Commit fcbcecae authored by Andrey Filippov's avatar Andrey Filippov

multi-pas refinement

parent 7426e618
......@@ -1954,7 +1954,7 @@ public class EyesisCorrectionParameters {
public double max_corr_radius = 3.5; // maximal distance from int max to consider
public int enhortho_width = 2; // reduce weight of center correlation pixels from center (0 - none, 1 - center, 2 +/-1 from center)
public double enhortho_scale = 0.2; // multiply center correlation pixels (inside enhortho_width)
public double enhortho_scale = 0.0; // 0.2; // multiply center correlation pixels (inside enhortho_width)
public boolean max_corr_double = false; // NOT USED double pass when masking center of mass to reduce preference for integer values
public int corr_mode = 2; // which correlation mode to use: 0 - integer max, 1 - center of mass, 2 - polynomial
......@@ -2023,6 +2023,9 @@ public class EyesisCorrectionParameters {
// public double bgnd_2diff = 0.005; // maximal strength to ignore as non-background
public int min_clstr_seed = 2; // number of tiles in a cluster to seed (just background?)
public int min_clstr_lone = 4; // number of tiles in a cluster not close to other clusters (more than 2 tiles apart)
public double min_clstr_weight = 0.0; // Minimal total strength of the cluster
public double min_clstr_max = 0.25; // Minimal maximal strength of the cluster
public int fill_gaps = 4; // same as in grow - 1: 4 directions by 1 step, 2: 8 directions by 1 step. +2*n - alternating hor/vert
public int min_clstr_block = 3; // number of tiles in a cluster to block (just non-background?)
public int bgnd_grow = 2; // number of tiles to grow (1 - hor/vert, 2 - hor/vert/diagonal)
......@@ -2039,7 +2042,24 @@ public class EyesisCorrectionParameters {
public int ortho_half_length = 4; // convolve hor/vert strength by 3*(2*l+1) kernels to detect multi-tile features
public double ortho_mix = 0.5; // Fraction ovf convolved ortho in a mix with raw
public int max_clusters = 10; // Maximal number of clusters to generate for one run
// Alternative mixing of ortho disparity/strength
public boolean or_hor = true; // Apply ortho correction to horizontal correlation (vertical features)
public boolean or_vert = true; // Apply ortho correction to vertical correlation (horizontal features)
public double or_sigma = 2.0; // Blur sigma: verically for horizontal correlation, horizontally - for vertically
public double or_sharp = 0.0; // 0.5; // 3-point sharpening (-k, +2k+1, -k)
public double or_scale = 2.5; // Scale ortho correletion strength relative to 4-directional one
public double or_offset = 0.1; // Subtract from scaled correlation strength, limit by 0
public double or_asym = 1.5; // Minimal ratio of orthogonal strengths required for dis[parity replacement
public double or_threshold = 0.3; // 1.5; // Minimal scaled offset ortho strength to normal strength needed for replacement
public double or_absHor = 0.15; // Minimal horizontal absolute scaled offset ortho strength needed for replacement
public double or_absVert = 0.19; // Minimal vertical absolute scaled offset ortho strength needed for replacement
public boolean poles_fix = true; // Continue vertical structures to the ground
public int poles_len = 50; // Number of tiles to extend over the poles bottoms
public double poles_min_strength = 0.1; // Set new pole segment strength to max of horizontal correlation and this value
public boolean poles_force_disp = true; // Set disparity to that of the bottom of existing segment (false - use hor. disparity)
public int max_clusters = 300; // Maximal number of clusters to generate for one run
public boolean correct_distortions = false; // Correct lens geometric distortions in a model (will need backdrop to be corrected too)
public boolean show_triangles = true; // Show generated triangles
public boolean avg_cluster_disp = false; // Weight-average disparity for the whole cluster
......@@ -2083,9 +2103,16 @@ public class EyesisCorrectionParameters {
public double stStepDisparity = 0.1; // Disaprity histogram step
public double stMinDisparity = 0.0; // Minimal disparity (center of a bin)
public double stMaxDisparity = 10.0; // Maximal disparity (center of a bin)
public double stFloor = 0.25; // Subtract from strength, discard negative
public double stFloor = 0.15; // Subtract from strength, discard negative
public double stPow = 1.0; // raise strength to this power
public double stSigma = 1.5; // Blur disparity histogram (sigma in bins)
public double stMinBgDisparity = 0.0; // Minimal backgroubnd disparity to extract as a maximum from the supertiles
public double stMinBgFract = 0.1; // Minimal fraction of the disparity histogram to use as background
public double stUseDisp = 0.15; // Use background disparity from supertiles if tile strength is less
public double outlayerStrength = 0.3; // Outlayer tiles weaker than this may be replaced from neighbors
public double outlayerDiff = 0.4; // Replace weak outlayer tiles that do not have neighbors within this disparity difference
public CLTParameters(){}
......@@ -2192,6 +2219,9 @@ public class EyesisCorrectionParameters {
properties.setProperty(prefix+"bgnd_maybe", this.bgnd_maybe +"");
properties.setProperty(prefix+"min_clstr_seed", this.min_clstr_seed+"");
properties.setProperty(prefix+"min_clstr_lone", this.min_clstr_lone+"");
properties.setProperty(prefix+"min_clstr_weight", this.min_clstr_weight +"");
properties.setProperty(prefix+"min_clstr_max", this.min_clstr_max +"");
properties.setProperty(prefix+"fill_gaps", this.fill_gaps+"");
properties.setProperty(prefix+"min_clstr_block", this.min_clstr_block+"");
properties.setProperty(prefix+"bgnd_grow", this.bgnd_grow+"");
......@@ -2206,18 +2236,34 @@ public class EyesisCorrectionParameters {
properties.setProperty(prefix+"ortho_half_length",this.ortho_half_length+"");
properties.setProperty(prefix+"ortho_mix", this.ortho_mix +"");
properties.setProperty(prefix+"or_hor", this.or_hor+"");
properties.setProperty(prefix+"or_vert", this.or_vert+"");
properties.setProperty(prefix+"or_sigma", this.or_sigma +"");
properties.setProperty(prefix+"or_sharp", this.or_sharp +"");
properties.setProperty(prefix+"or_scale", this.or_scale +"");
properties.setProperty(prefix+"or_offset", this.or_offset +"");
properties.setProperty(prefix+"or_asym", this.or_asym +"");
properties.setProperty(prefix+"or_threshold", this.or_threshold +"");
properties.setProperty(prefix+"or_absHor", this.or_absHor +"");
properties.setProperty(prefix+"or_absVert", this.or_absVert +"");
properties.setProperty(prefix+"poles_fix", this.poles_fix+"");
properties.setProperty(prefix+"poles_len", this.poles_len+"");
properties.setProperty(prefix+"poles_min_strength",this.poles_min_strength +"");
properties.setProperty(prefix+"poles_force_disp", this.poles_force_disp+"");
properties.setProperty(prefix+"max_clusters", this.max_clusters+"");
properties.setProperty(prefix+"correct_distortions",this.correct_distortions+"");
properties.setProperty(prefix+"show_triangles", this.show_triangles+"");
properties.setProperty(prefix+"avg_cluster_disp", this.avg_cluster_disp+"");
properties.setProperty(prefix+"maxDispTriangle", this.maxDispTriangle +"");
properties.setProperty(prefix+"shUseFlaps", this.shUseFlaps+"");
properties.setProperty(prefix+"shAggrFade", this.shAggrFade+"");
properties.setProperty(prefix+"shMinArea", this.shMinArea+"");
properties.setProperty(prefix+"shMinStrength", this.shMinStrength +"");
properties.setProperty(prefix+"tiRigidVertical", this.tiRigidVertical +"");
properties.setProperty(prefix+"tiRigidHorizontal",this.tiRigidHorizontal +"");
properties.setProperty(prefix+"tiRigidDiagonal", this.tiRigidDiagonal +"");
......@@ -2252,6 +2298,11 @@ public class EyesisCorrectionParameters {
properties.setProperty(prefix+"stFloor", this.stFloor +"");
properties.setProperty(prefix+"stPow", this.stPow +"");
properties.setProperty(prefix+"stSigma", this.stSigma +"");
properties.setProperty(prefix+"stMinBgDisparity", this.stMinBgDisparity +"");
properties.setProperty(prefix+"stMinBgFract", this.stMinBgFract +"");
properties.setProperty(prefix+"stUseDisp", this.stUseDisp +"");
properties.setProperty(prefix+"outlayerStrength", this.outlayerStrength +"");
properties.setProperty(prefix+"outlayerDiff", this.outlayerDiff +"");
}
public void getProperties(String prefix,Properties properties){
if (properties.getProperty(prefix+"transform_size")!=null) this.transform_size=Integer.parseInt(properties.getProperty(prefix+"transform_size"));
......@@ -2352,6 +2403,10 @@ public class EyesisCorrectionParameters {
if (properties.getProperty(prefix+"bgnd_maybe")!=null) this.bgnd_maybe=Double.parseDouble(properties.getProperty(prefix+"bgnd_maybe"));
if (properties.getProperty(prefix+"min_clstr_seed")!=null) this.min_clstr_seed=Integer.parseInt(properties.getProperty(prefix+"min_clstr_seed"));
if (properties.getProperty(prefix+"min_clstr_lone")!=null) this.min_clstr_lone=Integer.parseInt(properties.getProperty(prefix+"min_clstr_lone"));
if (properties.getProperty(prefix+"min_clstr_weight")!=null) this.min_clstr_weight=Double.parseDouble(properties.getProperty(prefix+"min_clstr_weight"));
if (properties.getProperty(prefix+"min_clstr_max")!=null) this.min_clstr_max=Double.parseDouble(properties.getProperty(prefix+"min_clstr_max"));
if (properties.getProperty(prefix+"fill_gaps")!=null) this.fill_gaps=Integer.parseInt(properties.getProperty(prefix+"fill_gaps"));
if (properties.getProperty(prefix+"min_clstr_block")!=null) this.min_clstr_block=Integer.parseInt(properties.getProperty(prefix+"min_clstr_block"));
if (properties.getProperty(prefix+"bgnd_grow")!=null) this.bgnd_grow=Integer.parseInt(properties.getProperty(prefix+"bgnd_grow"));
......@@ -2366,17 +2421,31 @@ public class EyesisCorrectionParameters {
if (properties.getProperty(prefix+"ortho_half_length")!=null) this.ortho_half_length=Integer.parseInt(properties.getProperty(prefix+"ortho_half_length"));
if (properties.getProperty(prefix+"ortho_mix")!=null) this.ortho_mix=Double.parseDouble(properties.getProperty(prefix+"ortho_mix"));
if (properties.getProperty(prefix+"or_hor")!=null) this.or_hor=Boolean.parseBoolean(properties.getProperty(prefix+"or_hor"));
if (properties.getProperty(prefix+"or_vert")!=null) this.or_vert=Boolean.parseBoolean(properties.getProperty(prefix+"or_vert"));
if (properties.getProperty(prefix+"or_sigma")!=null) this.or_sigma=Double.parseDouble(properties.getProperty(prefix+"or_sigma"));
if (properties.getProperty(prefix+"or_sharp")!=null) this.or_sharp=Double.parseDouble(properties.getProperty(prefix+"or_sharp"));
if (properties.getProperty(prefix+"or_scale")!=null) this.or_scale=Double.parseDouble(properties.getProperty(prefix+"or_scale"));
if (properties.getProperty(prefix+"or_offset")!=null) this.or_offset=Double.parseDouble(properties.getProperty(prefix+"or_offset"));
if (properties.getProperty(prefix+"or_asym")!=null) this.or_asym=Double.parseDouble(properties.getProperty(prefix+"or_asym"));
if (properties.getProperty(prefix+"or_threshold")!=null) this.or_threshold=Double.parseDouble(properties.getProperty(prefix+"or_threshold"));
if (properties.getProperty(prefix+"or_absHor")!=null) this.or_absHor=Double.parseDouble(properties.getProperty(prefix+"or_absHor"));
if (properties.getProperty(prefix+"or_absVert")!=null) this.or_absVert=Double.parseDouble(properties.getProperty(prefix+"or_absVert"));
if (properties.getProperty(prefix+"poles_fix")!=null) this.poles_fix=Boolean.parseBoolean(properties.getProperty(prefix+"poles_fix"));
if (properties.getProperty(prefix+"poles_len")!=null) this.poles_len=Integer.parseInt(properties.getProperty(prefix+"poles_len"));
if (properties.getProperty(prefix+"poles_min_strength")!=null)this.poles_min_strength=Double.parseDouble(properties.getProperty(prefix+"poles_min_strength"));
if (properties.getProperty(prefix+"poles_force_disp")!=null) this.poles_force_disp=Boolean.parseBoolean(properties.getProperty(prefix+"poles_force_disp"));
if (properties.getProperty(prefix+"max_clusters")!=null) this.max_clusters=Integer.parseInt(properties.getProperty(prefix+"max_clusters"));
if (properties.getProperty(prefix+"correct_distortions")!=null) this.correct_distortions=Boolean.parseBoolean(properties.getProperty(prefix+"correct_distortions"));
if (properties.getProperty(prefix+"show_triangles")!=null) this.show_triangles=Boolean.parseBoolean(properties.getProperty(prefix+"show_triangles"));
if (properties.getProperty(prefix+"avg_cluster_disp")!=null) this.avg_cluster_disp=Boolean.parseBoolean(properties.getProperty(prefix+"avg_cluster_disp"));
if (properties.getProperty(prefix+"maxDispTriangle")!=null) this.maxDispTriangle=Double.parseDouble(properties.getProperty(prefix+"maxDispTriangle"));
if (properties.getProperty(prefix+"shUseFlaps")!=null) this.shUseFlaps=Boolean.parseBoolean(properties.getProperty(prefix+"shUseFlaps"));
if (properties.getProperty(prefix+"shAggrFade")!=null) this.shAggrFade=Boolean.parseBoolean(properties.getProperty(prefix+"shAggrFade"));
if (properties.getProperty(prefix+"shMinArea")!=null) this.shMinArea=Integer.parseInt(properties.getProperty(prefix+"shMinArea"));
if (properties.getProperty(prefix+"shMinStrength")!=null) this.shMinStrength=Double.parseDouble(properties.getProperty(prefix+"shMinStrength"));
if (properties.getProperty(prefix+"tiRigidVertical")!=null) this.tiRigidVertical=Double.parseDouble(properties.getProperty(prefix+"tiRigidVertical"));
if (properties.getProperty(prefix+"tiRigidHorizontal")!=null) this.tiRigidHorizontal=Double.parseDouble(properties.getProperty(prefix+"tiRigidHorizontal"));
if (properties.getProperty(prefix+"tiRigidDiagonal")!=null) this.tiRigidDiagonal=Double.parseDouble(properties.getProperty(prefix+"tiRigidDiagonal"));
......@@ -2411,6 +2480,11 @@ public class EyesisCorrectionParameters {
if (properties.getProperty(prefix+"stFloor")!=null) this.stFloor=Double.parseDouble(properties.getProperty(prefix+"stFloor"));
if (properties.getProperty(prefix+"stPow")!=null) this.stPow=Double.parseDouble(properties.getProperty(prefix+"stPow"));
if (properties.getProperty(prefix+"stSigma")!=null) this.stSigma=Double.parseDouble(properties.getProperty(prefix+"stSigma"));
if (properties.getProperty(prefix+"stMinBgDisparity")!=null) this.stMinBgDisparity=Double.parseDouble(properties.getProperty(prefix+"stMinBgDisparity"));
if (properties.getProperty(prefix+"stMinBgFract")!=null) this.stMinBgFract=Double.parseDouble(properties.getProperty(prefix+"stMinBgFract"));
if (properties.getProperty(prefix+"stUseDisp")!=null) this.stUseDisp=Double.parseDouble(properties.getProperty(prefix+"stUseDisp"));
if (properties.getProperty(prefix+"outlayerStrength")!=null) this.outlayerStrength=Double.parseDouble(properties.getProperty(prefix+"outlayerStrength"));
if (properties.getProperty(prefix+"outlayerDiff")!=null) this.outlayerDiff=Double.parseDouble(properties.getProperty(prefix+"outlayerDiff"));
}
public boolean showDialog() {
......@@ -2526,6 +2600,9 @@ public class EyesisCorrectionParameters {
gd.addNumericField("Number of tiles in a cluster to seed (just background?)", this.min_clstr_seed, 0);
gd.addNumericField("Number of tiles in a cluster not close to other clusters (more than 2 tiles apart)", this.min_clstr_lone, 0);
gd.addNumericField("Minimal total strength of the cluster", this.min_clstr_weight, 3);
gd.addNumericField("Minimal maximal strength of the cluster", this.min_clstr_max, 3);
gd.addNumericField("Fill gaps betsween clusters, see comments for 'grow'", this.fill_gaps, 0);
gd.addNumericField("Number of tiles in a cluster to block (just non-background?)", this.min_clstr_block, 0);
gd.addNumericField("Number of tiles to grow tile selection (1 - hor/vert, 2 - hor/vert/diagonal)", this.bgnd_grow, 0);
......@@ -2541,6 +2618,25 @@ public class EyesisCorrectionParameters {
gd.addNumericField("Maximal disparity RMS in a run to replace by average)", this.ortho_rms, 3);
gd.addNumericField("Convolve hor/vert strength by 3*(2*l+1) kernels to detect multi-tile features",this.ortho_half_length, 0);
gd.addNumericField("Fraction of convolved ortho in a mix with raw", this.ortho_mix, 3);
gd.addMessage ("--- Combination of ortho and 4-pair correlations ---");
gd.addCheckbox ("Apply ortho correction to horizontal correlation (vertical features)", this.or_hor);
gd.addCheckbox ("Apply ortho correction to vertical correlation (horizontal features)", this.or_vert);
gd.addNumericField("Blur sigma: verically for horizontal correlation, horizontally - for vertically", this.or_sigma, 3);
gd.addNumericField("3-point sharpening (-k, +2k+1, -k)", this.or_sharp, 3);
gd.addNumericField("Scale ortho correletion strength relative to 4-directional one", this.or_scale, 3);
gd.addNumericField("Subtract from scaled correlation strength, limit by 0", this.or_offset, 3);
gd.addNumericField("Minimal ratio of orthogonal strengths required for dis[parity replacement", this.or_asym, 3);
gd.addNumericField("Minimal scaled offset ortho strength to normal strength needed for replacement", this.or_threshold, 3);
gd.addNumericField("Minimal horizontal absolute scaled offset ortho strength needed for replacement", this.or_absHor, 3);
gd.addNumericField("Minimal vertical absolute scaled offset ortho strength needed for replacement", this.or_absVert, 3);
gd.addMessage ("--- Fix vertical structures, such as street poles ---");
gd.addCheckbox ("Continue vertical structures to the ground", this.poles_fix);
gd.addNumericField("Number of tiles to extend over the poles bottoms", this.poles_len, 0);
gd.addNumericField("Set new pole segment strength to max of horizontal correlation and this value", this.poles_min_strength, 3);
gd.addCheckbox ("Set disparity to that of the bottom of existing segment (false - use hor. disparity)",this.poles_force_disp);
gd.addNumericField("Maximal number of clusters to generate for one run", this.max_clusters, 0);
gd.addCheckbox ("Correct lens geometric distortions in a model (will need backdrop to be corrected too)", this.correct_distortions);
gd.addCheckbox ("Show generated triangles", this.show_triangles);
......@@ -2587,6 +2683,11 @@ public class EyesisCorrectionParameters {
gd.addNumericField("Subtract from strength, discard negative", this.stFloor, 6);
gd.addNumericField("Raise strength to this power ", this.stPow, 6);
gd.addNumericField("Blur disparity histogram (sigma in bins)", this.stSigma, 6);
gd.addNumericField("Minimal backgroubnd disparity to extract as a maximum from the supertiles", this.stMinBgDisparity, 6);
gd.addNumericField("Minimal fraction of the disparity histogram to use as background", this.stMinBgFract, 6);
gd.addNumericField("Use background disparity from supertiles if tile strength is less", this.stUseDisp, 6);
gd.addNumericField("Outlayer tiles weaker than this may be replaced from neighbors", this.outlayerStrength, 6);
gd.addNumericField("Replace weak outlayer tiles that do not have neighbors within this disparity difference ", this.outlayerDiff, 6);
WindowTools.addScrollBars(gd);
gd.showDialog();
......@@ -2695,6 +2796,9 @@ public class EyesisCorrectionParameters {
this.bgnd_maybe= gd.getNextNumber();
this.min_clstr_seed= (int) gd.getNextNumber();
this.min_clstr_lone= (int) gd.getNextNumber();
this.min_clstr_weight= gd.getNextNumber();
this.min_clstr_max= gd.getNextNumber();
this.fill_gaps= (int) gd.getNextNumber();
this.min_clstr_block= (int) gd.getNextNumber();
this.bgnd_grow= (int) gd.getNextNumber();
......@@ -2710,17 +2814,31 @@ public class EyesisCorrectionParameters {
this.ortho_half_length=(int)gd.getNextNumber();
this.ortho_mix= gd.getNextNumber();
this.or_hor= gd.getNextBoolean();
this.or_vert= gd.getNextBoolean();
this.or_sigma= gd.getNextNumber();
this.or_sharp= gd.getNextNumber();
this.or_scale= gd.getNextNumber();
this.or_offset= gd.getNextNumber();
this.or_asym= gd.getNextNumber();
this.or_threshold= gd.getNextNumber();
this.or_absHor= gd.getNextNumber();
this.or_absVert= gd.getNextNumber();
this.poles_fix= gd.getNextBoolean();
this.poles_len= (int)gd.getNextNumber();
this.poles_min_strength= gd.getNextNumber();
this.poles_force_disp= gd.getNextBoolean();
this.max_clusters= (int) gd.getNextNumber();
this.correct_distortions= gd.getNextBoolean();
this.show_triangles= gd.getNextBoolean();
this.avg_cluster_disp= gd.getNextBoolean();
this.maxDispTriangle= gd.getNextNumber();
this.shUseFlaps= gd.getNextBoolean();
this.shAggrFade= gd.getNextBoolean();
this.shMinArea= (int) gd.getNextNumber();
this.shMinStrength= gd.getNextNumber();
this.tiRigidVertical= gd.getNextNumber();
this.tiRigidHorizontal= gd.getNextNumber();
this.tiRigidDiagonal= gd.getNextNumber();
......@@ -2755,7 +2873,11 @@ public class EyesisCorrectionParameters {
this.stFloor= gd.getNextNumber();
this.stPow= gd.getNextNumber();
this.stSigma= gd.getNextNumber();
this.stMinBgDisparity= gd.getNextNumber();
this.stMinBgFract= gd.getNextNumber();
this.stUseDisp= gd.getNextNumber();
this.outlayerStrength= gd.getNextNumber();
this.outlayerDiff= gd.getNextNumber();
return true;
}
}
......
......@@ -4749,10 +4749,44 @@ public class QuadCLT {
true, // smart,
true); //newAllowed, // save
// refine first measurement
int bg_pass = tp.clt_3d_passes.size() - 1; // 0
int refine_pass = tp.clt_3d_passes.size(); // 1
for (int nnn = 0; nnn<3; nnn ++){
refine_pass = tp.clt_3d_passes.size(); // 1
tp.refinePassSetup( // prepare tile tasks for the refine pass (re-measure disparities)
// final double [][][] image_data, // first index - number of image in a quad
clt_parameters,
bg_pass,
// disparity range - differences from
clt_parameters.bgnd_range, // double disparity_far,
clt_parameters.other_range, //double disparity_near, //
clt_parameters.bgnd_sure, // double this_sure, // minimal strength to be considered definitely background
clt_parameters.bgnd_maybe, // double this_maybe, // maximal strength to ignore as non-background
clt_parameters.sure_smth, // sure_smth, // if 2-nd worst image difference (noise-normalized) exceeds this - do not propagate bgnd
ImageDtt.DISPARITY_INDEX_CM, // index of disparity value in disparity_map == 2 (0,2 or 4)
geometryCorrection,
threadsMax, // maximal number of threads to launch
updateStatus,
debugLevel);
CLTMeasure( // perform single pass according to prepared tiles operations and disparity
image_data, // first index - number of image in a quad
clt_parameters,
refine_pass,
threadsMax, // maximal number of threads to launch
updateStatus,
debugLevel);
}
// testing 2-nd pass
int next_pass = tp.clt_3d_passes.size(); // 2
tp.secondPassSetup( // prepare tile tasks for the second pass based on the previous one(s)
// final double [][][] image_data, // first index - number of image in a quad
clt_parameters,
bg_pass,
// disparity range - differences from
clt_parameters.bgnd_range, // double disparity_far,
clt_parameters.other_range, //double disparity_near, //
......@@ -4764,9 +4798,8 @@ public class QuadCLT {
threadsMax, // maximal number of threads to launch
updateStatus,
debugLevel);
// get images for predefined regions and dispariteies. First - with just fixed scans 1 .. list.size()
for (int scanIndex = 1; scanIndex < tp.clt_3d_passes.size(); scanIndex++){
for (int scanIndex = next_pass; scanIndex < tp.clt_3d_passes.size(); scanIndex++){
if (debugLevel > 0){
System.out.println("FPGA processing scan #"+scanIndex);
}
......@@ -4781,7 +4814,7 @@ public class QuadCLT {
}
// int scan_limit = 10;
for (int scanIndex = 1; (scanIndex < tp.clt_3d_passes.size()) && (scanIndex < clt_parameters.max_clusters); scanIndex++){ // just temporary limiting
for (int scanIndex = next_pass; (scanIndex < tp.clt_3d_passes.size()) && (scanIndex < clt_parameters.max_clusters); scanIndex++){ // just temporary limiting
if (debugLevel > -1){
System.out.println("Generating cluster images (limit is set to "+clt_parameters.max_clusters+") largest, scan #"+scanIndex);
}
......@@ -4828,7 +4861,7 @@ public class QuadCLT {
scan_disparity, // scan.disparity_map[ImageDtt.DISPARITY_INDEX_CM],
clt_parameters.transform_size,
clt_parameters.correct_distortions, // requires backdrop image to be corrected also
(scanIndex <2) && clt_parameters.show_triangles,
(scanIndex < next_pass + 1) && clt_parameters.show_triangles,
clt_parameters.bgnd_range,
clt_parameters.other_range,
clt_parameters.maxDispTriangle);
......
......@@ -72,8 +72,20 @@ public class TileProcessor {
private double [] calc_disparity_vert = null; // composite disparity, calculated from "disparity", and "disparity_map" fields
private double [] calc_disparity_combo = null; // composite disparity, calculated from "disparity", and "disparity_map" fields
private double [] strength = null; // composite strength, initially uses a copy of raw 4-sensor correleation strength
// Bg disparity & strength is calculated from the supertiles and used instead of the tile disparity if it is too weak. Assuming, that
// foreground features should have good correlation details, and if the tile does not nhave them it likely belongs to the background.
// calculate disparity and strength from the (lapped) supertiles, using lowest allowed (>= minBgDisparity) disparity histogram maximums
// of the supertiles this tile belongs to
private double minBgDisparity = 0.0;
private double minBgFract = 0.0; // Use the lowest maximum if the strength strength (of all maximus >= minBgDisparity)
// exceeds minBgFract, otherwise proceed to the next one (and accumulate strength)
private double [] bgTileDisparity = null;
private double [] bgTileStrength = null;
public boolean [] border_tiles; // these are border tiles, zero out alpha
public boolean [] selected; // which tiles are selected for this layer
public double [][][][] texture_tiles;
public String texture = null; // relative (to x3d) path
public Rectangle bounds;
......@@ -112,6 +124,46 @@ public class TileProcessor {
public void resetCalc(){ // only needed if the same task was reused
calc_disparity = null;
strength = null;
superTiles = null;
}
public boolean [] getSelected(){
return selected;
}
public double [] combineHorVertStrength(
boolean combineHor,
boolean combineVert)
{
getStrength();
if (combineHor){
double [] hstrength = getHorStrength();
for (int i = 0; i < strength.length; i++) {
if (strength[i] < hstrength[i]) strength[i] = hstrength[i];
}
}
if (combineVert){
double [] vstrength = getVertStrength();
for (int i = 0; i < strength.length; i++) {
if (strength[i] < vstrength[i]) strength[i] = vstrength[i];
}
}
return strength;
}
public double [] combineSuper(
double useSuper){
if (bgTileDisparity == null) { // no supertile disparity is available
return null;
}
double [] strength = getStrength();
double [] disparity = getDisparity(0);
for (int i = 0; i < disparity.length; i++){
if (strength[i] < useSuper) disparity[i] = bgTileDisparity[i];
}
return disparity;
}
/**
......@@ -199,6 +251,133 @@ public class TileProcessor {
}
calc_disparity_combo = calc_disparity.clone(); // for now - just clone, can be modified separately and combined with hor/vert
}
/**
* Replaces current combo disparity for tiles that are weak and do not have any neighbor within disparity range from this one
* @param selection optional boolean mask of tiles to use/update
* @param weakStrength maximal strength of the tile to be considered weak one
* @param maxDiff maximal difference from the most similar neighbor to be considered an outlayer
* @param disparityFar minimal acceptable disparity for weak tiles
* @param disparityNear maximal acceptable disparity for weak tiles
* @return mask of weak (replaced) tiles
*
* Replace weak by a weighted average of non-weak. If there are none - use weak ones, including this one too.
*/
public boolean[] replaceWeakOutlayers(
final boolean [] selection,
final double weakStrength, // strength to be considered weak, subject to this replacement
final double maxDiff,
final double disparityFar,
final double disparityNear)
{
final int nTiles = tilesX*tilesY;
final boolean [] weakOutlayers = new boolean [nTiles];
int [] dirs8 = {-tilesX, -tilesX + 1, 1, tilesX +1, tilesX, tilesX - 1, -1, -tilesX - 1};
final int [] dirs = dirs8;
final double [] disparity = getDisparity(0);
final double [] strength = getStrength();
final double absMinDisparity = 0.5 * disparityFar; // adjust? below this is definitely wrong (weak)
final double absMaxDisparity = 1.5 * disparityNear; // change?
final int dbg_nTile = 46462; // 41545;
final Thread[] threads = ImageDtt.newThreadArray(threadsMax);
// first pass = find outlayers
final AtomicInteger ai = new AtomicInteger(0);
for (int ithread = 0; ithread < threads.length; ithread++) {
threads[ithread] = new Thread() {
public void run() {
for (int nTile = ai.getAndIncrement(); nTile < nTiles; nTile = ai.getAndIncrement()) {
if (((strength[nTile] < weakStrength) ||
(disparity[nTile] < absMinDisparity) ||
(disparity[nTile] > absMaxDisparity))&& ((selection == null) || selection[nTile])) {
if (nTile == dbg_nTile){
System.out.println("replaceWeakOutlayers():1 nTile="+nTile);
}
double [] dbg_disparity = disparity;
double dbg_disparity_nTile = disparity[nTile];
double dbg_disparityFar = disparityFar;
double dbg_disparityNear = disparityNear;
boolean [] dbg_weakOutlayers = weakOutlayers;
int tileY = nTile / tilesX;
int tileX = nTile % tilesX;
if ((tileY > 0) && (tileY < (tilesY -1)) &&(tileX > 0) && (tileX < (tilesX -1))){ // disregard outer row/cols
weakOutlayers[nTile] = true;
boolean hasNeighbors = false;
for (int dir = 0; dir< dirs.length; dir++){
int nTile1 = nTile + dirs[dir];
double dbg_disparity_nTile1 = disparity[nTile1];
if (((selection == null) || selection[nTile1]) &&
(disparity[nTile1] >= disparityFar) && // don't count on too near/too far for averaging
(disparity[nTile1] <= disparityNear)){
hasNeighbors = true;
if (Math.abs(disparity[nTile]-disparity[nTile1]) <= maxDiff){ // any outlayer - will be false
weakOutlayers[nTile] = false;
break;
}
}
}
if (disparity[nTile] < disparityFar) weakOutlayers[nTile] = true;
if (disparity[nTile] > disparityNear) weakOutlayers[nTile] = true;
if (!hasNeighbors) {
weakOutlayers[nTile] = false; // lone tile or NaN among NaNs
}
}
}
}
}
};
}
ImageDtt.startAndJoin(threads);
// second pass - replace outlayers
final double [] src_disparity = disparity.clone();
ai.set(0);
for (int ithread = 0; ithread < threads.length; ithread++) {
threads[ithread] = new Thread() {
public void run() {
for (int nTile = ai.getAndIncrement(); nTile < nTiles; nTile = ai.getAndIncrement()) {
if (nTile == dbg_nTile){
System.out.println("replaceWeakOutlayers():2 nTile="+nTile);
}
if (weakOutlayers[nTile]) {
double sw = 0.0, sd = 0.0;
for (int dir = 0; dir< dirs.length; dir++){
int nTile1 = nTile + dirs[dir];
if (!weakOutlayers[nTile1] && ((selection == null) || selection[nTile1 ]) ) {
double w = strength[nTile1];
sw += w;
sd += w * src_disparity[nTile1];
}
}
if (sw == 0) { // Nothing strong around - repeat with weak and this one too.
double w = strength[nTile];
if (!Double.isNaN( src_disparity[nTile])) {
sw += w;
sd += w * src_disparity[nTile];
}
for (int dir = 0; dir< dirs.length; dir++){
int nTile1 = nTile + dirs[dir];
if ((selection == null) || selection[nTile1 ]) {
w = strength[nTile1];
if (!Double.isNaN( src_disparity[nTile1])) {
sw += w;
sd += w * src_disparity[nTile1];
}
}
}
}
if (sw > 0) { // should be, do nothing if not
disparity[nTile] = sd/sw;
}
}
}
}
};
}
ImageDtt.startAndJoin(threads);
return weakOutlayers;
}
public void setSuperTiles(
double step_disparity,
double min_disparity,
......@@ -266,6 +445,61 @@ public class TileProcessor {
return superTiles.stStrength;
}
public double [][] getBgDispStrength()
{
if ((bgTileDisparity == null) || (bgTileStrength == null)){
double [][] rslt = {bgTileDisparity,bgTileStrength};
return rslt;
}
return getBgDispStrength(
this.minBgDisparity,
this.minBgFract);
}
public double [][] getBgDispStrength(
final double minBgDisparity,
final double minBgFract)
{
if (superTiles == null){
return null;
}
if ((minBgDisparity != this.minBgDisparity) || (minBgFract != this.minBgFract)){
this.minBgDisparity = minBgDisparity;
this.minBgFract = minBgFract;
superTiles.bgDisparity = null; // per super-tile
superTiles.bgStrength = null; // per super-tile
bgTileDisparity = null; // per tile
bgTileStrength = null; // per tile
}
if ((superTiles.bgDisparity == null) || (superTiles.bgStrength == null)){
if (superTiles.getBgDispStrength(
minBgDisparity,
minBgFract) == null) {
superTiles.bgDisparity = null; // per super-tile
superTiles.bgStrength = null; // per super-tile
bgTileDisparity = null; // per tile
bgTileStrength = null; // per tile
return null; // failed
}
// now lap-combine supertiles, get this.* from superTiles.*
double [][] bgTileDispStrength = superTiles.getBgTileDispStrength();
bgTileDisparity = bgTileDispStrength[0];
bgTileStrength = bgTileDispStrength[1];
}
double [][] rslt = {bgTileDisparity,bgTileStrength};
return rslt;
}
public double [] getBgDisparity(){
return bgTileDisparity;
}
public double [] getBgStrength(){
return bgTileStrength;
}
class SuperTiles{
double step_disparity;
double min_disparity;
......@@ -277,6 +511,8 @@ public class TileProcessor {
double [][] disparityHistograms = null;
double [] stStrength = null; // per super-tile correlation strength
double [][][] maxMinMax = null;
double [] bgDisparity = null;
double [] bgStrength = null;
public SuperTiles(
double step_disparity,
double min_disparity,
......@@ -292,14 +528,45 @@ public class TileProcessor {
this.strength_pow = strength_pow;
this.stBlurSigma = stBlurSigma;
this.numBins = (int) ((max_disparity - min_disparity)/step_disparity) + 1;
getDisparityHistograms(); // claculate and blur supertileas
// getDisparityHistograms(); // calculate and blur supertileas
getDisparityHistograms(null); // calculate and blur supertileas (for all, not just selected?)
}
private double [][] getLapWeights(){
final double [][] lapWeight = new double [2 * superTileSize][2 * superTileSize];
final double [] lapWeight1d = new double [superTileSize];
final int superTileSize2 = 2 * superTileSize;
for (int i = 0; i < superTileSize; i++){
lapWeight1d[i] = 0.5*(1.0 - Math.cos((i + 0.5)* Math.PI/superTileSize));
}
for (int i = 0; i < superTileSize; i++){
for (int j = 0; j < superTileSize; j++){
lapWeight[i] [ j] = lapWeight1d[i]*lapWeight1d[j];
lapWeight[superTileSize2 - 1 - i][ j] = lapWeight[i][j];
lapWeight[i] [superTileSize2 - 1 - j] = lapWeight[i][j];
lapWeight[superTileSize2 - 1 - i][superTileSize2 - 1 - j] = lapWeight[i][j];
}
}
double s = 0.0;
for (int i = 0; i < superTileSize2; i++){
for (int j = 0; j < superTileSize2; j++){
s+=lapWeight[i][j];
}
}
System.out.println("getLapWeights: sum = "+s);
return lapWeight;
}
// updates disparityHistograms
public double [][] getDisparityHistograms()
{
return getDisparityHistograms(selected, globalDebugLevel);
}
// updates disparityHistograms
public double [][] getDisparityHistograms(final boolean [] selected) // null)
{
return getDisparityHistograms(selected, globalDebugLevel);
}
public double [][] getDisparityHistograms(
final boolean [] selected, // or null
......@@ -323,21 +590,26 @@ public class TileProcessor {
final Thread[] threads = ImageDtt.newThreadArray(threadsMax);
final AtomicInteger ai = new AtomicInteger(0);
final int st_start = - superTileSize/2;
final int st_end = st_start + superTileSize;
// final int st_end = st_start + superTileSize;
final int superTileSize2 = 2 * superTileSize;
final double [][] lapWeight = getLapWeights();
for (int ithread = 0; ithread < threads.length; ithread++) {
threads[ithread] = new Thread() {
public void run() {
for (int nsTile = ai.getAndIncrement(); nsTile < nStiles; nsTile = ai.getAndIncrement()) {
int styleY = nsTile / stilesX;
int styleX = nsTile % stilesX;
int stileY = nsTile / stilesX;
int stileX = nsTile % stilesX;
double sw = 0.0; // sum weights
double [] hist = new double [numBins];
for (int tileY = styleY * superTileSize + st_start; tileY < styleY * superTileSize + st_end; tileY++){
// for (int tileY = stileY * superTileSize + st_start; tileY < stileY * superTileSize + st_end; tileY++){
int tY0 = stileY * superTileSize + st_start;
int tX0 = stileX * superTileSize + st_start;
for (int tY = 0; tY < superTileSize2; tY++){
int tileY = tY0 +tY;
if ((tileY >= 0) && (tileY < tilesY)) {
for (int tileX = styleX * superTileSize + st_start; tileX < styleX * superTileSize + st_end; tileX++){
// for (int tileX = stileX * superTileSize + st_start; tileX < stileX * superTileSize + st_end; tileX++){
for (int tX = 0; tX < superTileSize2; tX++){
int tileX = tX0 +tX;
if ((tileX >= 0) && (tileX < tilesX)) {
int indx = tileY*tilesX + tileX;
double d = disparity[indx];
......@@ -345,6 +617,7 @@ public class TileProcessor {
double w = strength[indx] - strength_floor;
if (w > 0.0){
if (strength_pow != 1.0) w = Math.pow(w, strength_pow);
w *= lapWeight[tY][tX];
int bin = (int) ((d-dMin)/step_disparity);
if ((bin >= 0) && (bin < numBins)){ // maybe collect below min and above max somewhere?
hist[bin] += w; // +1]
......@@ -565,10 +838,10 @@ public class TileProcessor {
}
}
for (int nsTile = 0; nsTile < sTiles; nsTile++){
int styleY = nsTile / sTilesX;
int styleX = nsTile % sTilesX;
int x0 = styleX * (numBins + 1);
int y0 = styleY * (numBins + 1);
int stileY = nsTile / sTilesX;
int stileX = nsTile % sTilesX;
int x0 = stileX * (numBins + 1);
int y0 = stileY * (numBins + 1);
int indx0 = x0 + y0*width;
// draw rectangular frame - horisontal dotted lines
......@@ -628,10 +901,10 @@ public class TileProcessor {
}
}
for (int nsTile = 0; nsTile < sTiles; nsTile++){
int styleY = nsTile / sTilesX;
int styleX = nsTile % sTilesX;
int x0 = styleX * (numBins + 1);
int y0 = styleY * (numBins + 1);
int stileY = nsTile / sTilesX;
int stileX = nsTile % sTilesX;
int x0 = stileX * (numBins + 1);
int y0 = stileY * (numBins + 1);
int indx0 = x0 + y0*width;
// draw rectangular frame - horisontal dotted lines
......@@ -676,8 +949,165 @@ public class TileProcessor {
return rslt;
}
// updates bgDisparity, bgStrength
public double [][] getBgDispStrength(
final double minBgDisparity,
final double minBgFract)
{
if (maxMinMax == null) return null;
final int sTiles = maxMinMax.length;
final Thread[] threads = ImageDtt.newThreadArray(threadsMax);
final AtomicInteger ai = new AtomicInteger(0);
bgDisparity = new double[sTiles];
bgStrength = new double[sTiles];
for (int ithread = 0; ithread < threads.length; ithread++) {
threads[ithread] = new Thread() {
public void run() {
for (int nsTile = ai.getAndIncrement(); nsTile < sTiles; nsTile = ai.getAndIncrement()) {
if (nsTile == 49) { // 414){ // 331){
System.out.println("getBgDispStrength(); nsTIle="+nsTile);
}
double [][] mmm = maxMinMax[nsTile];
bgDisparity[nsTile] = Double.NaN;
bgStrength[nsTile] = 0.0;
if (mmm != null){
int maxNum = 0;
int numMax = (maxMinMax[nsTile].length + 1) / 2;
double selStrenth = 0.0;
int startIndex = 0;
for (maxNum = 0; maxNum < numMax; maxNum++){
if (mmm[2 * maxNum][0] >= minBgDisparity){
if (selStrenth == 0.0) startIndex = maxNum; // will keep first non-zero maximum number
selStrenth += mmm[2 * maxNum][1];
}
}
if (selStrenth > 0.0){
selStrenth *= minBgFract;
double accumStrength = 0.0;
for (maxNum = startIndex; maxNum < numMax; maxNum++){
accumStrength += mmm[2 * maxNum][1];
if (accumStrength >= selStrenth){
break;
}
}
if (maxNum >= numMax){
maxNum = numMax - 1; // probably just wrong fraction (>1.0)
}
// if unlikely there are several maximums before minBgFract - use the strongest
int maxIndex = startIndex;
if (startIndex < maxNum){
for (startIndex++; startIndex < numMax ;startIndex++){
if (mmm[2 * startIndex][1] > mmm[2 * maxIndex][1]) maxIndex = startIndex;
}
}
//maxIndex is what we need. Which strength to use - individual or accumulated? Use individual.
bgDisparity[nsTile] = min_disparity + mmm[2 * maxIndex][0] * step_disparity;
bgStrength[nsTile] = mmm[2 * maxIndex][1];
}
}
}
}
};
}
ImageDtt.startAndJoin(threads);
final double [][] bgDispStrength = {bgDisparity, bgStrength};
if (globalDebugLevel > 0) {
showDoubleFloatArrays sdfa_instance = new showDoubleFloatArrays(); // just for debugging?
final int stilesX = (tilesX + superTileSize -1)/superTileSize;
final int stilesY = (tilesY + superTileSize -1)/superTileSize;
sdfa_instance.showArrays(bgDispStrength, stilesX, stilesY, true, "bgDispStrength");
}
return bgDispStrength;
}
// from per-super-tile disparity/strength interpolate per-tile disparity/strength using same sine-based window
public double [][] getBgTileDispStrength()
{
if ((this.bgDisparity == null) || (this.bgStrength == null)) return null;
final int tilesX = getTilesX();
final int tilesY = getTilesY();
final int stilesX = (tilesX + superTileSize -1)/superTileSize;
final int stilesY = (tilesY + superTileSize -1)/superTileSize;
final int nStiles = stilesX * stilesY;
// final int numBins = (int) ((max_disparity - min_disparity)/step_disparity) + 1;
// final double [][] dispHist = new double [nStiles][numBins];
final Thread[] threads = ImageDtt.newThreadArray(threadsMax);
final AtomicInteger ai = new AtomicInteger(0);
// final int st_end = st_start + superTileSize;
final int superTileSize2 = 2 * superTileSize;
final double [][] lapWeight = getLapWeights();
final double [] tileDisparity = new double [tilesY * tilesX]; // assuming all 0.0
final double [] tileStrength = new double [tilesY * tilesX]; // assuming all 0.0
for (int ithread = 0; ithread < threads.length; ithread++) {
threads[ithread] = new Thread() {
public void run() {
for (int nsTile = ai.getAndIncrement(); nsTile < nStiles; nsTile = ai.getAndIncrement()) {
int stileY = nsTile / stilesX;
int stileX = nsTile % stilesX;
int tY0 = stileY * superTileSize;
int tX0 = stileX * superTileSize;
double [][] lapWeight_dbg = lapWeight;
if (nsTile == 414) { //317) { // 755){
System.out.println("getBgTileDispStrength(x): stileY="+stileY+", stileX="+stileX+" lapWeight_dbg.length="+lapWeight_dbg.length);
}
for (int tY = 0; tY < superTileSize; tY++){
int tileY = tY0 +tY;
if (tileY < tilesY) {
for (int tX = 0; tX < superTileSize; tX++){
int tileX = tX0 +tX;
if (tileX < tilesX) {
int tIndex = tileY * tilesX + tileX;
// iterate for +/- 1 supterile around current, acummulate disparity/strength
double sd = 0.0, sw = 0.0;
for (int stDY = -1; stDY <=1; stDY ++){
int stY = stileY + stDY;
int dtY =tY + superTileSize/2 -superTileSize * stDY;
if ((stY >= 0) && (stY < stilesY) && (dtY >= 0) && (dtY < superTileSize2)){
for (int stDX = -1; stDX <=1; stDX ++){
int stX = stileX + stDX;
int dtX =tX + superTileSize/2 -superTileSize * stDX;
if ((stX >= 0) && (stX < stilesX) && (dtX >= 0) && (dtX < superTileSize2)){
int stIndex = stY * stilesX + stX;
double w = bgStrength[stIndex] * lapWeight[dtY][dtX];
if (nsTile == 415) {
System.out.println("tX="+tX+", tY="+tY+", tileX="+tileX+", tileY="+tileY+" stDX="+stDX+" stDY="+stDY+
", bgStrength["+stIndex+"] = "+bgStrength[stIndex]+
", lapWeight["+dtY+"]["+dtX+"]="+lapWeight[dtY][dtX]+" stY="+stY+" stX="+stX+" w="+w);
}
sw += w;
if (w >0.0) sd += w * bgDisparity[stIndex]; // so NaN will be OK
}
}
}
}
tileStrength[tIndex] = sw;
if (sw > 0.0) {
tileDisparity[tIndex] = sd/sw;
} else {
tileDisparity[tIndex] = Double.NaN;
}
if (nsTile == 415) {
System.out.println("sw= "+sw+", sd="+sd);
}
}
}
}
}
}
}
};
}
ImageDtt.startAndJoin(threads);
final double [][] bgTileDispStrength = {tileDisparity, tileStrength};
return bgTileDispStrength;
}
} // end of class SuperTiles
} // end of class CLTPass3d
......@@ -722,7 +1152,7 @@ public class TileProcessor {
}
}
}
// see if the second worst variatoin exceeds sure_smth (like a window), really close object
// see if the second worst variation exceeds sure_smth (like a window), really close object
int imax1 = 0;
for (int i = 1; i< quad; i++){
if (disparity_map[ImageDtt.IMG_DIFF0_INDEX+i][tindx] > disparity_map[ImageDtt.IMG_DIFF0_INDEX + imax1][tindx]) imax1 = i;
......@@ -734,13 +1164,15 @@ public class TileProcessor {
block_propagate[tindx] = (disparity_map[ImageDtt.IMG_DIFF0_INDEX + imax2][tindx] > sure_smth);
}
}
// TODO: check if minimal cluster strengh should be limited here
if (min_clstr_seed > 1){
removeSmallClusters(
true, // boolean diag_en, // enable diagonal directions, false only up, dowm, right,left
bgnd_tiles, // boolean [] tiles_src, // selected tiles, will modified
null, // double [] weights_src, // or null
min_clstr_seed, // int min_area, // minimal number of pixels
0.0); // double min_weight // minimal total weight of the cluster
0.0, //clt_parameters.min_clstr_weight, // double min_weight // minimal total weight of the cluster
0.0); // clt_parameters.min_clstr_max); // double min_max_weight // minimal value of the maximal strengh in the cluster
}
if (min_clstr_block > 1){
......@@ -749,7 +1181,8 @@ public class TileProcessor {
nonbgnd_tiles, // boolean [] tiles_src, // selected tiles, will modified
null, // double [] weights_src, // or null
min_clstr_block, // int min_area, // minimal number of pixels
0.0); // double min_weight // minimal total weight of the cluster
0.0, //clt_parameters.min_clstr_weight, // double min_weight // minimal total weight of the cluster
0.0); // clt_parameters.min_clstr_max); // double min_max_weight // minimal value of the maximal strengh in the cluster
}
if (sdfa_instance!=null){
......@@ -1259,7 +1692,7 @@ public class TileProcessor {
borderTiles[indx] = false;
}
}
// Create FPGA task for tis cluster
// Create FPGA task for this cluster
CLTPass3d scan_next = new CLTPass3d();
scan_next.disparity = disparityTask;
......@@ -1469,7 +1902,8 @@ public class TileProcessor {
boolean [] tiles, // selected tiles, will modified
double [] weights_src, // or null
int min_area, // minimal number of pixels
double min_weight // minimal total weight of the cluster (expanded!
double min_weight, // minimal total weight of the cluster (expanded!
double min_max_weight // minimal value of the maximal strengh in tghe cluster
){
boolean [] grown_by_1 = tiles.clone();
growTiles(2, // 1, // 2, // grow tile selection by 1 over non-background tiles 1: 4 directions, 2 - 8 directions, 3 - 8 by 1, 4 by 1 more
......@@ -1481,7 +1915,8 @@ public class TileProcessor {
grown_by_1, // selected tiles, will modified
weights_src, // or null
grown_min, // minimal number of pixels
min_weight); // minimal total weight of the cluster
min_weight, // minimal total weight of the cluster
min_max_weight); // minimal value of the maximal strengh in tghe cluster
/*** showDoubleFloatArrays sdfa_instance = new showDoubleFloatArrays(); // just for debugging?
String [] titles = {"orig","grown","combined"};
double [][] dbg_img = new double [titles.length][tiles.length];
......@@ -1503,7 +1938,8 @@ public class TileProcessor {
boolean [] tiles_src, // selected tiles, will modified
double [] weights_src, // or null
int min_area, // minimal number of pixels
double min_weight // minimal total weight of the cluster
double min_weight, // minimal total weight of the cluster
double min_max_weight // minimal value of the maximal strengh in the cluster
){
// adding 1-tile frame around to avoid checking for the borders
int tilesX2 = tilesX+2;
......@@ -1543,7 +1979,11 @@ public class TileProcessor {
front.clear();
int area = 1;
double weight = 0.0;
if (weights != null) weight += weights[ipx];
double max_weight = 0.0;
if (weights != null) {
weight += weights[ipx];
if (weights[ipx] > max_weight) max_weight = weights[ipx];
}
waves[ipx] = area;
front.add(ipx);
while (!front.isEmpty()) {
......@@ -1552,13 +1992,16 @@ public class TileProcessor {
ipx1 = ipx + dirs[d];
if (waves[ipx1] == 0) {
area++;
if (weights != null) weight += weights[ipx1];
if (weights != null) {
weight += weights[ipx1];
if (weights[ipx1] > max_weight) max_weight = weights[ipx1];
}
waves[ipx1] = area;
front.add(ipx1);
}
}
}
if ((area < min_area) ||((weights != null) && (weight < min_weight))){
if ((area < min_area) || ((weights != null) && ((weight < min_weight) || (max_weight < min_max_weight)))){
waves[ipx] = -1;
tiles[ipx] = false;
front.add(ipx);
......@@ -1640,10 +2083,10 @@ public class TileProcessor {
return disp_array;
}
public boolean [] combineHorVertDisparity(
public boolean [] FilterScan(
final CLTPass3d scan,
final boolean [] bg_tiles, // get from selected in clt_3d_passes.get(0);
final int [] horVertMod, // +1 - modified by hor correlation, +2 - modified by vert correlation (or null)
final double disparity_far, //
final double disparity_near, //
final double this_sure, // minimal strength to be considered definitely background
......@@ -1658,92 +2101,335 @@ public class TileProcessor {
showDoubleFloatArrays sdfa_instance = null;
if (debugLevel > -1) sdfa_instance = new showDoubleFloatArrays(); // just for debugging?
// scale and shift all 3 disparities - combo, vert and hor
final int tlen = tilesY * tilesX;
double [] this_disparity = scan.getDisparity(); // returns a copy of the FPGA-generated disparity combined with the target one
double [] this_hor_disparity= scan.getDisparity(2);
double [] this_vert_disparity= scan.getDisparity(3);
double [] this_disparity = scan.getDisparity(); // currently calculated, including ortho
double [] this_strength = scan.getStrength(); // cloned, can be modified/ read back
double [] strength = scan.getOriginalStrength(); // reference, not cloned
double [] hor_strength = scan.getHorStrength();
double [] vert_strength = scan.getVertStrength();
double [] dbg_orig_disparity = scan.getDisparity(0); // unmodified
double [][] these_diffs = scan.getDiffs();
double [] orig_strength = scan.getOriginalStrength(); // to compare clusters
boolean [] these_tiles = new boolean [tlen];
boolean [] near_tiles = new boolean [tlen];
boolean [] far_tiles = new boolean [tlen];
boolean [] block_propagate = new boolean [tlen];
boolean [] used_hor = new boolean [tlen];
boolean [] used_vert = new boolean [tlen];
// convolve hor/vert strengths to emphasize multi-tile features
double [] hor_strength_conv = detectOrtho(
hor_strength, // double [] tiles,
false, // boolean vert, // true for vertical correlation and _horizontal features
clt_parameters.ortho_half_length, // int radius, // one dimension - [-radius, +radius], other dimension -1,0, 1
debugLevel);
double [] vert_strength_conv = detectOrtho(
vert_strength, // double [] tiles,
true, // boolean vert, // true for vertical correlation and _horizontal features
clt_parameters.ortho_half_length, // int radius, // one dimension - [-radius, +radius], other dimension -1,0, 1
debugLevel);
// now mix raw with convolved, but keep raw - it will be needed for weighted average
for (int i = 0; i< tlen; i++){
hor_strength_conv[i] = (clt_parameters.ortho_mix * hor_strength_conv[i] + (1.0 - clt_parameters.ortho_mix ) * hor_strength[i]);
vert_strength_conv[i] = (clt_parameters.ortho_mix * vert_strength_conv[i] + (1.0 - clt_parameters.ortho_mix ) * vert_strength[i]);
for (int i = 0; i <tlen; i++) if (!Double.isNaN(this_disparity[i])){
if (this_disparity[i] < disparity_far) {
if (this_strength[i] > this_maybe){
if (bg_tiles[i]) { // far can only be among previously selected for bgnd?
far_tiles[i] = true;
}
//getOriginalStrength()
for (int i = 0; i < tilesY; i++){
for (int j = 0; j < tilesX; j++){
int indx = i * tilesX + j;
if (!Double.isNaN(this_disparity[i])){
double disp = this_disparity[indx];
// Enhance foreground detection: compare horizontal-only (for vertical features) and vertical (for horizontal) and replace 4-pair disparity
// with that value
if ((hor_strength_conv[indx] >= clt_parameters.ortho_min_hor) &&
(hor_strength_conv[indx] / vert_strength_conv[indx]>= clt_parameters.ortho_asym) &&
(this_hor_disparity[indx] > disp)) {
disp = this_hor_disparity[indx];
used_hor[indx] = true;
}
if ((vert_strength_conv[indx] >= clt_parameters.ortho_min_vert) &&
(vert_strength_conv[indx] / hor_strength_conv[indx]>= clt_parameters.ortho_asym) &&
(this_vert_disparity[indx] > disp)) {
disp = this_vert_disparity[indx];
used_vert[indx] = true;
} else if (this_disparity[i] > disparity_near){
// if ((this_strength[i] > this_maybe) && ! bg_tiles[i]){ // can not be farther if selected for near?
// if ((this_strength[i] > this_maybe) || used_hor[i] || used_vert[i] ){ // can not be farther if selected for near?
if ((this_strength[i] > this_maybe)){ // can not be farther if selected for near?
near_tiles[i] = true;
}
} else { // in range
if ((this_strength[i] > this_sure) || ((horVertMod != null) && (horVertMod[i] != 0))){
these_tiles[i] = true;
}
}
// see if the second worst variation exceeds sure_smth (like a window), really close object
int imax1 = 0;
for (int ip = 1; ip < these_diffs.length; ip++){
if (these_diffs[ip][i] > these_diffs[imax1][i]) imax1 = ip;
}
int imax2 = (imax1 == 0)? 1 : 0;
for (int ip = 0; ip< these_diffs.length; ip++) if (ip != imax1) {
if (these_diffs[ip][i] > these_diffs[imax2][i]) imax2 = ip;
}
block_propagate[i] = (these_diffs[imax2][i] > sure_smth);
}
boolean[] prohibit = null; // TBD
boolean[] dbg_before_gaps = null;
if (clt_parameters.min_clstr_seed > 1){
boolean [] dbg_used_hor = used_hor.clone();
boolean [] dbg_used_vert = used_vert.clone();
// TODO: check - now no limit on the strength of the offending selections, only on these onses
if (clt_parameters.min_clstr_seed > 1){
removeSmallClusters(
false, //true, // boolean diag_en, // enable diagonal directions, false only up, dowm, right,left
used_hor, // boolean [] tiles_src, // selected tiles, will modified
far_tiles, // boolean [] tiles_src, // selected tiles, will modified
null, // double [] weights_src, // or null
clt_parameters.min_clstr_seed, // int min_area, // minimal number of pixels
0.0); // double min_weight // minimal total weight of the cluster
0.0, // clt_parameters.min_clstr_weight, // double min_weight // minimal total weight of the cluster
0.0); // clt_parameters.min_clstr_max); // double min_max_weight // minimal value of the maximal strengh in the cluster
removeSmallClusters(
false, // true, // boolean diag_en, // enable diagonal directions, false only up, dowm, right,left
used_vert, // boolean [] tiles_src, // selected tiles, will modified
near_tiles, // boolean [] tiles_src, // selected tiles, will modified
null, // double [] weights_src, // or null
clt_parameters.min_clstr_seed, // int min_area, // minimal number of pixels
0.0); // double min_weight // minimal total weight of the cluster
0.0, // clt_parameters.min_clstr_weight, // double min_weight // minimal total weight of the cluster
0.0); // clt_parameters.min_clstr_max); // double min_max_weight // minimal value of the maximal strengh in the cluster
// only remove far outstanding clusters
removeSmallClusters( // remove single-tile clusters - anywhere
false, // true, // boolean diag_en, // enable diagonal directions, false only up, dowm, right,left
these_tiles, // boolean [] tiles_src, // selected tiles, will modified
orig_strength, // null, // double [] weights_src, // or null
clt_parameters.min_clstr_seed, // 2, // int min_area, // minimal number of pixels
clt_parameters.min_clstr_weight, // double min_weight // minimal total weight of the cluster
clt_parameters.min_clstr_max); // double min_max_weight // minimal value of the maximal strengh in the cluster
removeLoneClusters(
false, // true, // boolean diag_en, // enable diagonal directions, false only up, dowm, right,left
these_tiles, // boolean [] tiles_src, // selected tiles, will modified
orig_strength, // null, // double [] weights_src, // or null
clt_parameters.min_clstr_lone, // int min_area, // minimal number of pixels
clt_parameters.min_clstr_weight, // double min_weight // minimal total weight of the cluster
clt_parameters.min_clstr_max); // double min_max_weight // minimal value of the maximal strengh in the cluster
dbg_before_gaps = these_tiles.clone();
prohibit = far_tiles; // do not fill gaps over known background/far tiles
if (clt_parameters.fill_gaps > 0) {
fillGaps( // grows, then shrinks
clt_parameters.fill_gaps, // int depth, // same as grow - odd - 4 directions, even - 8
these_tiles, // boolean [] tiles,
prohibit);
}
}
// bridge over small gaps in horizontal/vertical features
int numHorBridged = bridgeFgndOrthoGap(
clt_parameters,
false, // vert, // verical pairs, horizontal features
double [] this_disparity_masked = this_disparity.clone();
for (int i = 0; i < this_disparity.length; i++){
if (!these_tiles[i])this_disparity_masked[i] = Double.NaN;
}
if (sdfa_instance!=null){
int [] enum_clusters = enumerateClusters(
true, // boolean diag_en,
these_tiles); // boolean [] tiles_src)
String [] titles = {"masked","map","orig_map","hor_map","vert_map","bg_sel","far","these_gaps","these","near","block",
"strength","hor-strength","vert-strength",
"diff0","diff1","diff2","diff3", "enum_clusters", "disp_cm", "disp_poly", "disp_hor", "disp_vert"};
double [][] dbg_img = new double[titles.length][tilesY * tilesX];
for (int i = 0; i<dbg_img[0].length;i++){
dbg_img[ 0][i] = this_disparity_masked[i];
dbg_img[ 1][i] = this_disparity[i];
// dbg_img[ 2][i] = dbg_orig_disparity[i];
// dbg_img[ 3][i] = this_hor_disparity[i];
// dbg_img[ 4][i] = this_vert_disparity[i];
dbg_img[ 5][i] = bg_tiles [i] ? 1 : -1;
dbg_img[ 6][i] = far_tiles [i] ? 1 : -1;
dbg_img[ 7][i] = dbg_before_gaps [i] ? 1 : -1;
dbg_img[ 8][i] = these_tiles [i] ? 1 : -1;
dbg_img[ 9][i] = near_tiles [i] ? 1 : -1;
dbg_img[10][i] = block_propagate[i] ? 1 : -1;
dbg_img[11][i] = this_strength[i];
// dbg_img[12][i] = hor_strength[i];
// dbg_img[13][i] = vert_strength[i];
dbg_img[14][i] = these_diffs[0][i];
dbg_img[15][i] = these_diffs[1][i];
dbg_img[16][i] = these_diffs[2][i];
dbg_img[17][i] = these_diffs[3][i];
dbg_img[18][i] = enum_clusters[i];
}
dbg_img[ 2] = scan.getDisparity(1);
dbg_img[ 3] = scan.getDisparity(2);
dbg_img[ 4] = scan.getDisparity(3);
dbg_img[12] = scan.getHorStrength();
dbg_img[13] = scan.getVertStrength();
dbg_img[19] = scan. disparity_map[ImageDtt.DISPARITY_INDEX_CM];
dbg_img[20] = scan. disparity_map[ImageDtt.DISPARITY_INDEX_POLY];
dbg_img[21] = scan. disparity_map[ImageDtt.DISPARITY_INDEX_HOR];
dbg_img[22] = scan. disparity_map[ImageDtt.DISPARITY_INDEX_VERT];
sdfa_instance.showArrays(dbg_img, tilesX, tilesY, true, "FilterScan"+clt_3d_passes.size(),titles);
}
return these_tiles;
}
public int [] combineOrthoDisparity(
final CLTPass3d scan, // scan data
final boolean or_hor, // true; // Apply ortho correction to horizontal correlation (vertical features)
final boolean or_vert, // true; // Apply ortho correction to vertical correlation (horizontal features)
final double or_sigma, // 2.0; // Blur sigma: verically for horizontal correlation, horizontally - for vertically
final double or_sharp, // 0.5; // 3-point sharpening (-k, +2k+1, -k)
final double or_scale, // 2.0; // Scale ortho correletion strength relative to 4-directional one
final double or_offset, // 0.1; // Subtract from scaled correlation strength, limit by 0
final double or_asym , // 1.5; // Minimal ratio of orthogonal strengths required for dis[parity replacement
final double or_threshold, // 1.5; // Minimal scaled offsetg ortho strength to normal strength needed for replacement
final double or_absHor, // 0.15; // Minimal horizontal absolute scaled offset ortho strength needed for replacement
final double or_absVert, // 0.19; // Minimal vertical absolute scaled offset ortho strength needed for replacement
final int debugLevel)
{
double [] disparity = scan.getDisparity(0); // calculated, to be modified
double [] strength = scan.getStrength(); // combo, to be modified
double [] disparity_hor = scan.getDisparity(2); // .clone(); // calculated
double [] disparity_vert = scan.getDisparity(3); // .clone(); // calculated
double [] strength_hor = scan.getHorStrength(); // .clone();
double [] strength_vert = scan.getVertStrength(); // .clone();
int [] replaced = new int[strength.length];
if (or_hor){
for (int i = 0; i < strength_hor.length; i++){
strength_hor[i] *= or_scale;
}
SharpBlurPair(
disparity_hor, // double [] data, // data array for in-place modification
strength_hor, // double [] strength, // data weights array for in-place modification
or_sigma, // double sigma, // blur sigma
or_sharp, // double k, // sharpen in orthogonal direction with (-k,2*k-1,-k). 0 - no sharpening
or_offset, // double offset, // subtract from strength, limit by 0.0
false); // boolean vert) // true - sharpen vertically, blur horizontally. False - sharpen horizontally, blur vertically
}
if (or_vert){
for (int i = 0; i < strength_vert.length; i++){
strength_vert[i] *= or_scale;
}
SharpBlurPair(
disparity_vert, // double [] data, // data array for in-place modification
strength_vert, // double [] strength, // data weights array for in-place modification
or_sigma, // double sigma, // blur sigma
or_sharp, // double k, // sharpen in orthogonal direction with (-k,2*k-1,-k). 0 - no sharpening
or_offset, // double offset, // subtract from strength, limit by 0.0
true); // boolean vert) // true - sharpen vertically, blur horizontally. False - sharpen horizontally, blur vertically
}
double ko = (or_threshold - 1) * or_offset;
double ao = (or_asym - 1) * or_offset;
if (or_hor){
for (int i = 0; i < strength_hor.length; i++){
if (
(strength_hor[i] > or_absHor) &&
(strength_hor[i] > or_threshold * strength[i] - ko) &&
(!or_vert || (strength_hor[i] > or_asym * strength_vert[i] - ao))){
strength[i] = strength_hor[i];
disparity[i] = disparity_hor[i];
replaced[i] |= 1;
}
}
}
if (or_vert){
for (int i = 0; i < strength_vert.length; i++){
if (
(strength_vert[i] > or_absVert) &&
(strength_vert[i] > or_threshold * strength[i] - ko) &&
(!or_hor || (strength_vert[i] > or_asym * strength_hor[i] - ao))){
strength[i] = strength_vert[i];
disparity[i] = disparity_vert[i];
replaced[i] |= 2;
}
}
}
return replaced;
}
public boolean [] combineHorVertDisparity(
final CLTPass3d scan,
final boolean [] bg_tiles, // get from selected in clt_3d_passes.get(0);
final double disparity_far, //
final double disparity_near, //
final double this_sure, // minimal strength to be considered definitely background
final double this_maybe, // maximal strength to ignore as non-background
final double sure_smth, // if 2-nd worst image difference (noise-normalized) exceeds this - do not propagate bgnd
final EyesisCorrectionParameters.CLTParameters clt_parameters,
// final int threadsMax, // maximal number of threads to launch
// final boolean updateStatus,
final int debugLevel
)
{
showDoubleFloatArrays sdfa_instance = null;
if (debugLevel > -1) sdfa_instance = new showDoubleFloatArrays(); // just for debugging?
// scale and shift all 3 disparities - combo, vert and hor
final int tlen = tilesY * tilesX;
double [] this_disparity = scan.getDisparity(); // returns a copy of the FPGA-generated disparity combined with the target one
double [] this_hor_disparity= scan.getDisparity(2);
double [] this_vert_disparity= scan.getDisparity(3);
double [] this_strength = scan.getStrength(); // cloned, can be modified/ read back
double [] strength = scan.getOriginalStrength(); // reference, not cloned
double [] hor_strength = scan.getHorStrength();
double [] vert_strength = scan.getVertStrength();
double [] dbg_orig_disparity = scan.getDisparity(1); // unmodified
double [][] these_diffs = scan.getDiffs();
boolean [] these_tiles = new boolean [tlen];
boolean [] near_tiles = new boolean [tlen];
boolean [] far_tiles = new boolean [tlen];
boolean [] block_propagate = new boolean [tlen];
boolean [] used_hor = new boolean [tlen];
boolean [] used_vert = new boolean [tlen];
// convolve hor/vert strengths to emphasize multi-tile features
double [] hor_strength_conv = detectOrtho(
hor_strength, // double [] tiles,
false, // boolean vert, // true for vertical correlation and _horizontal features
clt_parameters.ortho_half_length, // int radius, // one dimension - [-radius, +radius], other dimension -1,0, 1
debugLevel);
double [] vert_strength_conv = detectOrtho(
vert_strength, // double [] tiles,
true, // boolean vert, // true for vertical correlation and _horizontal features
clt_parameters.ortho_half_length, // int radius, // one dimension - [-radius, +radius], other dimension -1,0, 1
debugLevel);
// now mix raw with convolved, but keep raw - it will be needed for weighted average
for (int i = 0; i< tlen; i++){
hor_strength_conv[i] = (clt_parameters.ortho_mix * hor_strength_conv[i] + (1.0 - clt_parameters.ortho_mix ) * hor_strength[i]);
vert_strength_conv[i] = (clt_parameters.ortho_mix * vert_strength_conv[i] + (1.0 - clt_parameters.ortho_mix ) * vert_strength[i]);
}
//getOriginalStrength()
for (int i = 0; i < tilesY; i++){
for (int j = 0; j < tilesX; j++){
int indx = i * tilesX + j;
if (!Double.isNaN(this_disparity[i])){
double disp = this_disparity[indx];
// Enhance foreground detection: compare horizontal-only (for vertical features) and vertical (for horizontal) and replace 4-pair disparity
// with that value
if ((hor_strength_conv[indx] >= clt_parameters.ortho_min_hor) &&
(hor_strength_conv[indx] / vert_strength_conv[indx]>= clt_parameters.ortho_asym) &&
(this_hor_disparity[indx] > disp)) {
disp = this_hor_disparity[indx];
used_hor[indx] = true;
}
if ((vert_strength_conv[indx] >= clt_parameters.ortho_min_vert) &&
(vert_strength_conv[indx] / hor_strength_conv[indx]>= clt_parameters.ortho_asym) &&
(this_vert_disparity[indx] > disp)) {
disp = this_vert_disparity[indx];
used_vert[indx] = true;
}
}
}
}
boolean [] dbg_used_hor = used_hor.clone();
boolean [] dbg_used_vert = used_vert.clone();
if (clt_parameters.min_clstr_seed > 1){
// TODO: do we need to limit the strenghs of the clusters?
removeSmallClusters(
false, //true, // boolean diag_en, // enable diagonal directions, false only up, dowm, right,left
used_hor, // boolean [] tiles_src, // selected tiles, will modified
null, // double [] weights_src, // or null
clt_parameters.min_clstr_seed, // int min_area, // minimal number of pixels
0.0, //clt_parameters.min_clstr_weight, // double min_weight // minimal total weight of the cluster
0.0); // clt_parameters.min_clstr_max); // double min_max_weight // minimal value of the maximal strengh in the cluster
removeSmallClusters(
false, // true, // boolean diag_en, // enable diagonal directions, false only up, dowm, right,left
used_vert, // boolean [] tiles_src, // selected tiles, will modified
null, // double [] weights_src, // or null
clt_parameters.min_clstr_seed, // int min_area, // minimal number of pixels
0.0, //clt_parameters.min_clstr_weight, // double min_weight // minimal total weight of the cluster
0.0); // clt_parameters.min_clstr_max); // double min_max_weight // minimal value of the maximal strengh in the cluster
}
// bridge over small gaps in horizontal/vertical features
int numHorBridged = bridgeFgndOrthoGap(
clt_parameters,
false, // vert, // verical pairs, horizontal features
true, // boolean disp_interpolate, // fill interpolated disparity for bridged over tiles, false - copy from ortho_disparity (if not null)
true, // boolean closer_only, // only update disparity if laregr than was
used_hor, // boolean [] used_ortho,
......@@ -1754,12 +2440,12 @@ public class TileProcessor {
this_hor_disparity // may be null
);
if (debugLevel > -1) System.out.println("Bridged over "+numHorBridged+" tiles along vertical features");
// bridge over small gaps in horizontal/vertical features
int numVertBridged = bridgeFgndOrthoGap(
clt_parameters,
true, // vert, // verical pairs, horizontal features
true, // boolean disp_interpolate, // fill interpolated disparity for bridged over tiles, false - copy from ortho_disparity (if not null)
false, // true, // boolean disp_interpolate, // fill interpolated disparity for bridged over tiles, false - copy from ortho_disparity (if not null)
true, // boolean closer_only, // only update disparity if laregr than was
used_vert, // boolean [] used_ortho,
strength,
......@@ -1769,7 +2455,7 @@ public class TileProcessor {
this_vert_disparity // may be null
);
if (debugLevel > -1) System.out.println("Bridged over "+numVertBridged+" tiles along horizontal features");
// }
for (int i = 0; i <tlen; i++) if (!Double.isNaN(this_disparity[i])){
if (this_disparity[i] < disparity_far) {
......@@ -1788,7 +2474,7 @@ public class TileProcessor {
if ((this_strength[i] > this_sure) || used_hor[i] || used_vert[i])
these_tiles[i] = true;
}
// see if the second worst variatoin exceeds sure_smth (like a window), really close object
// see if the second worst variation exceeds sure_smth (like a window), really close object
int imax1 = 0;
for (int ip = 1; ip < these_diffs.length; ip++){
if (these_diffs[ip][i] > these_diffs[imax1][i]) imax1 = ip;
......@@ -1802,32 +2488,39 @@ public class TileProcessor {
boolean[] prohibit = null; // TBD
boolean[] dbg_before_gaps = null;
if (clt_parameters.min_clstr_seed > 1){
// TODO: check - now no limit on the strength of the offending selections, only on these onses
removeSmallClusters(
false, //true, // boolean diag_en, // enable diagonal directions, false only up, dowm, right,left
far_tiles, // boolean [] tiles_src, // selected tiles, will modified
null, // double [] weights_src, // or null
clt_parameters.min_clstr_seed, // int min_area, // minimal number of pixels
0.0); // double min_weight // minimal total weight of the cluster
0.0, //clt_parameters.min_clstr_weight, // double min_weight // minimal total weight of the cluster
0.0); // clt_parameters.min_clstr_max); // double min_max_weight // minimal value of the maximal strengh in the cluster
removeSmallClusters(
false, // true, // boolean diag_en, // enable diagonal directions, false only up, dowm, right,left
near_tiles, // boolean [] tiles_src, // selected tiles, will modified
null, // double [] weights_src, // or null
clt_parameters.min_clstr_seed, // int min_area, // minimal number of pixels
0.0); // double min_weight // minimal total weight of the cluster
0.0, //clt_parameters.min_clstr_weight, // double min_weight // minimal total weight of the cluster
0.0); // clt_parameters.min_clstr_max); // double min_max_weight // minimal value of the maximal strengh in the cluster
// only remove far outstanding clusters
removeSmallClusters( // remove single-tile clusters - anywhere
false, // true, // boolean diag_en, // enable diagonal directions, false only up, dowm, right,left
these_tiles, // boolean [] tiles_src, // selected tiles, will modified
null, // double [] weights_src, // or null
clt_parameters.min_clstr_seed, // 2, // int min_area, // minimal number of pixels
0.0); // double min_weight // minimal total weight of the cluster
clt_parameters.min_clstr_weight, // double min_weight // minimal total weight of the cluster
clt_parameters.min_clstr_max); // double min_max_weight // minimal value of the maximal strengh in the cluster
removeLoneClusters(
false, // true, // boolean diag_en, // enable diagonal directions, false only up, dowm, right,left
these_tiles, // boolean [] tiles_src, // selected tiles, will modified
null, // double [] weights_src, // or null
clt_parameters.min_clstr_lone, // int min_area, // minimal number of pixels
0.0); // double min_weight // minimal total weight of the cluster
clt_parameters.min_clstr_weight, // double min_weight // minimal total weight of the cluster
clt_parameters.min_clstr_max); // double min_max_weight // minimal value of the maximal strengh in the cluster
dbg_before_gaps = these_tiles.clone();
prohibit = far_tiles; // do not fill gaps over known background/far tiles
if (clt_parameters.fill_gaps > 0) {
......@@ -1852,7 +2545,7 @@ public class TileProcessor {
String [] titles = {"masked","map","orig_map","hor_map","vert_map","bg_sel","far","these_gaps","these","near","block",
"strength","hor-strength","hor-conv-strength","vert-strength","vert-conv-strength",
"hor","hor-bridged","vert","vert-bridged","diff0","diff1","diff2","diff3", "enum_clusters"};
"hor","hor-bridged","vert","vert-bridged","diff0","diff1","diff2","diff3", "enum_clusters", "disp_cm", "disp_poly", "disp_hor", "disp_vert"};
double [][] dbg_img = new double[titles.length][tilesY * tilesX];
for (int i = 0; i<dbg_img[0].length;i++){
dbg_img[ 0][i] = this_disparity_masked[i];
......@@ -1882,7 +2575,12 @@ public class TileProcessor {
dbg_img[23][i] = these_diffs[3][i];
dbg_img[24][i] = enum_clusters[i];
}
sdfa_instance.showArrays(dbg_img, tilesX, tilesY, true, "bgnd_nonbgnd",titles);
dbg_img[25] = scan. disparity_map[ImageDtt.DISPARITY_INDEX_CM];
dbg_img[26] = scan. disparity_map[ImageDtt.DISPARITY_INDEX_POLY];
dbg_img[27] = scan. disparity_map[ImageDtt.DISPARITY_INDEX_HOR];
dbg_img[28] = scan. disparity_map[ImageDtt.DISPARITY_INDEX_VERT];
sdfa_instance.showArrays(dbg_img, tilesX, tilesY, true, "bgnd_nonbgnd"+clt_3d_passes.size(),titles);
}
return these_tiles;
......@@ -1890,10 +2588,11 @@ public class TileProcessor {
}
public CLTPass3d secondPassSetup( // prepare tile tasks for the second pass based on the previous one(s)
public CLTPass3d refinePassSetup( // prepare tile tasks for the second pass based on the previous one(s)
// final double [][][] image_data, // first index - number of image in a quad
EyesisCorrectionParameters.CLTParameters clt_parameters,
// disparity range - differences from
int bg_scan_index,
double disparity_far, //
double disparity_near, //
double this_sure, // minimal strength to be considered definitely background
......@@ -1906,7 +2605,317 @@ public class TileProcessor {
final int debugLevel)
{
CLTPass3d scan_prev = clt_3d_passes.get(clt_3d_passes.size() -1);
CLTPass3d scan_bg = clt_3d_passes.get(bg_scan_index); //
showDoubleFloatArrays sdfa_instance = null;
if (debugLevel > -1) sdfa_instance = new showDoubleFloatArrays(); // just for debugging?
//TODO: for next passes - combine all selected for previous passes (all passes with smaller disparity)
int [] replaced = null; // +1 - hor, +2 - vert
int [] replaced0 = null; // +1 - hor, +2 - vert
// if (clt_parameters.or_hor || clt_parameters.or_vert) {
// TODO: add filtering before/after
String [] dbg_titles = {
"combo_disparity", // 0
"orig_disparity", // 1
"hor_disparity", // 2
"hor_orig_disparity", // 3
"vert_disparity", // 4
"vert_orig_disparity",// 5
"combo_strength", // 6
"orig_strength", // 7
"hor_strength", // 8
"hor_orig_strength", // 9
"vert_strength", // 10
"vert_orig_strength", // 11
"replaced0", // 12
"replaced", // 13
"selection", // 14
"tilesHor"}; // 15
double [][] dbg_img = new double [dbg_titles.length][];
dbg_img[ 1] = scan_prev.getDisparity(1).clone();
dbg_img[ 3] = scan_prev.getDisparity(2).clone();
dbg_img[ 5] = scan_prev.getDisparity(3).clone();
dbg_img[ 7] = scan_prev.getStrength().clone();
dbg_img[ 9] = scan_prev.getHorStrength().clone();
dbg_img[11] = scan_prev.getVertStrength().clone();
dbg_img[14] = new double [scan_prev.getDisparity().length];
dbg_img[15] = new double [scan_prev.getDisparity().length];
replaced = combineOrthoDisparity(
scan_prev, // final CLTPass3d scan, // scan data
clt_parameters.or_hor, // true; // Apply ortho correction to horizontal correlation (vertical features)
clt_parameters.or_vert, // true; // Apply ortho correction to vertical correlation (horizontal features)
clt_parameters.or_sigma, // 2.0; // Blur sigma: verically for horizontal correlation, horizontally - for vertically
clt_parameters.or_sharp, // 0.5; // 3-point sharpening (-k, +2k+1, -k)
clt_parameters.or_scale, // 2.0; // Scale ortho correletion strength relative to 4-directional one
clt_parameters.or_offset, // 0.1; // Subtract from scaled correlation strength, limit by 0
clt_parameters.or_asym , // 1.5; // Minimal ratio of orthogonal strengths required for dis[parity replacement
clt_parameters.or_threshold, // 1.5; // Minimal scaled offsetg ortho strength to normal strength needed for replacement
clt_parameters.or_absHor, // 0.15; // Minimal horizontal absolute scaled offset ortho strength needed for replacement
clt_parameters.or_absVert, // 0.19; // Minimal vertical absolute scaled offset ortho strength needed for replacement
debugLevel);
if (clt_parameters.poles_fix) {
boolean [] selection = new boolean [replaced.length];
boolean [] tilesHor = new boolean [replaced.length];
boolean [] bg_sel = scan_bg.selected;
double [] disparity = scan_prev.getDisparity();
for (int i = 0; i < tilesHor.length; i++){
tilesHor[i] = (replaced[i] & 1) != 0;
// selection[i] = !bg_sel[i] && !Double.isNaN(disparity[i]) && (disparity[i] >= disparity_far) && (disparity[i] <= disparity_near);
selection[i] = !Double.isNaN(disparity[i]) && (disparity[i] >= disparity_far) && (disparity[i] <= disparity_near);
dbg_img[14][i] = selection[i]?1.0:0.0;
dbg_img[15][i] = tilesHor[i]?1.0:0.0;
}
int numFixed = fixVerticalPoles( // return number of replaced cells
scan_prev, // CLTPass3d scan, // scan data to use
selection, // start with only from selections (if not null, continue regardless)
tilesHor, // horizontal correlation tiles used for composite disparity/strength;
clt_parameters.poles_len , // int max_len, // maximal length to cover
clt_parameters.poles_min_strength, // double min_new_strength, // set strength to hor_strength, but not less than this
clt_parameters.poles_force_disp, // boolean force_disparity // copy disparity down (false - use horDisparity
true);
if (debugLevel > -1){
System.out.println("fixVerticalPoles() replaced "+ numFixed+ " tiles.");
}
replaced0 = replaced.clone();
for (int i = 0; i < replaced.length; i++){
if (tilesHor[i]) replaced[i] |= 1;
}
}
dbg_img[ 0] = scan_prev.getDisparity(0);
dbg_img[ 2] = scan_prev.getDisparity(2);
dbg_img[ 4] = scan_prev.getDisparity(3);
dbg_img[ 6] = scan_prev.getStrength();
dbg_img[ 8] = scan_prev.getHorStrength();
dbg_img[10] = scan_prev.getVertStrength();
double [] dreplaced0 = new double [replaced.length];
double [] dreplaced = new double [replaced.length];
for (int i = 0; i < dreplaced.length; i++){
dreplaced0[i] = replaced0[i];
dreplaced[i] = replaced[i];
}
dbg_img[12] = dreplaced0;
dbg_img[13] = dreplaced;
sdfa_instance.showArrays(dbg_img, tilesX, tilesY, true, "ortho_combine",dbg_titles);
boolean [] these_tiles = FilterScan(
scan_prev, // final CLTPass3d scan,
scan_bg.selected, // get from selected in clt_3d_passes.get(0);
replaced, // final int [] horVertMod, // +1 - modified by hor correlation, +2 - modified by vert correlation (or null)
disparity_far, // final double disparity_far, //
disparity_near, // final double disparity_near, //
this_sure, // final double this_sure, // minimal strength to be considered definitely background
this_maybe, // final double this_maybe, // maximal strength to ignore as non-background
sure_smth, // final double sure_smth, // if 2-nd worst image difference (noise-normalized) exceeds this - do not propagate bgnd
clt_parameters,
// final int threadsMax, // maximal number of threads to launch
// final boolean updateStatus,
debugLevel);
// }
/*
boolean [] these_tiles = combineHorVertDisparity(
scan_prev, // final CLTPass3d scan,
scan_prev.selected, // clt_3d_passes.get(0).selected, // final boolean [] bg_tiles, // get from selected in clt_3d_passes.get(0);
disparity_far, //
disparity_near, //
this_sure, // minimal strength to be considered definitely background
this_maybe, // maximal strength to ignore as non-background
sure_smth, // if 2-nd worst image difference (noise-normalized) exceeds this - do not propagate bgnd
clt_parameters,
debugLevel);
scan_prev.combineHorVertStrength(true, false); // strength now max of original and horizontal. Use scale instead of boolean?
*/
// double [] this_disparity = scan_prev.getDisparity(); // returns a copy of the FPGA-generated disparity combined with the target one
// double [] this_strength = scan_prev.getStrength(); // cloned, can be modified/ read back
//************************************************
// Show supertiles histograms
// if (clt_parameters.stShow){
// try renovated supertiles. Do twice to show both original and blured histograms
String [] dbg_st_titles = {"raw", "blurred"+clt_parameters.stSigma,"max-min-max"};
double [][] dbg_hist = new double[dbg_st_titles.length][];
scan_prev.setSuperTiles(
clt_parameters.stStepDisparity, // double step_disparity,
clt_parameters.stMinDisparity, // double min_disparity,
clt_parameters.stMaxDisparity, // double max_disparity,
clt_parameters.stFloor, // double strength_floor,
clt_parameters.stPow, // double strength_pow,
0.0); // NO BLUR double stBlurSigma)
dbg_hist[0] = scan_prev.showDisparityHistogram();
scan_prev.setSuperTiles(
clt_parameters.stStepDisparity, // double step_disparity,
clt_parameters.stMinDisparity, // double min_disparity,
clt_parameters.stMaxDisparity, // double max_disparity,
clt_parameters.stFloor, // double strength_floor,
clt_parameters.stPow, // double strength_pow,
clt_parameters.stSigma); // with blur double stBlurSigma)
dbg_hist[1] = scan_prev.showDisparityHistogram();
dbg_hist[2] = scan_prev.showMaxMinMax();
int hist_width0 = scan_prev.showDisparityHistogramWidth();
int hist_height0 = dbg_hist[0].length/hist_width0;
if (clt_parameters.stShow){
sdfa_instance.showArrays(dbg_hist, hist_width0, hist_height0, true, "disparity_supertiles_histograms",dbg_st_titles);
}
scan_prev.getBgDispStrength( // calculate (check non-null)?
clt_parameters.stMinBgDisparity, // final double minBgDisparity,
clt_parameters.stMinBgFract); // final double minBgFract);
double [] dbg_orig_disparity = scan_prev.getDisparity().clone();
// combine weak with supertiles
double [] dbg_with_super_disp = scan_prev.combineSuper(clt_parameters.stUseDisp);
if (dbg_with_super_disp != null) dbg_with_super_disp = dbg_with_super_disp.clone(); // else no super disparity available
// replace weak outlaye tiles with weighted averages (modifies disparity)
boolean[] outlayers = scan_prev.replaceWeakOutlayers(
null, // final boolean [] selection,
clt_parameters.outlayerStrength , //final double weakStrength, // strength to be considered weak, subject to this replacement
clt_parameters.outlayerDiff, // final double maxDiff)
0.5 * disparity_far,
2.0 * disparity_near);
double [] dbg_outlayers = new double[outlayers.length];
for (int i = 0; i < outlayers.length; i++){
dbg_outlayers[i] = outlayers[i]? 1.0:0.0;
}
// set disparity for border pixels (may be overkill)
DisparityProcessor dp = new DisparityProcessor(this, clt_parameters.transform_size * geometryCorrection.getScaleDzDx());
boolean [] grown = these_tiles.clone();
growTiles(
2, // grow tile selection by 1 over non-background tiles 1: 4 directions, 2 - 8 directions, 3 - 8 by 1, 4 by 1 more
grown, // boolean [] tiles,
null); // boolean [] prohibit)
boolean [] border = grown.clone();
for (int i = 0; i < border.length; i++) border[i] &= !these_tiles[i];
int [] neighbors = dp.getNeighbors( // creates neighbors mask from bitmask
grown, // these_tiles, // grown, // these_tiles, // boolean [] selected,
tilesX);
// int [] neighbors_orig = neighbors.clone();
double [] dbg_neib = dp.dbgShowNeighbors(
grown, // these_tiles, // grown, // these_tiles,
neighbors, // _orig, // int [] neighbors,
clt_parameters.transform_size, // int tile_size,
-1.0, // double bgnd,
1.0); // double fgnd)
// double [] new_disparity = this_disparity.clone();
// double [][]dbgDeriv = new double [2][]; // [these_tiles.length];
sdfa_instance.showArrays(dbg_neib,tilesX*clt_parameters.transform_size, tilesY*clt_parameters.transform_size,"XXneighbors");
dp.smoothDisparity(
clt_parameters.tiDispPull, // final double dispPull, // clt_parameters.tiDispPull or 0.0
3, // 2, // 3, // final int mask, // 1 - work on internal elements, 2 - on border elements, 3 - both (internal first);
clt_parameters.tiIterations, // final int num_passes,
Math.pow(10.0, -clt_parameters.tiPrecision), // final double maxDiff, // maximal change in any of the disparity values
neighbors, // final int [] neighbors, // +1 - up (N), +2 - up-right - NE, ... +0x80 - NW
scan_prev.getDisparity(), // final double [] disparity, // current disparity value
scan_prev.getDisparity().clone(), // final double [] measured_disparity, // measured disparity
scan_prev.getStrength(), // final double [] strength,
null, // this_hor_disparity, // final double hor_disparity, // not yet used
null, // hor_strength_conv, // final double hor_strength, // not yet used
these_tiles, // grown, // these_tiles, // final boolean [] selected,
border, // final boolean [] border,
clt_parameters,
threadsMax, // maximal number of threads to launch
debugLevel);
/*
double [] measured_disparity = dp.dbgRescaleToPixels(
this_disparity,
clt_parameters.transform_size); // int tile_size)
*/
double [] masked_filtered = scan_prev.getDisparity().clone();
for (int i = 0; i < masked_filtered.length; i++){
if (!grown[i]) masked_filtered[i] = Double.NaN;
}
// if (clt_parameters.stShow){
String [] dbg_disp_tiltes={"masked", "filtered", "disp_combo", "disparity","st_disparity", "strength", "st_strength","outlayers"};
double [][] dbg_disp = new double [dbg_disp_tiltes.length][];
dbg_disp[0] = masked_filtered;
dbg_disp[1] = scan_prev.getDisparity();
dbg_disp[2] = dbg_with_super_disp;
dbg_disp[3] = dbg_orig_disparity;
dbg_disp[4] = scan_prev.getBgDisparity();
dbg_disp[5] = scan_prev.getStrength();
dbg_disp[6] = scan_prev.getBgStrength();
dbg_disp[7] = dbg_outlayers;
sdfa_instance.showArrays(dbg_disp, tilesX, tilesY, true, "refine_disparity_supertiles"+clt_3d_passes.size(),dbg_disp_tiltes);
// }
// prepare new task and run
double [][] disparityTask = new double [tilesY][tilesX];
int [][] tile_op = new int [tilesY][tilesX];
boolean [] borderTiles = new boolean[tilesY*tilesX]; // to zero alpha in the images
int op = ImageDtt.setImgMask(0, 0xf);
op = ImageDtt.setPairMask(op,0xf);
op = ImageDtt.setForcedDisparity(op,true);
double [] prev_disparity = scan_prev.getDisparity();
for (int ty = 0; ty < tilesY; ty++) for (int tx = 0; tx <tilesX; tx++){
int indx = tilesX * ty + tx;
if ( grown[indx]) {
borderTiles[indx] = !these_tiles[indx];
disparityTask[ty][tx] = prev_disparity[indx];
tile_op[ty][tx] = op;
} else {
disparityTask[ty][tx] = 0.0;
tile_op[ty][tx] = 0;
borderTiles[indx] = false;
}
}
CLTPass3d scan_next = new CLTPass3d();
scan_next.disparity = disparityTask;
scan_next.tile_op = tile_op;
scan_next.border_tiles = borderTiles;
clt_3d_passes.add(scan_next);
// }
return scan_next;
}
//==================
public void secondPassSetup( // prepare tile tasks for the second pass based on the previous one(s)
// final double [][][] image_data, // first index - number of image in a quad
EyesisCorrectionParameters.CLTParameters clt_parameters,
int bg_scan_index,
// disparity range - differences from
double disparity_far, //
double disparity_near, //
double this_sure, // minimal strength to be considered definitely background
double this_maybe, // maximal strength to ignore as non-background
double sure_smth, // if 2-nd worst image difference (noise-normalized) exceeds this - do not propagate bgnd
int disparity_index, // index of disparity value in disparity_map == 2 (0,2 or 4)
GeometryCorrection geometryCorrection,
final int threadsMax, // maximal number of threads to launch
final boolean updateStatus,
final int debugLevel)
{
CLTPass3d scan_bg = clt_3d_passes.get(bg_scan_index); //
CLTPass3d scan_prev = clt_3d_passes.get(clt_3d_passes.size() -1); // get last one
// CLTPass3d scan_next = new CLTPass3d();
showDoubleFloatArrays sdfa_instance = null;
if (debugLevel > -1) sdfa_instance = new showDoubleFloatArrays(); // just for debugging?
//TODO: for next passes - combine all selected for previous passes (all passes with smaller disparity)
......@@ -1914,7 +2923,7 @@ public class TileProcessor {
boolean [] these_tiles = combineHorVertDisparity(
scan_prev, // final CLTPass3d scan,
clt_3d_passes.get(0).selected, // final boolean [] bg_tiles, // get from selected in clt_3d_passes.get(0);
scan_bg.selected, // clt_3d_passes.get(0).selected, // final boolean [] bg_tiles, // get from selected in clt_3d_passes.get(0);
disparity_far, //
disparity_near, //
this_sure, // minimal strength to be considered definitely background
......@@ -1923,12 +2932,14 @@ public class TileProcessor {
clt_parameters,
debugLevel);
scan_prev.combineHorVertStrength(true, false); // strength now max of original and horizontal. Use scale instead of boolean?
double [] this_disparity = scan_prev.getDisparity(); // returns a copy of the FPGA-generated disparity combined with the target one
double [] this_strength = scan_prev.getStrength(); // cloned, can be modified/ read back
//************************************************
// Show supertiles histograms
if (clt_parameters.stShow){
// if (clt_parameters.stShow){
// try renovated supertiles. Do twice to show both original and blured histograms
String [] dbg_st_titles = {"raw", "blurred"+clt_parameters.stSigma,"max-min-max"};
......@@ -1954,12 +2965,83 @@ public class TileProcessor {
dbg_hist[2] = scan_prev.showMaxMinMax();
if (clt_parameters.stShow){
int hist_width0 = scan_prev.showDisparityHistogramWidth();
int hist_height0 = dbg_hist[0].length/hist_width0;
sdfa_instance.showArrays(dbg_hist, hist_width0, hist_height0, true, "disparity_supertiles_histograms",dbg_st_titles);
}
scan_prev.getBgDispStrength( // calculate (check non-null)?
clt_parameters.stMinBgDisparity, // final double minBgDisparity,
clt_parameters.stMinBgFract); // final double minBgFract);
boolean [] st_grown = these_tiles.clone();
growTiles(
2, // grow tile selection by 1 over non-background tiles 1: 4 directions, 2 - 8 directions, 3 - 8 by 1, 4 by 1 more
st_grown, // boolean [] tiles,
null); // boolean [] prohibit)
double [] dbg_orig_disparity = scan_prev.getDisparity().clone();
// combine weak with supertiles
double [] dbg_with_super_disp = scan_prev.combineSuper(clt_parameters.stUseDisp);
if (dbg_with_super_disp != null) dbg_with_super_disp = dbg_with_super_disp.clone(); // else no super disparity available
// replace weak outlaye tiles with weighted averages (modifies disparity)
boolean[] outlayers = scan_prev.replaceWeakOutlayers(
null, // final boolean [] selection,
clt_parameters.outlayerStrength , //final double weakStrength, // strength to be considered weak, subject to this replacement
clt_parameters.outlayerDiff, // final double maxDiff)
0.5 * disparity_far,
2.0 * disparity_near);
double [] dbg_outlayers = new double[outlayers.length];
for (int i = 0; i < outlayers.length; i++){
dbg_outlayers[i] = outlayers[i]? 1.0:0.0;
}
double [] masked_filtered = scan_prev.getDisparity().clone();
for (int i = 0; i < masked_filtered.length; i++){
if (!st_grown[i]) masked_filtered[i] = Double.NaN;
}
if (clt_parameters.stShow){
String [] dbg_disp_tiltes={"masked", "filtered", "disp_combo", "disparity","st_disparity", "strength", "st_strength","outlayers"};
double [][] dbg_disp = new double [dbg_disp_tiltes.length][];
dbg_disp[0] = masked_filtered;
dbg_disp[1] = scan_prev.getDisparity();
dbg_disp[2] = dbg_with_super_disp;
dbg_disp[3] = dbg_orig_disparity;
dbg_disp[4] = scan_prev.getBgDisparity();
dbg_disp[5] = scan_prev.getStrength();
dbg_disp[6] = scan_prev.getBgStrength();
dbg_disp[7] = dbg_outlayers;
sdfa_instance.showArrays(dbg_disp, tilesX, tilesY, true, "disparity_supertiles",dbg_disp_tiltes);
}
// prepare new task and run
double [][] disparityTask = new double [tilesY][tilesX];
int [][] tile_op = new int [tilesY][tilesX];
boolean [] borderTiles = new boolean[tilesY*tilesX]; // to zero alpha in the images
int op = ImageDtt.setImgMask(0, 0xf);
op = ImageDtt.setPairMask(op,0xf);
op = ImageDtt.setForcedDisparity(op,true);
double [] prev_disparity = scan_prev.getDisparity();
for (int ty = 0; ty < tilesY; ty++) for (int tx = 0; tx <tilesX; tx++){
int indx = tilesX * ty + tx;
if (st_grown[indx]) {
borderTiles[indx] = !these_tiles[indx];
disparityTask[ty][tx] = prev_disparity[indx];
tile_op[ty][tx] = op;
} else {
disparityTask[ty][tx] = 0.0;
tile_op[ty][tx] = 0;
borderTiles[indx] = false;
}
}
CLTPass3d scan_next = new CLTPass3d();
scan_next.disparity = disparityTask;
scan_next.tile_op = tile_op;
scan_next.border_tiles = borderTiles;
clt_3d_passes.add(scan_next);
// }
......@@ -2394,10 +3476,54 @@ public class TileProcessor {
}
sdfa_instance.showArrays(disparities, tilesX, tilesY, true, "disparities_scans",titles);
}
// return scan_next;
}
public int fixVerticalPoles( // return number of replaced cells
CLTPass3d scan, // scan data to use
boolean [] selection, // start with only from selections (if not null, continue regardless)
boolean [] tilesHor, // horizontal correlation tiles used for composite disparity/strength;
int max_len, // maximal length to cover
double min_new_strength, // set strength to hor_strength, but not less than this
boolean force_disparity, // copy disparity down (false - use horDisparity
boolean keepStrength // do not reduce composite strength from what it was before replacement
){
double [] disparity = scan.getDisparity();
double [] hor_disparity = scan.getDisparity(2);
double [] strength = scan.getStrength();
double [] hor_strength = scan.getHorStrength();
int tlen = tilesX * tilesY;
int num_replaced = 0;
for (int nTile = 0; nTile < tlen - tilesX; nTile++) {
if ( tilesHor[nTile] &&
!tilesHor[nTile + tilesX] &&
(disparity[nTile] > disparity[nTile + tilesX]) && // NaN will fail - OK
((selection == null) || selection[nTile])) {
// see how far to go
int nTileEnd;
for (nTileEnd = nTile + tilesX; nTileEnd < tlen; nTileEnd += tilesX){
if ( tilesHor[nTileEnd] ||
(disparity[nTileEnd] > disparity[nTile])){
if (((nTileEnd - nTile) <= (max_len * tilesX)) || (max_len == 0)){
for (int nt = nTile + tilesX; nt < nTileEnd; nt += tilesX){
disparity[nt] = force_disparity?disparity[nTile]: hor_disparity[nt];
if (!keepStrength || (strength[nt] < hor_strength[nt])) {
strength[nt] = hor_strength[nt];
}
if (strength[nt] < min_new_strength) strength[nt] = min_new_strength;
tilesHor[nt] = true;
num_replaced ++;
}
break;
}
}
}
}
}
return scan_next;
return num_replaced;
}
public int bridgeFgndOrthoGap(
EyesisCorrectionParameters.CLTParameters clt_parameters,
boolean vert, // verical pairs, horizontal features
......@@ -2620,6 +3746,100 @@ public class TileProcessor {
return convolveTiles( tiles, kernel);
}
public void SharpBlurPair(
double [] data, // data array for in-place modification
double [] strength, // data weights array for in-place modification
double sigma, // blur sigma
double k, // sharpen in orthogonal direction with (-k,2*k-1,-k). 0 - no sharpening
double offset, // subtract from strength, limit by 0.0
boolean vert) // true - sharpen vertically, blur horizontally. False - sharpen horizontally, blur vertically
{
if (offset != 0.0) {
for (int i = 0; i < data.length; i++) {
strength[i] -= offset;
if (strength[i] < 0.0) strength[i] = 0.0;
}
}
for (int i = 0; i < data.length; i++) data[i] *= strength[i];
SharpBlurTiles(strength, sigma, k, vert);
SharpBlurTiles(data, sigma, k, vert);
for (int i = 0; i < data.length; i++) {
if (strength[i] != 0.0) data[i] /= strength[i];
else data[i] = Double.NaN;
}
if (offset != 0.0) {
for (int i = 0; i < data.length; i++) {
strength[i] += offset;
if (strength[i] < 0.0) strength[i] = 0.0; // may be after sharpening
}
}
}
public void SharpBlurTiles(
double [] tiles, // data array for in-place modification
double sigma, // blur sigma
double k, // sharpen in orthogonal direction with (-k,2*k-1,-k). 0 - no sharpening
boolean vert) // true - sharpen vertically, blur horizontally. False - sharpen horizontally, blur vertically
{
if (k != 0){
sharpTiles1d(
tiles,
k, // 0.5 : -0.5/+2.0/-0.5
vert);
}
blurTiles1d(
tiles,
sigma,
!vert);
}
public void blurTiles1d(
double [] tiles,
double sigma,
boolean vert)
{
(new DoubleGaussianBlur()).blur1Direction(
tiles, // double [] pixels,
tilesX, // int width,
tilesY, // int height,
sigma, // double sigma,
0.01, // double accuracy,
!vert); // boolean xDirection
}
public void sharpTiles1d(
double [] tiles,
double k, // 0.5 : -0.5/+2.0/-0.5
boolean vert)
{
double [] src = tiles.clone();
double k2 = 1.0 + 2 * k;
if (vert){
for (int tx = 0; tx < tilesX; tx++){
for (int ty = 1; ty < (tilesY - 1); ty ++){
int indx = ty*tilesX + tx;
tiles[indx] = k2 * src[indx] - k * (src[indx - tilesX] + src[indx + tilesX]);
}
}
} else {
for (int ty = 0; ty < tilesY; ty++){
for (int tx = 1; tx < (tilesX - 1); tx ++){
int indx = ty*tilesX + tx;
tiles[indx] = k2 * src[indx] - k * (src[indx - 1] + src[indx + 1]);
}
}
}
}
public double [] convolveTiles(
double [] tiles,
double [][] kernel_in) // should be odd * odd, with non-zero sum (result will be normalized
......@@ -2886,8 +4106,6 @@ public class TileProcessor {
dbg_img[0][(y * tile_size + dy)*(tile_size*tilesX) + (x * tile_size + dx)] = d;
}
}
if (selected[i]) dbg_img[0][i] = disparity[i];
else dbg_img[0][i] = Double.NaN;
}
int maxIndex = getMaxIndex(indices);
int [][] pxy = new int [maxIndex+1][2];
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment