);
          ++leftItr;
        } else {
          //std::cout << "case2" << std::endl;
          //std::cout << rightItr ->first << std::endl;
          processEvent(outputContainer, op, rightItr->second, false);
          ++rightItr;
        }
      }
    }

    template <class iT>
    static inline void populateTouchSetData(TouchSetData& data, iT beginData, iT endData, int id) {
      Unit prevPos = ((std::numeric_limits<Unit>::max)());
      Unit prevY = prevPos;
      int count = 0;
      for(iT itr = beginData; itr != endData; ++itr) {
        Unit pos = (*itr).first;
        if(pos != prevPos) {
          prevPos = pos;
          prevY = (*itr).second.first;
          count = (*itr).second.second;
          continue;
        }
        Unit y = (*itr).second.first;
        if(count != 0 && y != prevY) {
          std::pair<Interval, int> element(Interval(prevY, y), id);
          if(count > 0) {
            data.first[pos].insert(element);
          } else {
            data.second[pos].insert(element);
          }
        }
        prevY = y;
        count += (*itr).second.second;
      }
    }

    static inline void populateTouchSetData(TouchSetData& data, const std::vector<std::pair<Unit, std::pair<Unit, int> > >& inputData, int id) {
      populateTouchSetData(data, inputData.begin(), inputData.end(), id);
    }

  };
}
}
#endif