Commit f04c3e13 authored by Andrey Filippov's avatar Andrey Filippov

re-implemented LMA, found problem in the original one

parent 9898d7a6
......@@ -1663,6 +1663,7 @@ public class EyesisCorrectionParameters {
public double dbg_y1 =0;
public double dbg_sigma =2.0;
public String dbg_mask = ".........:::::::::.........:::::::::......*..:::::*:::.........:::::::::.........";
public int dbg_mode = 1; // 0 - old LMA, 1 - new LMA
public DCTParameters(int dct_size, int asym_size, int asym_pixels, int asym_distance, int dct_window, double compactness, int asym_tax_free) {
this.dct_size = dct_size;
......@@ -1689,6 +1690,7 @@ public class EyesisCorrectionParameters {
properties.setProperty(prefix+"dbg_y1", this.dbg_y1+"");
properties.setProperty(prefix+"dbg_sigma", this.dbg_sigma+"");
properties.setProperty(prefix+"dbg_mask", this.dbg_mask+"");
properties.setProperty(prefix+"dbg_mode", this.dbg_mode+"");
}
public void getProperties(String prefix,Properties properties){
......@@ -1707,6 +1709,7 @@ public class EyesisCorrectionParameters {
if (properties.getProperty(prefix+"dbg_y1")!=null) this.dbg_y1=Double.parseDouble(properties.getProperty(prefix+"dbg_y1"));
if (properties.getProperty(prefix+"dbg_sigma")!=null) this.dbg_sigma=Double.parseDouble(properties.getProperty(prefix+"dbg_sigma"));
if (properties.getProperty(prefix+"dbg_mask")!=null) this.dbg_mask=properties.getProperty(prefix+"dbg_mask");
if (properties.getProperty(prefix+"dbg_mode")!=null) this.dbg_mode=Integer.parseInt(properties.getProperty(prefix+"dbg_mode"));
}
public boolean showDialog() {
GenericDialog gd = new GenericDialog("Set DCT parameters");
......@@ -1726,6 +1729,8 @@ public class EyesisCorrectionParameters {
gd.addNumericField("dbg_y1", this.dbg_y1, 2); //0..2
gd.addNumericField("dbg_sigma", this.dbg_sigma, 3); //0..2
gd.addStringField ("Debug mask (anything but * is false)", this.dbg_mask,100);
gd.addNumericField("LMA implementation: 0 - old, 1 - new", this.dbg_mode, 0); //32
// gd.addNumericField("Debug Level:", MASTER_DEBUG_LEVEL, 0);
gd.showDialog();
if (gd.wasCanceled()) return false;
......@@ -1744,6 +1749,7 @@ public class EyesisCorrectionParameters {
this.dbg_y1= gd.getNextNumber();
this.dbg_sigma= gd.getNextNumber();
this.dbg_mask= gd.getNextString();
this.dbg_mode= (int) gd.getNextNumber();
// MASTER_DEBUG_LEVEL= (int) gd.getNextNumber();
return true;
......
......@@ -2835,7 +2835,7 @@ private Panel panel1,panel2,panel3,panel4,panel5,panel5a, panel6,panel7,panelPos
} else if (label.equals("Test Kernel Factorization")){
DEBUG_LEVEL=MASTER_DEBUG_LEVEL;
if (!DCT_PARAMETERS.showDialog()) return;
FactorConvKernel factorConvKernel = new FactorConvKernel();
FactorConvKernel factorConvKernel = new FactorConvKernel(DCT_PARAMETERS.dbg_mode == 1);
factorConvKernel.setDebugLevel(DEBUG_LEVEL);
factorConvKernel.numIterations = DCT_PARAMETERS.LMA_steps;
factorConvKernel.setAsymCompactness(
......
......@@ -45,6 +45,7 @@ import ij.IJ;
public class FactorConvKernel {
public boolean new_mode = false; // trying new version of LMA
public int asym_size = 6;
public int sym_radius = 8; // 2*2^n - for DCT
public double[] target_kernel = null; // should be expanded to 2*(sym_radius)+asym_size- 1 in each direction
......@@ -92,7 +93,7 @@ public class FactorConvKernel {
public LMAArrays savedLMAArrays=null;
public double [] lastImprovements= {-1.0,-1.0}; // {last improvement, previous improvement}. If both >0 and < thresholdFinish - done
public double goal_rms_pure;
public LMAData lMAData = null;
public class LMAArrays {
public double [][] jTByJ= null; // jacobian multiplied by Jacobian transposed
......@@ -105,10 +106,694 @@ public class FactorConvKernel {
return lma;
}
}
public class LMAData{
public int sym_radius= 0;
public int asym_size= 0;
// public double [] par_vector; generqate on demand
// public boolean [] par_mask;
private double [][] kernels = {null,null}; // 0 - sym kernel (including 0 [(sym_radius*2-1)*(sym_radius*2-1)]), 1 - asym kernel
private double [][] savedKernels = null;
private boolean [][] kernel_masks = {null,null};
private int [][] map_from_pars = null; // first index - number in (compressed) parameter vector, value - a pair of {kernel_type, index}
private int [][] map_to_pars = null; // first index - kernel type, second - index in kernel, value index in parameter vector
public double [] fX = null;
public double [][] jacobian = null;
private double [] target_kernel = null;
private boolean [] fx_mask = null;
private double [] asym_weights = null; // multiply by asym_kernel elements to enforce compactness (proportional to r2 from the center)
private int [][] map_from_fx = null; // first index - element in fX vector, second [0] - where to look (0 - target, 1 - asym),
// second - index in target kernel or asym_kernel (kernels[1])
private int [][] map_to_fx = null;
private int num_pure_points = 0;
private double [] par_vector = null;
private LMAArrays lMAArrays = null;
private LMAArrays savedLMAArrays = null;
public int debugLevel = 1;
public LMAData(){
}
public LMAData( int debugLevel){
this.debugLevel = debugLevel;
}
public void initLMAData(){
}
public void initLMAData( int debugLevel){
this.debugLevel = debugLevel;
}
public LMAData clone(){
LMAData data = new LMAData();
data.sym_radius = sym_radius;
data.asym_size = asym_size;
for (int i=0;i<kernels.length;i++) if (kernels[i] != null) data.kernels[i] = kernels[i].clone();
for (int i=0;i<kernel_masks.length;i++) if (kernel_masks[i] != null) data.kernel_masks[i] = kernel_masks[i].clone();
if (map_from_pars!=null){
data.map_from_pars = new int[map_from_pars.length][];
for (int i=0;i<map_from_pars.length;i++) if (map_from_pars[i] != null) data.map_from_pars[i] = map_from_pars[i].clone();
}
if (map_to_pars!=null){
data.map_to_pars = new int[map_to_pars.length][];
for (int i=0;i<map_to_pars.length;i++) if (map_to_pars[i] != null) data.map_to_pars[i] = map_to_pars[i].clone();
}
if (fX!=null) data.fX = fX.clone();
if (jacobian!=null){
data.jacobian = new double[jacobian.length][];
for (int i=0;i<jacobian.length;i++) if (jacobian[i] != null) data.jacobian[i] = jacobian[i].clone();
}
if (target_kernel!=null) data.target_kernel = target_kernel.clone();
// for (int i=0;i<fx_masks.length;i++) if (fx_masks[i] != null) data.fx_masks[i] = fx_masks[i].clone();
if (fx_mask != null) data.fx_mask = fx_mask.clone();
if (asym_weights!=null) data.asym_weights = asym_weights.clone();
if (map_from_fx!=null){
data.map_from_fx = new int[map_from_fx.length][];
for (int i=0;i<map_from_fx.length;i++) if (map_from_fx[i] != null) data.map_from_fx[i] = map_from_fx[i].clone();
}
if (map_to_fx!=null){
data.map_to_fx = new int[map_to_fx.length][];
for (int i=0;i<map_to_fx.length;i++) if (map_to_fx[i] != null) data.map_to_fx[i] = map_to_fx[i].clone();
}
if (par_vector != null) data.par_vector = par_vector.clone();
if (lMAArrays!=null) data.lMAArrays =lMAArrays;
if (savedLMAArrays!=null) data.savedLMAArrays =savedLMAArrays;
if (savedKernels != null){
data.savedKernels = new double[savedKernels.length][];
for (int i=0; i<savedKernels.length;i++) data.savedKernels[i] = savedKernels[i].clone();
}
data.num_pure_points = num_pure_points;
data.debugLevel = debugLevel;
return data;
}
public void setSymKernel (double [] sym_kernel){ // does not set mask! Use ( , null) to set default one
kernels[0] = sym_kernel.clone();
sym_radius = (int) Math.round(Math.sqrt(sym_kernel.length));
if ((kernel_masks[0]==null) || (kernel_masks[0].length != kernels[0].length)){
kernel_masks[0] = new boolean [kernels[0].length];
kernel_masks[0][0] = false; // do not adjust center element
for (int i=1;i< kernel_masks[0].length;i++) kernel_masks[0][i] = true;
map_from_pars = null; // will need to be re-generated
map_to_pars = null;
}
}
public void setSymKernel (double [] sym_kernel, // if null - set mask only
boolean [] mask)
{
if (mask == null) kernel_masks[0] = null; // setSymKernel() will generate default
if (sym_kernel !=null) setSymKernel(sym_kernel);
if (mask != null) kernel_masks[0] = mask.clone();
map_from_pars = null; // will need to be re-generated
map_to_pars = null;
}
public double[] getSymKernel(){
return kernels[0];
}
public double[] getSymKernel(double scale){
if (scale == 1.0) return kernels[0];
else return getScaledKernel(0,scale);
}
public double[] getScaledKernel(int kernType, double scale){
double [] kernel = new double [kernels[kernType].length];
for (int i=0; i< kernel.length; i++) kernel[i] = scale*kernels[kernType][i];
return kernel;
}
public boolean[] getSymKernelMask(){
return kernel_masks[0];
}
public void setAsymKernel (double [] asym_kernel){ // does not set mask! Use ( , null) to set default one
kernels[1] = asym_kernel.clone();
asym_size = (int) Math.round(Math.sqrt(asym_kernel.length));
if (debugLevel > 2){
System.out.println("setAsymKernel(): kernel_masks[1] is "+((kernel_masks[1]==null)?"":"not ")+"null");
if (kernel_masks[1]!=null) System.out.println("kernel_masks[1].length= "+kernel_masks[1].length);
}
if ((kernel_masks[1]==null) || (kernel_masks[1].length != kernels[1].length)){
kernel_masks[1] = new boolean [kernels[1].length];
for (int i=0;i< kernel_masks[1].length;i++) kernel_masks[1][i] = true;
map_from_pars = null; // will need to be re-generated
map_to_pars = null;
map_from_fx = null; // will need to be re-generated
map_to_fx = null; // will need to be re-generated
}
if ((asym_weights == null) || (asym_weights.length != kernels[1].length)){
asym_weights = new double[kernels[1].length];
for (int i=0; i<asym_weights.length; i++){
asym_weights[i] = 0.0; // disable
}
}
}
public void setAsymKernel (double [] asym_kernel, // if null - set mask only
boolean [] mask)
{
if (mask == null) kernel_masks[1] = null; // setSymKernel() will generate default
if (asym_kernel !=null) setAsymKernel(asym_kernel);
if (mask != null) kernel_masks[1] = mask.clone();
map_from_pars = null; // will need to be re-generated
map_to_pars = null;
}
public void updateAsymKernelMask (boolean [] mask) // new mask, should not be null
{
for (int i = 0; i<mask.length; i++){
if (!mask[i] || !kernel_masks[1][i]) kernels[1][i] = 0.0;
}
kernel_masks[1] = mask.clone();
map_from_pars = null; // will need to be re-generated
map_to_pars = null;
}
public double[] getAsymKernel(double scale){
if (scale == 1.0) return kernels[1];
else return getScaledKernel(1,scale);
}
public double[] getAsymKernel(){
return kernels[1];
}
public boolean[] getAsymKernelMask(){
return kernel_masks[1];
}
public void setTarget(double [] target_kernel){
this.target_kernel = target_kernel.clone();
fx_mask = new boolean[this.target_kernel.length];
for (int i= 0;i< fx_mask.length;i++) fx_mask[i] = true;
map_from_fx = null; // will need to be re-generated
map_to_fx = null; // will need to be re-generated
}
public double [] getTarget(){
return this.target_kernel;
}
public void setTargetMask(boolean [] mask){
fx_mask=mask.clone();
map_from_fx = null; // will need to be re-generated
map_to_fx = null; // will need to be re-generated
}
public boolean[] getTargetMask(){
return fx_mask;
}
public void setAsymWeights(double [] weights){
this.asym_weights = weights.clone(); // should have the same dimensions
}
public void rebuildMapsPars(boolean force)
{
if (force || (map_from_pars == null)){
par_vector = null; // invalidate
int numPars=0;
for (int n = 0; n < kernel_masks.length; n++){
for (int i = 0; i<kernel_masks[n].length; i++){ // will throw if masks are not initialized
if (kernel_masks[n][i]) numPars++;
}
}
map_from_pars = new int [numPars][2];
int indx = 0;
for (int n = 0; n < kernel_masks.length; n++){
for (int i = 0; i<kernel_masks[n].length; i++){
if (kernel_masks[n][i]){
map_from_pars[indx ][0] = n;
map_from_pars[indx++][1] = i;
}
}
}
if (debugLevel > 3){
System.out.println("rebuildMapsPars("+force+"), map_from_pars");
for (int i = 0; i< map_from_pars.length; i++){
System.out.println(i+": ("+map_from_pars[i][0]+","+map_from_pars[i][1]+")");
}
}
}
if (force || (map_to_pars == null)){
map_to_pars = new int [kernel_masks.length][];
int numPar = 0;
for (int n = 0; n < map_to_pars.length; n++){
map_to_pars[n] = new int [kernel_masks[n].length];
for (int i = 0; i < map_to_pars[n].length; i++ ){
if (kernel_masks[n][i]){
map_to_pars[n][i] = numPar++;
} else {
map_to_pars[n][i] = -1;
}
}
}
if (debugLevel > 3){
System.out.println("rebuildMapsPars("+force+"), map_to_pars");
for (int n = 0; n < map_to_pars.length; n++){
for (int i = 0; i < map_to_pars[n].length; i++ ){
System.out.println(n+","+i+": "+map_to_pars[n][i]);
}
}
}
}
}
public void rebuildMapsFx(boolean force)
{
if (force || (map_from_fx == null)){
if (debugLevel > 3){
System.out.println("rebuildMapsFx(), delete jacobian");
}
rebuildMapsPars(false);
fX = null; // invalidate
jacobian = null;
int numPoints=0;
num_pure_points = 0;
boolean [][]fx_masks = {fx_mask, kernel_masks[1]};
for (int n = 0; n < fx_masks.length; n++){
for (int i = 0; i<fx_masks[n].length; i++){ // will throw if masks are not initialized
if (fx_masks[n][i]) {
numPoints++;
if (n==0) num_pure_points++;
}
}
}
map_from_fx = new int [numPoints][2];
int indx = 0;
for (int n = 0; n < fx_masks.length; n++){
for (int i = 0; i<fx_masks[n].length; i++){
if (fx_masks[n][i]){
map_from_fx[indx ][0] = n;
map_from_fx[indx++][1] = i;
}
}
}
if (debugLevel > 3){
System.out.println("rebuildMapsFx("+force+"), map_from_fx.length="+map_from_fx.length);
System.out.println("fx_masks[0].length="+fx_masks[0].length);
System.out.println("fx_masks[1].length="+fx_masks[1].length);
for (int n = 0; n < fx_masks.length; n++){
System.out.println("fx_masks["+n+"].length="+fx_masks[n].length);
for (int i = 0; i<fx_masks[n].length; i++){ // will throw if masks are not initialized
System.out.print(fx_masks[n][i]?"X":".");
}
System.out.println();
}
for (int n = 0; n < kernel_masks.length; n++){
System.out.println("kernel_masks["+n+"].length="+kernel_masks[n].length);
for (int i = 0; i<kernel_masks[n].length; i++){ // will throw if masks are not initialized
System.out.print(kernel_masks[n][i]?"X":".");
}
System.out.println();
}
System.out.println("rebuildMapsFx("+force+"), map_from_fx numPoints = "+numPoints+" num_pure_points="+num_pure_points);
for (int i = 0; i< map_from_fx.length; i++){
System.out.println(i+": ("+map_from_fx[i][0]+","+map_from_fx[i][1]+")");
}
}
}
if (force || (map_to_fx == null)){
boolean [][]fx_masks = {fx_mask, kernel_masks[1]};
map_to_fx = new int [fx_masks.length][];
int numPar = 0;
for (int n = 0; n < map_to_fx.length; n++){
map_to_fx[n] = new int [fx_masks[n].length];
for (int i = 0; i < map_to_fx[n].length; i++ ){
if (fx_masks[n][i]){
map_to_fx[n][i] = numPar++;
} else {
map_to_fx[n][i] = -1;
}
}
}
if (debugLevel > 3){
System.out.println("rebuildMapsFx("+force+"), map_to_fx");
for (int n = 0; n < map_to_fx.length; n++){
for (int i = 0; i < map_to_fx[n].length; i++ ){
System.out.println(n+","+i+": "+map_to_fx[n][i]);
}
}
}
}
}
// just for debugging
public int [][] getMapToFx() { return map_to_fx; }
public int [][] getMapFromFx() { return map_from_fx; }
public int [][] getMapToPars() { return map_to_pars; }
public int [][] getMapFromPars() { return map_from_pars;}
public int getNumPars() {return map_from_pars.length;}
public int getNumPoints() {return map_from_fx.length;}
public int getNumPurePoints() {return num_pure_points;}
public double [] getVector(){
rebuildMapsPars(false); // create maps if not current, invalidates par_vector if rebuilds maps
if (par_vector == null) {
par_vector = new double [map_from_pars.length];
for (int i = 0; i < par_vector.length; i++) {
par_vector[i] = kernels[map_from_pars[i][0]][map_from_pars[i][1]];
}
}
return par_vector;
}
public double [] getConvolved(boolean skip_disabled_asym) // consider all masked out asym_kernel elements to be 0
{
return getFX(skip_disabled_asym, true);
}
public double [] getFX(boolean skip_disabled_asym) // consider all masked out asym_kernel elements to be 0
{
return getFX(skip_disabled_asym, false);
}
public double [] getFX(boolean skip_disabled_asym, boolean justConvolved) // consider all masked out asym_kernel elements to be 0
{
rebuildMapsFx(false); // will invalidate (make null) fX if data is not current, otherwise just return last calculated value.
if ((fX == null) || justConvolved) {
int conv_size = asym_size + 2*sym_radius-2;
int sym_rad_m1 = sym_radius - 1; // 7
double [] fX = new double [justConvolved? (conv_size*conv_size): map_from_fx.length];
// calculate convolution, for kernels - regardless of kernels enabled/disabled
// calculate convolution part
for (int ci =0; ci < conv_size; ci++) for (int cj =0; cj < conv_size; cj++){
int cindx = ci*conv_size + cj;
int fx_indx = justConvolved? cindx: map_to_fx[0][cindx]; // from index in the convolved space to fX vector
// if (fx_indx==167) System.out.println("-fx_indx = "+fx_indx+" ci="+ci+" cj="+cj+" cindx="+cindx);
if (fx_indx >=0){ // calculate convolution for ci, cj
fX[fx_indx] = 0;
for (int ai = 0; ai < asym_size; ai ++){
int si = (ci - ai) - sym_rad_m1;
if (si < 0) si = -si;
if (si < sym_radius) {
// if (fx_indx==167) System.out.println("--fx_indx = "+fx_indx+" si="+si+" ai="+ai+" ci="+ci+" cj="+cj+" sym_rad_m1="+sym_rad_m1);
for (int aj = 0; aj < asym_size; aj ++){
int aindx = ai*asym_size + aj;
// if (fx_indx==167) System.out.println("---fx_indx = "+fx_indx+" aindx="+aindx+" si="+si+
// " ai="+ai+" aj="+aj+" ci="+ci+" cj="+cj+" sym_rad_m1="+sym_rad_m1);
if (!skip_disabled_asym || kernel_masks[1][aindx]){
int sj = (cj - aj) - sym_rad_m1;
if (sj < 0) sj = -sj;
if (sj < sym_radius) {
int sindx = si * sym_radius + sj;
//fx_indx = 0 sindx=91 aindx=32 si=10 sj=11 ai=3 aj=5 ci=0 cj=1 sym_rad_m1=7
fX[fx_indx] += kernels[0][sindx] * kernels[1][aindx];
// if (fx_indx==167) {
// System.out.println("fx_indx = "+fx_indx+" sindx="+sindx+" aindx="+aindx+" si="+si+" sj="+sj+
// " ai="+ai+" aj="+aj+" ci="+ci+" cj="+cj+" sym_rad_m1="+sym_rad_m1);
// System.out.println("fX["+fx_indx+"] += kernels[0]["+sindx+"] * kernels[1]["+aindx+"] +="+
// kernels[0][sindx]+"*"+ kernels[1][aindx]+" +="+kernels[0][sindx] * kernels[1][aindx]+" = "+fX[fx_indx]);
// }
}
}
}
}
}
}
}
if (justConvolved) {
return fX; // do not coy to this.fX
}
// calculate asym kernel elements "handicaps"
if (!justConvolved) {
for (int ai = 0; ai < asym_size; ai ++){
for (int aj = 0; aj < asym_size; aj ++){
int aindx = ai*asym_size + aj;
int fx_indx = map_to_fx[1][aindx]; // from index in the asym_kernel to fX vector
// int par_indx = map_to_pars[1][aindx];
if (fx_indx>=0) {
fX[fx_indx] += kernels[1][aindx] * asym_weights[aindx];
}
}
}
}
this.fX = fX;
}
// System.out.println(":::: fX[167]="+fX[167]);
return fX;
}
public double [][] getJacobian(boolean recalculate, boolean skip_disabled_asym)
{
// System.out.println("getJacobian("+recalculate+","+skip_disabled_asym+")");
rebuildMapsFx(false); // will invalidate (make null) fX and jacobian if data is not current
if (recalculate || (jacobian == null)){
jacobian = new double [map_from_pars.length][map_from_fx.length];
// zero elements?
// calculate convolution parts, for kernels - regardless of kernels enabled/disabled
int conv_size = asym_size + 2*sym_radius-2;
int sym_rad_m1 = sym_radius - 1; // 7
// calculate convolution part
for (int ci =0; ci < conv_size; ci++) for (int cj =0; cj < conv_size; cj++){
int cindx = ci*conv_size + cj;
int fx_indx = map_to_fx[0][cindx]; // from index in the convolved space to fX vector
// if ((ci ==7) && (cj ==6)){
// System.out.println("-fx_indx = "+fx_indx+" ci="+ci+" cj="+cj);
// }
if (fx_indx >=0){ // calculate convolution for ci, cj
for (int ai = 0; ai < asym_size; ai ++){
int si = (ci - ai) - sym_rad_m1;
if (si < 0) si = -si;
// if ((ci ==7) && (cj ==6)){
// System.out.println("--fx_indx = "+fx_indx+" si="+si+" ai="+ai+" ci="+ci+" cj="+cj);
// }
if (si < sym_radius) {
for (int aj = 0; aj < asym_size; aj ++){
int aindx = ai*asym_size + aj;
int apar_indx = map_to_pars[1][aindx];
int sj = (cj - aj) - sym_rad_m1;
if (sj < 0) sj = -sj;
// if ((ci ==7) && (cj ==6)){
// System.out.println("---fx_indx = "+fx_indx+" aindx="+aindx+" si="+si+" sj="+sj+" ai="+ai+" aj="+aj+" ci="+ci+" cj="+cj);
// }
if (sj < sym_radius) {
int sindx = si * sym_radius + sj;
// d/d(asym_kernel)
if (apar_indx >= 0){
jacobian[apar_indx][fx_indx] += kernels[0][sindx];
// if ((ci ==7) && (cj ==6)){
// System.out.println("0: jacobian["+apar_indx+"]["+fx_indx+"] += kernels[0]["+sindx+"]+="+kernels[0][sindx]+" ="+jacobian[apar_indx][fx_indx]);
// }
}
// d/d(sym_kernel)
int spar_indx = map_to_pars[0][sindx];
// if ((ci ==7) && (cj ==6)){
// System.out.println("----fx_indx = "+fx_indx+" sindx="+sindx+" aindx="+aindx+" si="+si+" sj="+sj+
// " ai="+ai+" aj="+aj+" ci="+ci+" cj="+cj+" spar_indx="+spar_indx);
// }
if ((spar_indx>=0) && (!skip_disabled_asym || kernel_masks[1][aindx])){
jacobian[spar_indx][fx_indx] += kernels[1][aindx];
// if ((ci ==7) && (cj ==6)){
// System.out.println("1:jacobian["+spar_indx+"]["+fx_indx+"] += kernels[1]["+aindx+"] +="+kernels[1][aindx]+" ="+jacobian[spar_indx][fx_indx]);
// }
}
}
}
}
}
}
}
/*
System.out.println("2:jacobian[63][167]="+jacobian[63][167]);
System.out.println("2:jacobian[29][167]="+jacobian[29][167]);
System.out.println("2:jacobian[64][167]="+jacobian[64][167]);
System.out.println("2:jacobian[38][167]="+jacobian[38][167]);
System.out.println("2:jacobian[65][167]="+jacobian[65][167]);
System.out.println("2:jacobian[45][167]="+jacobian[45][167]);
System.out.println("2:jacobian[66][167]="+jacobian[66][167]);
System.out.println("2:jacobian[52][167]="+jacobian[52][167]);
System.out.println("2:jacobian[67][167]="+jacobian[67][167]);
System.out.println("2:jacobian[61][167]="+jacobian[61][167]);
*/
// calculate asym kernel elements "handicaps"
for (int ai = 0; ai < asym_size; ai ++){
for (int aj = 0; aj < asym_size; aj ++){
int aindx = ai*asym_size + aj;
int fx_indx = map_to_fx[1][aindx]; // from index in the asym_kernel to fX vector
int par_indx = map_to_pars[1][aindx];
if (fx_indx>=0) {
jacobian[par_indx][fx_indx] = asym_weights[aindx];
}
}
}
}
return jacobian;
}
public void saveLMAArrays()
{
savedLMAArrays = lMAArrays.clone();
}
public void restoreLMAArrays()
{
lMAArrays = savedLMAArrays.clone();
}
public void invalidateLMAArrays(){
lMAArrays = null;
savedLMAArrays = null;
}
public boolean isValidLMAArrays(){
return lMAArrays != null;
}
public void saveKernels(){
savedKernels = new double[kernels.length][];
for (int i=0; i<kernels.length;i++) savedKernels[i] = kernels[i].clone();
}
public void restoreKernels(){
kernels = new double[savedKernels.length][];
for (int i=0; i<savedKernels.length;i++) kernels[i] = savedKernels[i].clone();
}
public double [][] getJTByJ(){
return getJTByJ(true);
}
public double [][] getJTByJ(boolean recalculate){
if (recalculate) {
if (lMAArrays==null) lMAArrays = new LMAArrays();
lMAArrays.jTByJ = new double [jacobian.length][jacobian.length];
for (int i = 0; i < jacobian.length; i++ ){
for (int j = 0; j < jacobian.length; j++ ){
if (j<i){
lMAArrays.jTByJ[i][j] = lMAArrays.jTByJ[j][i];
} else {
lMAArrays.jTByJ[i][j] = 0;
for (int k=0; k< jacobian[i].length; k++){
lMAArrays.jTByJ[i][j] += jacobian[i][k] * jacobian[j][k];
}
}
}
}
}
return lMAArrays.jTByJ;
}
//getFX should be ran
public double [] getJTByDiff()
{
return getJTByDiff(true);
}
public double [] getJTByDiff(boolean recalculate) // current convolution result of async_kernel (*) sync_kernel, extended by asym_kernel components
{
if (recalculate) {
if (lMAArrays==null) lMAArrays = new LMAArrays();
lMAArrays.jTByDiff = new double [jacobian.length];
for (int i=0; i < lMAArrays.jTByDiff.length; i++){
lMAArrays.jTByDiff[i] = 0;
for (int k = 0; k< jacobian[i].length; k++){
if (map_from_fx[k][0]==0){
lMAArrays.jTByDiff[i] += jacobian[i][k]*(target_kernel[map_from_fx[k][1]]-fX[k]);
} else {
lMAArrays.jTByDiff[i] += jacobian[i][k]*(-fX[k]);
}
}
}
}
return lMAArrays.jTByDiff;
}
public double[] getDiffByDiff()
{
double [] diffByDiff = {0.0,0.0};
for (int k = 0; k<fX.length; k++){
double d;
if (map_from_fx[k][0]==0) d = target_kernel[map_from_fx[k][1]]-fX[k];
else d = -fX[k];
d=d*d;
diffByDiff[0] += d;
if (map_from_fx[k][0]==0) diffByDiff[1] += d;
}
return diffByDiff;
}
public double [] solveLMA(
double lambda,
int debugLevel){
double [][] JtByJmod= lMAArrays.jTByJ.clone();
int numPars=JtByJmod.length;
for (int i=0;i<numPars;i++){
JtByJmod[i]=lMAArrays.jTByJ[i].clone();
JtByJmod[i][i]+=lambda*JtByJmod[i][i]; //Marquardt mod
}
// M*Ma=Mb
Matrix M=new Matrix(JtByJmod);
if (debugLevel>2) {
System.out.println("Jt*J -lambda* diag(Jt*J), lambda="+lambda+":");
M.print(10, 5);
}
Matrix Mb=new Matrix(lMAArrays.jTByDiff,numPars); // single column
if (!(new LUDecomposition(M)).isNonsingular()){
double [][] arr=M.getArray();
System.out.println("Singular Matrix "+arr.length+"x"+arr[0].length);
// any rowsx off all 0.0?
for (int n=0;n<arr.length;n++){
boolean zeroRow=true;
for (int i=0;i<arr[n].length;i++) if (arr[n][i]!=0.0){
zeroRow=false;
break;
}
if (zeroRow){
System.out.println("Row of all zeros: "+n);
}
}
// M.print(10, 5);
return null;
}
Matrix Ma=M.solve(Mb); // singular
return Ma.getColumnPackedCopy(); // deltas
}
public void applyDeltas(double [] deltas)
{
for (int i = 0; i< deltas.length; i++){
kernels[map_from_pars[i][0]][map_from_pars[i][1]] += deltas[i];
}
fX = null; //needs to be recalculated
}
} // class LMAData
public FactorConvKernel(){
}
public FactorConvKernel(boolean new_mode){
this.new_mode =new_mode;
}
public FactorConvKernel(int asym_size, int sym_radius){
this.asym_size = asym_size;
this.sym_radius = sym_radius;
......@@ -123,36 +808,55 @@ public class FactorConvKernel {
this.asym_size = asym_size;
this.sym_radius = sym_radius;
this.target_kernel = target_kernel;
initLevenbergMarquardt(fact_precision);
if (mask != null){
this.startTime=System.nanoTime();
if (new_mode) {
initLevenbergMarquardt(fact_precision);
lMAData.setAsymKernel (
null, // double [] asym_kernel, // if null - set mask only
mask);
if (this.debugLevel>2) {
System.out.println("calcKernels(): this.currentVector 0");
for (int i=63;i<this.currentVector.length;i++){
System.out.println(i+": "+ this.currentVector[i]);
double [][] kernels = {lMAData.getSymKernel(),lMAData.getAsymKernel()};
System.out.println("calcKernels(): kernels data:");
for (int n=0;n<kernels.length;n++) for (int i=0;i<kernels[n].length;i++){
System.out.println(n+"/"+i+": "+ kernels[n][i]);
}
}
int asym_start= sym_radius * sym_radius - 1;
for (int i = 0; i<mask.length; i++) if (!mask[i]) this.currentVector[asym_start+i] = Double.NaN;
if (debugLevel>0){
System.out.println("mask.length="+mask.length+" asym_start="+asym_start+" this.currentVector.length="+this.currentVector.length);
System.out.println("asym mask: ");
for (int ii=0;ii < asym_size;ii++){
System.out.print(ii+": ");
for (int jj=0;jj < asym_size;jj++){
System.out.print((mask[ii * asym_size + jj]?" X":" .")+" ");
return levenbergMarquardt();
} else{
initLevenbergMarquardt_old(fact_precision);
if (mask != null){
if (this.debugLevel>2) {
System.out.println("calcKernels(): this.currentVector 0");
for (int i=63;i<this.currentVector.length;i++){
System.out.println(i+": "+ this.currentVector[i]);
}
}
int asym_start= sym_radius * sym_radius - 1;
for (int i = 0; i<mask.length; i++) if (!mask[i]) this.currentVector[asym_start+i] = Double.NaN;
if (debugLevel>0){
System.out.println("mask.length="+mask.length+" asym_start="+asym_start+" this.currentVector.length="+this.currentVector.length);
System.out.println("asym mask: ");
for (int ii=0;ii < asym_size;ii++){
System.out.print(ii+": ");
for (int jj=0;jj < asym_size;jj++){
System.out.print((mask[ii * asym_size + jj]?" X":" .")+" ");
}
System.out.println();
}
System.out.println();
}
}
}
if (this.debugLevel>2) {
System.out.println("calcKernels(): this.currentVector 1");
for (int i=63;i<this.currentVector.length;i++){
System.out.println(i+": "+ this.currentVector[i]);
if (this.debugLevel>2) {
System.out.println("calcKernels(): this.currentVector 1");
for (int i=63;i<this.currentVector.length;i++){
System.out.println(i+": "+ this.currentVector[i]);
}
}
return levenbergMarquardt_old();
}
return levenbergMarquardt();
}
public int calcKernels(
......@@ -180,7 +884,9 @@ public class FactorConvKernel {
// int numPixels = 0;
this.startTime=System.nanoTime();
double[] initialVector = setInitialVector(target_kernel, null); // should be (asym_size + 2*sym_radius-1)**2
/// double[] initialVector = setInitialVector(target_kernel, null); // should be (asym_size + 2*sym_radius-1)**2
double [][]kernels = setInitialVector(target_kernel, null); // should be (asym_size + 2*sym_radius-1)**2
double[] initialVector = setVectorFromKernels(kernels[0], kernels[1]);
enPixels[0] = center_i0*asym_size+center_j0;
boolean [] mask = new boolean [asym_size*asym_size];
......@@ -189,14 +895,14 @@ public class FactorConvKernel {
this.currentVector = initialVector.clone();
System.out.println("mask.length="+mask.length+" asym_start="+asym_start+" this.currentVector.length="+this.currentVector.length);
for (int i = 0; i<mask.length; i++) if (!mask[i]) this.currentVector[asym_start+i] = Double.NaN;
boolean OK = levenbergMarquardt();
boolean OK = levenbergMarquardt_old();
num_lma++;
bestRms[0] = this.currentRMSPure;
/*
for (int i = 0; i<numPixels; i++) mask[enPixels[i]] = true;
this.currentVector = initialVector.clone();
for (int i = 0; i<mask.length; i++) if (!mask[i]) this.currentVector[asym_start+1] = Double.NaN;
boolean OK = levenbergMarquardt();
boolean OK = levenbergMarquardt_old();
if (numPixels == 1){
bestRms[numPixels-1] = this.currentRMSPure;
}
......@@ -295,14 +1001,14 @@ public class FactorConvKernel {
if (debugLevel >1) {
System.out.println("Before calling levenbergMarquardt numPixels = "+numPixels+" ncand="+ncand);
System.out.println("Before calling levenbergMarquardt_old numPixels = "+numPixels+" ncand="+ncand);
}
OK = levenbergMarquardt();
OK = levenbergMarquardt_old();
num_lma++;
if (debugLevel >1) {
System.out.println("After calling levenbergMarquardt, OK="+OK+" numPixels = "+numPixels+" ncand="+ncand);
System.out.println("After calling levenbergMarquardt_old, OK="+OK+" numPixels = "+numPixels+" ncand="+ncand);
}
if (debugLevel >2) {
......@@ -349,7 +1055,7 @@ public class FactorConvKernel {
System.out.println("calcKernels() numPixels="+numPixels);
}
OK = levenbergMarquardt();
OK = levenbergMarquardt_old();
if (debugLevel >0) {
for (int i = 0; i< numPixels; i++){
......@@ -375,14 +1081,19 @@ public class FactorConvKernel {
public double [] getSymKernel(){
return getSymKernel(currentVector,sym_kernel_scale);
if (new_mode) return lMAData.getSymKernel(sym_kernel_scale);
return getSymKernel(currentVector, sym_kernel_scale);
}
public double [] getAsymKernel(){
if (new_mode) return lMAData.getAsymKernel(1.0/sym_kernel_scale);
return getAsymKernel(currentVector,1.0/sym_kernel_scale);
}
public double [] getConvolved(){ // check that it matches original
if (new_mode) {
return lMAData.getConvolved(true); //boolean skip_disabled_asym
}
double [] convolved = new double [target_kernel.length];
System.arraycopy(currentfX, 0, convolved, 0, convolved.length);
return convolved;
......@@ -425,7 +1136,7 @@ public class FactorConvKernel {
}
// initial estimation
private double [] setInitialVector(
private double [][] setInitialVector(
double [] target_kernel, // should be (asym_size + 2*sym_radius-1)**2
boolean [] asym_mask) // which of the asymmetrical kernel to use
{
......@@ -504,8 +1215,10 @@ public class FactorConvKernel {
for (int i = 0; i < sym_kernel.length; i++){
if (sym_kernel_count[i] >0) sym_kernel[i] /= sym_kernel_count[i];
else sym_kernel[i] = 0.0;
}
return setVectorFromKernels(sym_kernel, asym_kernel);
}
double [][] kernels = {sym_kernel, asym_kernel};
return kernels;
// return setVectorFromKernels(sym_kernel, asym_kernel);
}
private double [] setVectorFromKernels(
......@@ -592,16 +1305,16 @@ public class FactorConvKernel {
j++;
}
double [] kvect_inc = kvect.clone();
double [] fx = getFX( kvect);
double [] fX = getFX( kvect);
kvect_inc[indx] += delta;
double [] fx1 = getFX( kvect_inc);
// if (indx == 63) {
// System.out.println("----- getDerivDelta(): indx="+indx+" delta="+delta+" kvect["+indx+"]="+kvect[indx]+" kvect_inc["+indx+"]="+kvect_inc[indx]);
// }
for (int i = 0; i < fx.length; i++){
fx[i] = (fx1[i]-fx[i])/delta;
for (int i = 0; i < fX.length; i++){
fX[i] = (fx1[i]-fX[i])/delta;
}
return fx;
return fX;
}
public double [] compareDerivative(
......@@ -611,17 +1324,17 @@ public class FactorConvKernel {
double [] rslt = {0.0,0.0};
double [][] jacob = getJacobian(this.currentVector);
double [] deriv = getDerivDelta(this.currentVector, indx, delta);
double [] fx = getFX(this.currentVector);
for (int i = 0; i< fx.length; i++) {
double [] fX = getFX(this.currentVector);
for (int i = 0; i< fX.length; i++) {
if (verbose) {
System.out.println(i+": "+(jacob[indx][i]-deriv[i])+ " jacob["+indx+"]["+i+"] = "+jacob[indx][i]+
" deriv["+i+"]="+deriv[i]+" f["+i+"]="+fx[i]);
" deriv["+i+"]="+deriv[i]+" f["+i+"]="+fX[i]);
}
rslt[0]+=(jacob[indx][i]-deriv[i])*(jacob[indx][i]-deriv[i]);
rslt[1]+=jacob[indx][i]*jacob[indx][i];
}
rslt[0] = Math.sqrt(rslt[0]/fx.length);
rslt[1] = Math.sqrt(rslt[1]/fx.length);
rslt[0] = Math.sqrt(rslt[0]/fX.length);
rslt[1] = Math.sqrt(rslt[1]/fX.length);
if (debugLevel>3) {
System.out.println("rms(jacob["+indx+"][]) = "+rslt[1]+", rms(diff) = "+rslt[0]);
}
......@@ -650,18 +1363,18 @@ public class FactorConvKernel {
num_asym +=num_pars;
// double [][] jacob = new double [num_pars][asym_terms_start + num_asym];
// double [] fx = new double [conv_size*conv_size+asym_size*asym_size];
double [] fx = new double [asym_terms_start + num_asym];
// double [] fX = new double [conv_size*conv_size+asym_size*asym_size];
double [] fX = new double [asym_terms_start + num_asym];
if (this.debugLevel>3){
System.out.println("fx(): vector_length= "+kvect.length);
System.out.println("fx(): sym_radius= "+sym_radius);
System.out.println("fx(): asym_size= "+asym_size);
System.out.println("fx(): conv_size= "+conv_size);
System.out.println("fx(): fx.length= "+fx.length);
System.out.println("fx(): asym_start= "+asym_start);
}
for (int i = 0; i < fx.length; i++) fx[i] = 0.0;
System.out.println("fX(): vector_length= "+kvect.length);
System.out.println("fX(): sym_radius= "+sym_radius);
System.out.println("fX(): asym_size= "+asym_size);
System.out.println("fX(): conv_size= "+conv_size);
System.out.println("fX(): fX.length= "+fX.length);
System.out.println("fX(): asym_start= "+asym_start);
}
for (int i = 0; i < fX.length; i++) fX[i] = 0.0;
for (int i = -sym_radius_m1; i <= sym_radius_m1; i++) {
for (int j = -sym_radius_m1; j <=sym_radius_m1; j++) {
......@@ -683,12 +1396,12 @@ public class FactorConvKernel {
int asym_index = asym_size*ia + ja + asym_start; // index of the parameter space, full, not compacted
if (cind[asym_index] >= 0) {
int conv_index = base_indx + conv_size * ia + ja;
fx[conv_index] += sd* kvect[asym_index];
fX[conv_index] += sd* kvect[asym_index];
// if ((cind[asym_index]==63) && (conv_index==74)) {
// System.out.println("cind["+asym_index+"]="+cind[asym_index]+
// " conv_index ="+conv_index+" kvect["+asym_index+"]=" +kvect[asym_index]+
// " fx["+conv_index+"]="+fx[conv_index]);
// " fX["+conv_index+"]="+fX[conv_index]);
//
// }
......@@ -710,59 +1423,11 @@ public class FactorConvKernel {
(center_i0 - ia <= asym_tax_free) &&
(ja - center_j0 <= asym_tax_free) &&
(center_j0 - ja <= asym_tax_free)) ir2 = 0;
fx[asym_term++] = ir2 * cw* kvect[asym_start + asym_index];
}
}
}
return fx;
}
private double [] getFXOld(
double [] kvect) // first - all elements of sym kernel but [0] (replaced by 1.0), then - asym ones
{
int conv_size = asym_size + 2*sym_radius-2;
int asym_start= sym_radius * sym_radius - 1;
int sym_radius_m1 = sym_radius -1;
int asym_terms_start= conv_size*conv_size;
double cw = getCompactWeight();
double [] fx = new double [conv_size*conv_size+asym_size*asym_size];
if (this.debugLevel>2){
System.out.println("fx(): vector_length= "+kvect.length);
System.out.println("fx(): sym_radius= "+sym_radius);
System.out.println("fx(): asym_size= "+asym_size);
System.out.println("fx(): conv_size= "+conv_size);
System.out.println("fx(): fx.length= "+fx.length);
System.out.println("fx(): asym_start= "+asym_start);
}
for (int i = 0; i < fx.length; i++) fx[i] = 0.0;
for (int i = -sym_radius_m1; i <= sym_radius_m1; i++) {
for (int j = -sym_radius_m1; j <= sym_radius_m1; j++) {
int indx = ((i < 0)? -i : i) * sym_radius + ((j < 0)? -j : j);
double sd = (indx >0)? kvect[indx -1] : 1.0;
int base_indx = conv_size * (i + sym_radius_m1) + (j + sym_radius_m1);
for (int ia=0; ia < asym_size; ia++) {
for (int ja=0; ja < asym_size; ja++) {
int asym_index = asym_size*ia + ja + asym_start;
fx[base_indx + conv_size * ia + ja] += sd* kvect[asym_index];
}
fX[asym_term++] = ir2 * cw* kvect[asym_start + asym_index];
}
}
}
for (int ia=0; ia <asym_size;ia++){
for (int ja=0;ja< asym_size;ja++){
int asym_index = asym_size*ia + ja;
int ir2 = (ia-center_i0)*(ia-center_i0)+(ja-center_j0)*(ja-center_j0);
if ((ia - center_i0 <= asym_tax_free) &&
(center_i0 - ia <= asym_tax_free) &&
(ja - center_j0 <= asym_tax_free) &&
(center_j0 - ja <= asym_tax_free)) ir2 = 0;
fx[asym_index+asym_terms_start] = ir2 * cw* kvect[asym_start + asym_index];
}
}
return fx;
return fX;
}
......@@ -770,6 +1435,13 @@ public class FactorConvKernel {
return compactness_weight*sym_kernel_scale; // (asym_size*asym_size*asym_size*asym_size); // use
}
public int getNumPars(double [] kvect){
int num_pars = 0;
for (int i = 0; i<kvect.length ; i++){
if (!Double.isNaN(kvect[i]))num_pars++;
}
return num_pars;
}
private double [][] getJacobian(
double [] kvect) // some entries may be Double.NaN - skip them as well as asym_kernel entries in the end
{
......@@ -818,17 +1490,30 @@ public class FactorConvKernel {
if (cind[asym_index] >= 0) {
int conv_index = base_indx + conv_size * ia + ja;
if (indx >= 0) jacob[indx][conv_index] += kvect[asym_index];
// if ((debugLevel > 1) && (indx == 0)) {
// System.out.println(" getJacobian: indx="+indx+" asym_index="+asym_index+" cind[asym_index]="+cind[asym_index]+
// " conv_index="+conv_index+" kvect["+asym_index+"], sd="+sd);
// System.out.println("jacob["+indx+"]["+conv_index+"] += kvect["+asym_index+"] +="+kvect[asym_index]+" = "+ jacob[indx][conv_index]);
// }
jacob[cind[asym_index]][conv_index] += sd;
if (debugLevel > 3) {
System.out.println("getJacobian: indx="+indx+" asym_index="+asym_index+" cind[asym_index]="+cind[asym_index]+
" conv_index="+conv_index+" kvect["+asym_index+"], sd="+sd);
}
// if ((debugLevel > 4) || (cind[asym_index] == 0)) {
// System.out.println("+++++++++++++++++ getJacobian: indx="+indx+" asym_index="+asym_index+" cind[asym_index]="+cind[asym_index]+
// " conv_index="+conv_index+" kvect["+asym_index+"], sd="+sd+ " jacob["+cind[asym_index]+"]["+conv_index+"]="+jacob[cind[asym_index]][conv_index]);
// }
}
}
}
}
}
}
// System.out.println("3:jacobian[0][167]="+jacob[0][167]);
// System.out.println("3:jacobian[0][168]="+jacob[0][168]);
// System.out.println("3:jacobian[0][169]="+jacob[0][169]);
// System.out.println("3:jacobian[0][170]="+jacob[0][170]);
for (int i = 0; i < jacob.length; i++) for (int j=asym_terms_start; j < jacob[i].length;j++) jacob[i][j] = 0.0;
int asym_term = asym_terms_start;
for (int ia=0; ia <asym_size;ia++){
......@@ -846,50 +1531,14 @@ public class FactorConvKernel {
}
}
// System.out.println("4:jacobian[0][167]="+jacob[0][167]);
// System.out.println("4:jacobian[0][168]="+jacob[0][168]);
// System.out.println("4:jacobian[0][169]="+jacob[0][169]);
// System.out.println("4:jacobian[0][170]="+jacob[0][170]);
return jacob;
}
private double [][] getJacobianOld(
double [] kvect){ // some entries may be Double.NaN - skip them
int conv_size = asym_size + 2*sym_radius-2;
int asym_start= sym_radius * sym_radius - 1;
int sym_radius_m1 = sym_radius -1;
double cw = getCompactWeight();
double [][] jacob = new double [kvect.length][conv_size*conv_size + asym_size*asym_size];
int asym_terms_start=conv_size*conv_size;
for (int i = -sym_radius_m1; i <= sym_radius_m1; i++) {
for (int j = -sym_radius_m1; j <=sym_radius_m1; j++) {
int indx = ((i < 0)? -i : i) * sym_radius + ((j < 0)? -j : j);
double sd = (indx >0)? kvect[indx -1] : 1.0;
int base_indx = conv_size * (i + sym_radius -1) + (j + sym_radius -1);
for (int ia=0; ia < asym_size; ia++) {
for (int ja=0; ja < asym_size; ja++) {
int asym_index = asym_size*ia + ja+ asym_start;
int conv_index = base_indx + conv_size * ia + ja;
if (indx > 0) jacob[indx-1][conv_index] += kvect[asym_index];
jacob[asym_index][conv_index] += sd;
}
}
}
}
for (int i = 0; i < jacob.length; i++) for (int j=asym_terms_start; j < jacob[i].length;j++) jacob[i][j] = 0.0;
for (int ia=0; ia <asym_size;ia++){
for (int ja=0;ja< asym_size;ja++){
int asym_index = asym_size*ia + ja;
int ir2 = (ia-center_i0)*(ia-center_i0)+(ja-center_j0)*(ja-center_j0);
if ((ia - center_i0 <= asym_tax_free) &&
(center_i0 - ia <= asym_tax_free) &&
(ja - center_j0 <= asym_tax_free) &&
(center_j0 - ja <= asym_tax_free)) ir2 = 0;
jacob[asym_index + asym_start][asym_index+asym_terms_start] = ir2 * cw;
}
}
return jacob;
}
private double [][] getJTByJ(double [][] jacob){
private double [][] getJTByJ(double [][] jacob){
double [][] jTByJ = new double [jacob.length][jacob.length];
for (int i = 0; i < jacob.length; i++ ){
for (int j = 0; j < jacob.length; j++ ){
......@@ -909,16 +1558,16 @@ private double [][] getJTByJ(double [][] jacob){
private double [] getJTByDiff(
double [][] jacob, // jacobian
double [] target_kernel, // target kernel
double [] fx) // current convolution result of async_kernel (*) sync_kernel, extended by asym_kernel components
double [] fX) // current convolution result of async_kernel (*) sync_kernel, extended by asym_kernel components
{
double [] jTByDiff = new double [jacob.length];
for (int i=0; i < jTByDiff.length; i++){
jTByDiff[i] = 0;
for (int k = 0; k< target_kernel.length; k++){
jTByDiff[i] += jacob[i][k]*(target_kernel[k]-fx[k]);
jTByDiff[i] += jacob[i][k]*(target_kernel[k]-fX[k]);
}
for (int k = target_kernel.length; k< fx.length; k++){
jTByDiff[i] += jacob[i][k]*(-fx[k]);
for (int k = target_kernel.length; k< fX.length; k++){
jTByDiff[i] += jacob[i][k]*(-fX[k]);
}
}
......@@ -927,16 +1576,16 @@ private double [][] getJTByJ(double [][] jacob){
}
private double[] getDiffByDiff(
double [] target_kernel, // target kernel
double [] fx) // current convolution result of async_kernel (*) sync_kernel, extended async kernel components
double [] fX) // current convolution result of async_kernel (*) sync_kernel, extended async kernel components
{
double [] diffByDiff = {0.0,0.0};
for (int k=0; k< target_kernel.length; k++){
double d = target_kernel[k]-fx[k];
double d = target_kernel[k]-fX[k];
diffByDiff[0] += d*d;
}
diffByDiff[1] = diffByDiff[0]; // actual squared error, without compactness
for (int k=target_kernel.length; k< fx.length; k++){
double d = fx[k];
for (int k=target_kernel.length; k< fX.length; k++){
double d = fX[k];
diffByDiff[0] += d*d;
}
if (this.debugLevel > 2){
......@@ -985,14 +1634,25 @@ private double [][] getJTByJ(double [][] jacob){
}
private void initLevenbergMarquardt(double fact_precision){
lMAData = new LMAData(debugLevel);
lMAData.setTarget(target_kernel);
double s = 0.0;
for (int i = 0; i<target_kernel.length; i++){
s+= target_kernel[i]*target_kernel[i];
}
this.goal_rms_pure = Math.sqrt(s/target_kernel.length)*fact_precision;
this.currentVector = setInitialVector(target_kernel, null); // should be (asym_size + 2*sym_radius-1)**2
// this.currentVector = setInitialVector(target_kernel, null); // should be (asym_size + 2*sym_radius-1)**2
double [][]kernels = setInitialVector(target_kernel, null); // should be (asym_size + 2*sym_radius-1)**2
sym_kernel_scale = kernels[0][0];
for (int i=0;i<kernels[0].length;i++) kernels[0][i] /=sym_kernel_scale;
for (int i=0;i<kernels[1].length;i++) kernels[1][i] *=sym_kernel_scale;
lMAData.setSymKernel (kernels[0]);
lMAData.setAsymKernel(kernels[1]);
lMAData.invalidateLMAArrays();
// this.currentVector = setVectorFromKernels(kernels[0], kernels[1]);
}
//lMAData
private boolean levenbergMarquardt(){
long startTime=System.nanoTime();
this.firstRMS=-1; //undefined
......@@ -1009,6 +1669,306 @@ private double [][] getJTByJ(double [][] jacob){
lastImprovements[1]=-1.0;
if (this.numIterations < 0){
// this.currentfX=
lMAData.getFX(true); // try false too
return true;
}
if (this.debugLevel>2) {
System.out.println("this.currentVector 0");
double [] dbg_vector = lMAData.getVector();
for (int i=63;i<dbg_vector.length;i++){
System.out.println(i+": "+ dbg_vector[i]);
}
}
while (true) { // loop for the same series
boolean [] state=stepLevenbergMarquardtFirst(goal_rms_pure);
// state[0] - better, state[1] - finished
if (this.debugLevel>1) System.out.println(this.iterationStepNumber+": stepLevenbergMarquardtFirst()==>"+state[1]+":"+state[0]);
// boolean cont=true;
// Make it success if this.currentRMS<this.firstRMS even if LMA failed to converge
if (state[1] && !state[0] && (this.firstRMS>this.currentRMS)) {
if (this.debugLevel>1) System.out.println("LMA failed to converge, but RMS improved from the initial value ("+this.currentRMS+" < "+this.firstRMS+")");
state[0]=true;
}
if (this.debugLevel>0){
if (state[1] && !state[0]){ // failure, show at debugLevel >0
System.out.println("LevenbergMarquardt(): failed step ="+this.iterationStepNumber+
", RMS="+IJ.d2s(this.currentRMS,8)+
" ("+IJ.d2s(this.firstRMS,8)+") "+
") at "+ IJ.d2s(0.000000001*(System.nanoTime()- startTime),3));
} else if (this.debugLevel>1){ // success: show only if debugLevel > 1
System.out.println("==> LevenbergMarquardt(): before action step ="+this.iterationStepNumber+
", RMS="+IJ.d2s(this.currentRMS,8)+
" ("+IJ.d2s(this.firstRMS,8)+") "+
") at "+ IJ.d2s(0.000000001*(System.nanoTime()-startTime),3));
}
}
// stepLevenbergMarquardtAction(startTime); // apply step - in any case?
this.iterationStepNumber++;
if (this.debugLevel>1) {
System.out.println(
"stepLevenbergMarquardtAction() step="+this.iterationStepNumber+
", this.currentRMS="+this.currentRMS+
", this.currentRMSPure="+this.currentRMSPure+
", this.nextRMS="+this.nextRMS+
", this.nextRMSPure="+this.nextRMSPure+
" lambda="+this.lambda+" at "+IJ.d2s(0.000000001*(System.nanoTime()- startTime),3)+" sec");
}
if (this.nextRMS < this.currentRMS) { //improved
this.lambda *= this.lambdaStepDown;
this.currentRMS = this.nextRMS;
} else {
this.lambda*= this.lambdaStepUp;
}
if ((this.debugLevel>0) && ((this.debugLevel>2) || ((System.nanoTime()-this.startTime)>10000000000.0))){ // > 10 sec
// if ((this.debugLevel>0) && ((this.debugLevel>0) || ((System.nanoTime()-this.startTime)>10000000000.0))){ // > 10 sec
System.out.println("--> long wait: LevenbergMarquardt(): step = "+this.iterationStepNumber+
", RMS="+IJ.d2s(this.currentRMS,8)+
" ("+IJ.d2s(this.firstRMS,8)+") "+
") at "+ IJ.d2s(0.000000001*(System.nanoTime()-startTime),3));
}
if (state[1]) { // finished
if (!state[0]) return false; // sequence failed
break; // while (true), proceed to the next series
}
}
if (this.debugLevel>0) System.out.println("LevenbergMarquardt() finished in "+this.iterationStepNumber+
" steps, RMS="+this.currentRMS+
" ("+this.firstRMS+") "+
") at "+ IJ.d2s(0.000000001*(System.nanoTime()- startTime),3));
return true; // all series done
}
private boolean [] stepLevenbergMarquardtFirst(double goal_rms_pure){
double [] deltas=null;
double [] rmses; // [0]: full rms, [1]:pure rms
// calculate this.currentfX, this.jacobian if needed
if (this.debugLevel>2) {
System.out.println("this.currentVector 2");
double [] dbg_vector = lMAData.getVector();
int [][] map_from_pars = lMAData.getMapFromPars();
for (int i= 0; i<dbg_vector.length;i++) if ((debugLevel > 3) || (map_from_pars[i][0]==1)){
System.out.println(i+": "+ dbg_vector[i]);
}
}
if (!lMAData.isValidLMAArrays()) {
lMAData.getFX(true); // try false too
System.out.println("1-stepLevenbergMarquardtFirst("+goal_rms_pure+")");
double [][] jac1=lMAData.getJacobian(
true, // boolean recalculate,
true); //boolean skip_disabled_asym)
if (debugLevel > 2){
double [] fX = lMAData.getFX(true); // try false too
double [][] jacobian = lMAData.getJacobian(false, true);
int [][] map_from_fx = lMAData.getMapFromFx();
int [][] map_from_pars = lMAData.getMapFromPars();
for (int i=0; i<fX.length; i++) if ((debugLevel > 3) || (map_from_fx[i][0] == 1)) {
System.out.println("fX["+i+"]="+fX[i]);
}/*
for (int n= 0; n<jacobian.length;n++) if ((debugLevel > 3) || (map_from_pars[n][0]==1)){ // only for asym_kernel
for (int i=0; i<fX.length; i++) if ((debugLevel > 2) || (map_from_fx[i][0] == 1)) {
System.out.println("1-jacobian["+n+"]["+i+"]="+jacobian[n][i]+" fX["+i+"]="+fX[i]);
}
}
*/
for (int n= 0; n<jacobian.length;n++) if ((debugLevel > 3) || (map_from_pars[n][0]==1)){ // only for asym_kernel
for (int i=0; i<fX.length; i++) if ((debugLevel > 2) || (map_from_fx[i][0] == 1)) {
System.out.println("1-jacobian["+n+"]["+i+"]="+jacobian[n][i]+" fX["+i+"]="+fX[i]+" jac="+jac1[n][i]);
}
}
}
lMAData.getJTByJ(true); // recalculate
lMAData.getJTByDiff(true); // recalculate
if (debugLevel >2) {
double [][] jTByJ = lMAData.getJTByJ(false); // do not recalculate
double [] jTByDiff = lMAData.getJTByDiff(false); // do not recalculate
int [][] map_from_pars = lMAData.getMapFromPars();
for (int n=0; n < jTByJ.length;n++) if ((debugLevel > 3) || (map_from_pars[n][0]==1)){
for (int i=0; i < jTByJ.length; i++){
System.out.println("jTByJ["+n+"]["+i+"]="+jTByJ[n][i]);
}
System.out.println("jTByDiff["+n+"]="+jTByDiff[n]);
}
}
rmses = lMAData.getDiffByDiff();
this.currentRMSPure= Math.sqrt(rmses[1] / lMAData.getNumPurePoints());
this.currentRMS = Math.sqrt(rmses[0] / lMAData.getNumPoints());
if (this.debugLevel>1) {
System.out.println("initial RMS="+IJ.d2s(this.currentRMS,8)+
" ("+IJ.d2s(this.currentRMSPure,8)+")"+
". Calculating next Jacobian. Points:"+lMAData.getNumPoints()+"("+lMAData.getNumPurePoints()+")"+" Parameters:"+lMAData.getNumPars());
}
} else { // LMA arrays already calculated
rmses = lMAData.getDiffByDiff();
this.currentRMSPure= Math.sqrt(rmses[1] / lMAData.getNumPurePoints());
this.currentRMS = Math.sqrt(rmses[0] / lMAData.getNumPoints());
if (debugLevel > 2){
System.out.println("existing data: this.currentRMS="+IJ.d2s(this.currentRMS,8)+
" ("+IJ.d2s(this.currentRMSPure,8)+")");
}
}
if (this.firstRMS<0) {
this.firstRMS=this.currentRMS;
this.firstRMSPure=this.currentRMSPure;
}
lMAData.saveKernels(); // save to be able to roll back if failed
lMAData.saveLMAArrays(); // save to be able to roll back if failed
// calculate deltas
// deltas=solveLMA(this.lMAArrays, this.lambda, this.debugLevel);
deltas=lMAData.solveLMA(this.lambda, this.debugLevel);
// boolean matrixNonSingular=true;
if (deltas==null) {
if (this.debugLevel>2) {
System.out.println("--- Singular matrix - failed to compute deltas ---");
}
deltas=new double[lMAData.getNumPars()];
for (int i=0;i<deltas.length;i++) deltas[i]=0.0;
boolean [] status={false, true}; // done / bad
return status; // done, bad
}
if (this.debugLevel > 2 ){
System.out.println("--- deltas ---"+" this.currentRMS="+this.currentRMS);
int [][] map_from_pars = lMAData.getMapFromPars();
for (int i=0; i < deltas.length; i++) if ((debugLevel > 3) || (map_from_pars[i][0]==1)) {
System.out.println("deltas["+i+"]="+ deltas[i]);
}
}
// apply deltas
lMAData.applyDeltas(deltas);
// this.nextVector=this.currentVector.clone();
if (this.debugLevel > 2) {
System.out.println("modified Vector");
double [] dbg_vector = lMAData.getVector();
int [][] map_from_pars = lMAData.getMapFromPars();
for (int i= 0; i<dbg_vector.length;i++) if ((debugLevel > 3) || (map_from_pars[i][0]==1)){
// for (int i= 0; i<dbg_vector.length;i++) if ((debugLevel > 1) || (map_from_pars[i][0]==1)){
System.out.println(i+": "+ dbg_vector[i]+" ("+deltas[i]+")");
}
}
// calculate for new (modified vector)
lMAData.getFX(true); // try false too
lMAData.getJacobian(
true, // boolean recalculate,
true); //boolean skip_disabled_asym)
lMAData.getJTByJ(true); // recalculate
lMAData.getJTByDiff(true); // recalculate
rmses = lMAData.getDiffByDiff();
this.nextRMSPure= Math.sqrt(rmses[1] / lMAData.getNumPurePoints());
this.nextRMS = Math.sqrt(rmses[0] / lMAData.getNumPoints());
this.lastImprovements[1]=this.lastImprovements[0];
this.lastImprovements[0]=this.currentRMS-this.nextRMS;
if (this.debugLevel>2) {
System.out.println("stepLMA this.currentRMS="+this.currentRMS+
", this.nextRMS="+this.nextRMS+
", delta="+(this.currentRMS-this.nextRMS));
}
boolean [] status={this.nextRMS<=this.currentRMS, false};
// additional test if "worse" but the difference is too small, it was be caused by computation error, like here:
//stepLevenbergMarquardtAction() step=27, this.currentRMS=0.17068403807026408, this.nextRMS=0.1706840380702647
if (!status[0]) { // worse
if (this.nextRMS<(this.currentRMS+this.currentRMS*this.thresholdFinish*0.01)) {
this.nextRMS=this.currentRMS;
status[0]=true;
status[1]=true;
this.lastImprovements[0]=0.0;
if (this.debugLevel>1) {
System.out.println("New RMS error is larger than the old one, but the difference is too small to be trusted ");
System.out.println(
"stepLMA this.currentRMS="+this.currentRMS+
", this.currentRMSPure="+this.currentRMSPure+
", this.nextRMS="+this.nextRMS+
", this.nextRMSPure="+this.nextRMSPure+
", delta="+(this.currentRMS-this.nextRMS)+
", deltaPure="+(this.currentRMSPure-this.nextRMSPure));
}
}
}
if (status[0]) { // improved
status[1]=(this.iterationStepNumber>this.numIterations) || ( // done
(this.lastImprovements[0]>=0.0) &&
(this.lastImprovements[0]<this.thresholdFinish*this.currentRMS) &&
(this.lastImprovements[1]>=0.0) &&
(this.lastImprovements[1]<this.thresholdFinish*this.currentRMS));
if (this.currentRMSPure < goal_rms_pure) {
status[1] = true;
if (this.debugLevel>1) {
System.out.println("Improvent is possible, but the factorization precision reached its goal");
System.out.println(
"stepLMA this.currentRMS="+this.currentRMS+
", this.currentRMSPure="+this.currentRMSPure+
", this.nextRMS="+this.nextRMS+
", this.nextRMSPure="+this.nextRMSPure+
", delta="+(this.currentRMS-this.nextRMS)+
", deltaPure="+(this.currentRMSPure-this.nextRMSPure));
}
}
} else { // did not improve - roll back
lMAData.restoreKernels(); // roll back
lMAData.restoreLMAArrays(); // roll back
status[1]=(this.iterationStepNumber>this.numIterations) || // failed
((this.lambda*this.lambdaStepUp)>this.maxLambda);
}
///this.currentRMS
//TODO: add other failures leading to result failure?
if (this.debugLevel>2) {
System.out.println("stepLevenbergMarquardtFirst()=>"+status[0]+","+status[1]);
}
return status;
}
// Old version
private void initLevenbergMarquardt_old(double fact_precision){
double s = 0.0;
for (int i = 0; i<target_kernel.length; i++){
s+= target_kernel[i]*target_kernel[i];
}
this.goal_rms_pure = Math.sqrt(s/target_kernel.length)*fact_precision;
// this.currentVector = setInitialVector(target_kernel, null); // should be (asym_size + 2*sym_radius-1)**2
double [][]kernels = setInitialVector(target_kernel, null); // should be (asym_size + 2*sym_radius-1)**2
this.currentVector = setVectorFromKernels(kernels[0], kernels[1]);
}
private boolean levenbergMarquardt_old(){
long startTime=System.nanoTime();
this.firstRMS=-1; //undefined
this.iterationStepNumber = 0;
this.lambda = this.init_lambda;
// New
this.currentfX=null;
this.lMAArrays=null;
this.currentRMS=-1;
this.currentRMSPure=-1;
this.jacobian=null; // invalidate
//System.out.println("Setting both lastImprovements(); to -1");
lastImprovements[0]=-1.0;
lastImprovements[1]=-1.0;
if (this.numIterations < 0){
this.currentfX=getFX (this.currentVector);
return true;
......@@ -1022,8 +1982,8 @@ private double [][] getJTByJ(double [][] jacob){
}
while (true) { // loop for the same series
boolean [] state=stepLevenbergMarquardtFirst(goal_rms_pure);
if (this.debugLevel>1) System.out.println(this.iterationStepNumber+": stepLevenbergMarquardtFirst()==>"+state[1]+":"+state[0]);
boolean [] state=stepLevenbergMarquardtFirst_old(goal_rms_pure);
if (this.debugLevel>1) System.out.println(this.iterationStepNumber+": stepLevenbergMarquardtFirst_old()==>"+state[1]+":"+state[0]);
// boolean cont=true;
// Make it success if this.currentRMS<this.firstRMS even if LMA failed to converge
if (state[1] && !state[0] && (this.firstRMS>this.currentRMS)){
......@@ -1047,22 +2007,23 @@ private double [][] getJTByJ(double [][] jacob){
" ("+IJ.d2s(this.firstRMS,8)+") "+
") at "+ IJ.d2s(0.000000001*(System.nanoTime()-startTime),3));
}
stepLevenbergMarquardtAction(startTime); // apply step - in any case?
// if ((this.debugLevel>0) && ((this.debugLevel>1) || ((System.nanoTime()-this.startTime)>10000000000.0))){ // > 10 sec
if ((this.debugLevel>0) && ((this.debugLevel>0) || ((System.nanoTime()-this.startTime)>10000000000.0))){ // > 10 sec
stepLevenbergMarquardtAction_old(startTime); // apply step - in any case?
if ((this.debugLevel>0) && ((this.debugLevel>1) || ((System.nanoTime()-this.startTime)>10000000000.0))){ // > 10 sec
// if ((this.debugLevel>0) && ((this.debugLevel>0) || ((System.nanoTime()-this.startTime)>10000000000.0))){ // > 10 sec
System.out.println("--> LevenbergMarquardt(): step = "+this.iterationStepNumber+
", RMS="+IJ.d2s(this.currentRMS,8)+
" ("+IJ.d2s(this.firstRMS,8)+") "+
") at "+ IJ.d2s(0.000000001*(System.nanoTime()-startTime),3));
}
//stepLevenbergMarquardtAction();
//stepLevenbergMarquardtAction_old();
if (state[1]) {
if (!state[0]) return false; // sequence failed
break; // while (true), proceed to the next series
}
}
// if (this.fittingStrategy.isLastSeries(this.seriesNumber)) break;
if (this.debugLevel>0) System.out.println("LevenbergMarquardt(): RMS="+this.currentRMS+
if (this.debugLevel>0) System.out.println("LevenbergMarquardt_old() finished in "+this.iterationStepNumber+
" steps, RMS="+this.currentRMS+
" ("+this.firstRMS+") "+
") at "+ IJ.d2s(0.000000001*(System.nanoTime()- startTime),3));
if (this.debugLevel>2) {
......@@ -1089,23 +2050,11 @@ private double [][] getJTByJ(double [][] jacob){
return true; // all series done
}
private boolean [] stepLevenbergMarquardtFirst(double goal_rms_pure){
private boolean [] stepLevenbergMarquardtFirst_old(double goal_rms_pure){
int deltas_indx;
double [] deltas=null;
double [] rmses; // [0]: full rms, [1]:pure rms
// moved to caller
/*
if (this.currentVector==null) {
this.currentRMS=-1;
this.currentRMSPure=-1;
this.currentfX=null; // invalidate
this.jacobian=null; // invalidate
this.lMAArrays=null;
System.out.println("Setting both lastImprovements(); to -1");
lastImprovements[0]=-1.0;
lastImprovements[1]=-1.0;
}
*/
// calculate this.currentfX, this.jacobian if needed
if (this.debugLevel>3) {
System.out.println("this.currentVector 1");
......@@ -1124,23 +2073,19 @@ System.out.println("Setting both lastImprovements(); to -1");
this.currentfX=getFX (this.currentVector);
this.jacobian = getJacobian (this.currentVector);
//System.out.println("stepLevenbergMarquardtFirst(): this.jacobian.length="+this.jacobian.length);
//for (int i = 0;i<this.currentVector.length;i++){
// System.out.println(i+": "+this.currentVector[i]);
//}
if (debugLevel > 2){
int conv_size = asym_size + 2*sym_radius-2;
int asym_terms_start= conv_size*conv_size;
for (int i=asym_terms_start; i<currentfX.length; i++){
System.out.println("this.currentfX["+i+"]="+this.currentfX[i]);
}
for (int n=63; n<this.jacobian.length;n++){
for (int n=(debugLevel > 3)?0:63; n<this.jacobian.length;n++){
// for (int i=asym_terms_start; i<currentfX.length; i++){
for (int i=0; i<currentfX.length; i++){
System.out.println("this.jacobian["+n+"]["+i+"]="+this.jacobian[n][i]+" this.currentfX["+i+"]="+this.currentfX[i]);
}
}
}
}
this.lMAArrays= new LMAArrays();
lMAArrays.jTByJ=getJTByJ(
this.jacobian);
......@@ -1149,8 +2094,10 @@ System.out.println("Setting both lastImprovements(); to -1");
this.jacobian,
this.target_kernel, // target kernel to factor
this.currentfX); // used to control compactness of asym_kernel
if (debugLevel >2) {
if (debugLevel > 2) {
System.out.println("Calculated new lMAArrays, lMAArrays.jTByJ[0][0] = "+lMAArrays.jTByJ[0][0]);
}
if (debugLevel > 2) {
for (int n=63; n < this.lMAArrays.jTByJ.length;n++){
for (int i=0; i < this.lMAArrays.jTByJ.length; i++){
System.out.println("this.lMAArrays.jTByJ["+n+"]["+i+"]="+this.lMAArrays.jTByJ[n][i]);
......@@ -1162,7 +2109,7 @@ System.out.println("Setting both lastImprovements(); to -1");
this.target_kernel, // target kernel
this.currentfX);
this.currentRMSPure= Math.sqrt(rmses[1] / target_kernel.length);
this.currentRMS = Math.sqrt(rmses[0] / (asym_size*asym_size+target_kernel.length));
this.currentRMS = Math.sqrt(rmses[0] / currentfX.length);
if (debugLevel > 1){
System.out.println("currentRMSPure= "+ currentRMSPure + " getDiffByDiff[1] = "+Math.sqrt(getDiffByDiff(
this.target_kernel, // target kernel
......@@ -1172,20 +2119,25 @@ System.out.println("Setting both lastImprovements(); to -1");
if (this.debugLevel>1) {
System.out.println("initial RMS="+IJ.d2s(this.currentRMS,8)+
" ("+IJ.d2s(this.currentRMSPure,8)+")"+
". Calculating next Jacobian. Points:"+this.target_kernel.length+" Parameters:"+this.currentVector.length);
// ". Calculating next Jacobian. Points:"+(asym_size*asym_size+target_kernel.length)+" Parameters:"+this.currentVector.length);
". Calculating next Jacobian. Points:"+currentfX.length+" Parameters:"+getNumPars(this.currentVector));
}
} else {
rmses = getDiffByDiff(
this.target_kernel, // target kernel
this.currentfX);
this.currentRMSPure= Math.sqrt(rmses[1] / target_kernel.length);
this.currentRMS = Math.sqrt(rmses[0] / (asym_size*asym_size+target_kernel.length));
this.currentRMS = Math.sqrt(rmses[0] / currentfX.length);
if (debugLevel > 2){
System.out.println("this.currentRMS=" + this.currentRMS+ " getDiffByDiff[1] = "+Math.sqrt(getDiffByDiff(
this.target_kernel, // target kernel
this.currentfX)[1] / target_kernel.length));
}
if (debugLevel > 1) {
System.out.println("Reused existing lMAArrays (after previous failure), lMAArrays.jTByJ[0][0] = "+lMAArrays.jTByJ[0][0]);
}
}
......@@ -1196,7 +2148,6 @@ System.out.println("Setting both lastImprovements(); to -1");
// calculate deltas
deltas=solveLMA(this.lMAArrays, this.lambda, this.debugLevel);
boolean matrixNonSingular=true;
if (deltas==null) {
deltas=new double[this.currentVector.length];
......@@ -1204,44 +2155,38 @@ System.out.println("Setting both lastImprovements(); to -1");
matrixNonSingular=false;
}
if (this.debugLevel>2) {
System.out.println("--- deltas ---");
System.out.println("--- deltas.1 ---");
for (int i=63;i<deltas.length;i++){
System.out.println("deltas["+i+"]="+ deltas[i]+" this.currentRMS="+this.currentRMS);
}
}
if (this.debugLevel>2) {
System.out.println("deltas");
for (int i=0;i<deltas.length;i++){
System.out.println(i+": "+ deltas[i]);
if (this.debugLevel > 2){ // 2!!! ) {
System.out.println("--- deltas ---"+" this.currentRMS="+this.currentRMS);
// for (int i=0; i < deltas.length; i++) if ((debugLevel > 3) || (map_from_pars[i][0]==1)) {
for (int i=0; i < deltas.length; i++) if ((this.debugLevel > 3) || (i >= 63)) {
System.out.println("deltas["+i+"]="+ deltas[i]);
}
}
// apply deltas
this.nextVector=this.currentVector.clone();
// System.out.println("this.nextVector.length="+this.nextVector.length+" deltas.length="+deltas.length);
// for (int i=0;i<this.nextVector.length;i++) {
// System.out.println(i+": "+this.nextVector[i]);
// }
deltas_indx = 0;
for (int i=0;i<this.nextVector.length;i++) {
if (!Double.isNaN(this.nextVector[i])){
if (this.debugLevel>2) {
if (i>=63) System.out.println(i+": "+this.nextVector[i]+" deltas["+deltas_indx+"]="+deltas[deltas_indx]+
" this.currentRMS="+this.currentRMS+" this.currentRMSPure="+this.currentRMSPure);
}
// System.out.println(deltas[deltas_indx]);
this.nextVector[i]+=deltas[deltas_indx++];
}
}
// another option - do not calculate J now, just fX. and late - calculate both if it was improvement
// save current Jacobian
if (this.debugLevel>2) {
System.out.println("this.nextVector");
for (int i=0;i<this.nextVector.length;i++){
System.out.println(i+": "+ this.nextVector[i]);
if (this.debugLevel > 2) { // change to 2 later
int indx = 0;
System.out.println("modified Vector");
for (int i=0;i<this.nextVector.length;i++) if (!Double.isNaN(this.nextVector[i])){
System.out.println(indx+": "+ this.nextVector[i]+" ("+deltas[indx]+")");
indx++;
}
}
......@@ -1263,7 +2208,7 @@ System.out.println("Setting both lastImprovements(); to -1");
this.target_kernel, // target kernel
this.nextfX); // current convolution result of async_kernel (*) sync_kernel
this.nextRMSPure= Math.sqrt(rmses[1] / target_kernel.length);
this.nextRMS = Math.sqrt(rmses[0] / (asym_size*asym_size+target_kernel.length));
this.nextRMS = Math.sqrt(rmses[0] / nextfX.length);
if (debugLevel > 2){
System.out.println("nextRMSPure= "+ nextRMSPure + " target_kernel.length = "+target_kernel.length+" getDiffByDiff[1] = "+Math.sqrt(getDiffByDiff(
......@@ -1280,7 +2225,7 @@ System.out.println("Setting both lastImprovements(); to -1");
}
boolean [] status={matrixNonSingular && (this.nextRMS<=this.currentRMS),!matrixNonSingular};
// additional test if "worse" but the difference is too small, it was be caused by computation error, like here:
//stepLevenbergMarquardtAction() step=27, this.currentRMS=0.17068403807026408, this.nextRMS=0.1706840380702647
//stepLevenbergMarquardtAction_old() step=27, this.currentRMS=0.17068403807026408, this.nextRMS=0.1706840380702647
if (!status[0] && matrixNonSingular) {
if (this.nextRMS<(this.currentRMS+this.currentRMS*this.thresholdFinish*0.01)) {
......@@ -1324,7 +2269,7 @@ System.out.println("Setting both lastImprovements(); to -1");
}
} else if (matrixNonSingular){
// this.jacobian=this.savedJacobian;// restore saved Jacobian
this.lMAArrays=this.savedLMAArrays; // restore Jt*J and Jt*diff
this.lMAArrays=this.savedLMAArrays; // restore Jt*J and Jt*diff - it is done in stepLevenbergMarquardtAction_old
status[1]=(this.iterationStepNumber>this.numIterations) || // failed
((this.lambda*this.lambdaStepUp)>this.maxLambda);
......@@ -1340,12 +2285,12 @@ System.out.println("Setting both lastImprovements(); to -1");
/**
* Apply fitting step
*/
private void stepLevenbergMarquardtAction(long startTime){//
private void stepLevenbergMarquardtAction_old(long startTime){//
this.iterationStepNumber++;
// apply/revert,modify lambda
if (this.debugLevel>1) {
System.out.println(
"stepLevenbergMarquardtAction() step="+this.iterationStepNumber+
"stepLevenbergMarquardtAction_old() step="+this.iterationStepNumber+
", this.currentRMS="+this.currentRMS+
", this.currentRMSPure="+this.currentRMSPure+
", this.nextRMS="+this.nextRMS+
......@@ -1353,14 +2298,20 @@ System.out.println("Setting both lastImprovements(); to -1");
" lambda="+this.lambda+" at "+IJ.d2s(0.000000001*(System.nanoTime()- startTime),3)+" sec");
}
if (this.nextRMS<this.currentRMS) { //improved
if (this.debugLevel > 2) {
System.out.println("Using new fX and vector");
}
this.lambda*=this.lambdaStepDown;
this.currentRMS=this.nextRMS;
this.currentfX=this.nextfX;
this.currentVector=this.nextVector;
this.lMAArrays = null; // need to calculate new ones
} else {
this.lambda*=this.lambdaStepUp;
// this.jacobian=this.savedJacobian;// restore saved Jacobian
this.lMAArrays=this.savedLMAArrays; // restore Jt*J and Jt*diff
if (this.debugLevel > 2) {
System.out.println("Re-using saved saved LMAArrays");
}
}
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment