Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
I
imagej-elphel
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
3
Issues
3
List
Board
Labels
Milestones
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Commits
Issue Boards
Open sidebar
Elphel
imagej-elphel
Commits
c9ed0a3d
Commit
c9ed0a3d
authored
Sep 10, 2024
by
Andrey Filippov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
trying filtering by SIFT-like features for better averaging
parent
1517acca
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
1155 additions
and
6 deletions
+1155
-6
Eyesis_Correction.java
.../java/com/elphel/imagej/correction/Eyesis_Correction.java
+15
-4
ComboMatch.java
src/main/java/com/elphel/imagej/orthomosaic/ComboMatch.java
+3
-2
OrangeTest.java
src/main/java/com/elphel/imagej/orthomosaic/OrangeTest.java
+1137
-0
No files found.
src/main/java/com/elphel/imagej/correction/Eyesis_Correction.java
View file @
c9ed0a3d
...
...
@@ -111,6 +111,7 @@ import com.elphel.imagej.jp4.JP46_Reader_camera;
import
com.elphel.imagej.lwir.LwirReader
;
import
com.elphel.imagej.orthomosaic.OrthoMap
;
import
com.elphel.imagej.orthomosaic.ComboMatch
;
import
com.elphel.imagej.orthomosaic.OrangeTest
;
import
com.elphel.imagej.readers.ChangeImageResolution
;
import
com.elphel.imagej.readers.DumpImageMetadata
;
import
com.elphel.imagej.readers.ElphelTiffReader
;
...
...
@@ -165,7 +166,7 @@ public class Eyesis_Correction implements PlugIn, ActionListener {
// private static final long serialVersionUID = -1507307664341265263L;
private
Panel
panel1
,
panel2
,
panel3
,
panel4
,
panel5
,
panel5a
,
panel6
,
panel7
,
panelPostProcessing1
,
panelPostProcessing2
,
panelPostProcessing3
,
panelDct1
,
panelClt1
,
panelClt2
,
panelClt3
,
panelClt4
,
panelClt5
,
panelClt5aux
,
panelClt_GPU
,
panelLWIR
,
panelLWIR16
,
panelLWIRWorld
;
panelClt5
,
panelClt5aux
,
panelClt_GPU
,
panelLWIR
,
panelLWIR16
,
panelLWIRWorld
,
panelOrange
;
JP46_Reader_camera
JP4_INSTANCE
=
null
;
// private deBayerScissors debayer_instance;
...
...
@@ -532,7 +533,7 @@ public class Eyesis_Correction implements PlugIn, ActionListener {
plugInFrame
.
addKeyListener
(
IJ
.
getInstance
());
// int menuRows=4 + (ADVANCED_MODE?4:0) + (MODE_3D?3:0) + (DCT_MODE?6:0) + (GPU_MODE?1:0) +(LWIR_MODE?2:0);
int
menuRows
=
4
+
(
ADVANCED_MODE
?
4
:
0
)
+
(
MODE_3D
?
3
:
0
)
+
(
DCT_MODE
?
7
:
0
)
+
(
GPU_MODE
?
1
:
0
)
+
(
LWIR_MODE
?
3
:
0
);
+
(
LWIR_MODE
?
4
:
0
);
plugInFrame
.
setLayout
(
new
GridLayout
(
menuRows
,
1
));
panel6
=
new
Panel
();
panel6
.
setLayout
(
new
GridLayout
(
1
,
0
,
5
,
5
));
...
...
@@ -860,7 +861,12 @@ public class Eyesis_Correction implements PlugIn, ActionListener {
addButton
(
"Pattern correlate"
,
panelLWIRWorld
,
color_process
);
addButton
(
"Properties compare"
,
panelLWIRWorld
,
color_process
);
plugInFrame
.
add
(
panelLWIRWorld
);
panelOrange
=
new
Panel
();
panelOrange
.
setLayout
(
new
GridLayout
(
1
,
0
,
5
,
5
));
// rows, columns, vgap, hgap
addButton
(
"Test Orange"
,
panelOrange
,
color_process
);
addButton
(
"Process Merged"
,
panelOrange
,
color_process
);
plugInFrame
.
add
(
panelOrange
);
}
plugInFrame
.
pack
();
//"LWIR batch"
...
...
@@ -5787,8 +5793,13 @@ public class Eyesis_Correction implements PlugIn, ActionListener {
}
OrthoMap
.
testPatternCorrelate
(
imp_sel
);
}
else
if
(
label
.
equals
(
"Properties compare"
))
{
QuadCLTCPU
.
compareProperties
();
QuadCLTCPU
.
compareProperties
();
}
else
if
(
label
.
equals
(
"Test Orange"
))
{
OrangeTest
.
testOrange
();
}
else
if
(
label
.
equals
(
"Process Merged"
))
{
OrangeTest
.
processMerged
();
}
//
}
//
public
boolean
debugInitOneScene
()
{
...
...
src/main/java/com/elphel/imagej/orthomosaic/ComboMatch.java
View file @
c9ed0a3d
...
...
@@ -2524,10 +2524,10 @@ adjusted affines[1] for a pair: 1694564291_293695/1694564778_589341
{
0
,
0
,
sxy
,
sy2
,
0
,
sy
},
{
0
,
0
,
sx
,
sy
,
0
,
s0
}};
Matrix
A
=
new
Matrix
(
a
);
A
.
print
(
15
,
4
);
//
A.print(15,4);
double
[][]
b
=
{{
sxu
,
syu
,
su
,
sxv
,
syv
,
sv
}};
Matrix
B
=
new
Matrix
(
b
).
transpose
();
B
.
print
(
15
,
4
);
//
B.print(15,4);
double
[]
v
=
A
.
solve
(
B
).
getRowPackedCopy
();
double
[][]
ab
=
{
{
v
[
0
],
v
[
1
]},
// |a00, a01|,
...
...
@@ -2535,6 +2535,7 @@ adjusted affines[1] for a pair: 1694564291_293695/1694564778_589341
{
v
[
4
],
v
[
5
]}};
// | b0, b1|,
return
ab
;
}
public
static
boolean
testReadTiff
()
{
String
image_paths
=
""
;
...
...
src/main/java/com/elphel/imagej/orthomosaic/OrangeTest.java
0 → 100644
View file @
c9ed0a3d
package
com
.
elphel
.
imagej
.
orthomosaic
;
import
java.awt.Rectangle
;
import
java.util.Arrays
;
import
java.util.concurrent.atomic.AtomicInteger
;
import
com.elphel.imagej.common.ShowDoubleFloatArrays
;
import
com.elphel.imagej.tileprocessor.ImageDtt
;
import
com.elphel.imagej.tileprocessor.TileProcessor
;
import
ij.ImagePlus
;
import
ij.ImageStack
;
public
class
OrangeTest
{
public
static
double
[][][]
matching_points_initial
=
{
{
// 1697877488_162849 - 117 sfm 37.1
{
110.500
,
452.500
},
{
287.500
,
121.500
},
{
1294.833
,
545.833
},
{
1307.500
,
162.167
}
},
{
// 1697877490_930437 - 42 sfm 6.4
{
410.167
,
979.833
},
{
585.500
,
649.500
},
{
1579.167
,
1126.833
},
{
1604.750
,
737.000
}
},
{
// 1697877491_613999 - 76 sfm 12.2 0, 76
{
423.500
,
1260.250
},
{
598.833
,
937.500
},
{
1587.000
,
1404.000
},
{
1613.167
,
1017.167
}
},
{
// 1697877491_997460 - 85 sfm 14.2 master
{
464.000
,
1551.000
},
{
617.167
,
1222.500
},
{
1630.167
,
1624.500
},
{
1630.250
,
1239.500
}
},
{
// 1697877492_314232 - 43 sfm 5.1
{
637.000
,
1830.000
},
{
763.167
,
1489.167
},
{
1807.167
,
1807.167
},
{
1772.833
,
1420.500
}
},
{
// 1697877492_614332 - 38 sfm 4.2
{
731.000
,
1952.500
},
{
828.500
,
1606.500
},
{
1893.000
,
1829.500
},
{
1826.500
,
1453.000
}
}
};
public
static
double
[][][]
matching_points_first_corr
=
{
// /media/elphel/SSD3-4GB/lwir16-proc/berdich3/debug/agent_orange/terrain-merged/02-first_point_correction/
{
// 1697877488_162849 - 117 sfm 37.1
{
105.500
,
452.500
},
{
289.500
,
121.500
},
{
1298.833
,
550.833
},
{
1305.500
,
164.167
}
},
{
// 1697877490_930437 - 42 sfm 6.4
{
410.167
,
981.833
},
{
585.500
,
651.500
},
{
1579.167
,
1128.833
},
{
1606.750
,
741.000
}
},
{
// 1697877491_613999 - 76 sfm 12.2 0, 76
{
419.500
,
1260.250
},
{
596.833
,
937.500
},
{
1585.000
,
1404.000
},
{
1613.167
,
1019.167
}
},
{
// 1697877491_997460 - 85 sfm 14.2 MASTER
{
464.000
,
1551.000
},
{
617.167
,
1222.500
},
{
1630.167
,
1624.500
},
{
1630.250
,
1239.500
}
},
{
// 1697877492_314232 - 43 sfm 5.1
{
637.000
,
1828.000
},
{
765.167
,
1489.167
},
{
1805.167
,
1805.167
},
{
1770.833
,
1422.500
}
},
{
// 1697877492_614332 - 38 sfm 4.2
{
733.000
,
1950.500
},
{
832.500
,
1604.500
},
{
1891.000
,
1829.500
},
{
1826.500
,
1455.000
}
}
};
public
static
double
[][][]
matching_points_second_corr
=
{
// /media/elphel/SSD3-4GB/lwir16-proc/berdich3/debug/agent_orange/terrain-merged/02-first_point_correction/
{
// 1697877488_162849 - 117 sfm 37.1
{
106.500
,
453.500
},
//+1,+1
{
290.500
,
123.500
},
//+1,+2
{
1299.833
,
551.833
},
//+1,+1
{
1305.500
,
164.667
}
// 0,+.5
},
{
// 1697877490_930437 - 42 sfm 6.4
{
411.167
,
981.833
},
//+1,0
{
585.500
,
652.500
},
// 0,+1
{
1579.167
,
1128.833
},
// 0, 0
{
1606.750
,
741.500
}
// 0,+.5
},
{
// 1697877491_613999 - 76 sfm 12.2 0, 76
{
420.500
,
1260.250
},
//+1, 0
{
596.833
,
937.500
},
// 0, 0
{
1586.000
,
1404.000
},
//+1, 0
{
1613.167
,
1019.667
}
// 0,+.5
},
{
// 1697877491_997460 - 85 sfm 14.2 MASTER
{
464.000
,
1551.000
},
{
617.167
,
1222.500
},
{
1630.167
,
1624.500
},
{
1630.250
,
1239.500
}
},
{
// 1697877492_314232 - 43 sfm 5.1
{
637.000
,
1828.000
},
// 0, 0
{
765.167
,
1489.167
},
// 0, 0
{
1805.167
,
1805.167
},
//+1,+1
{
1770.833
,
1422.500
}
// 0,+1
},
{
// 1697877492_614332 - 38 sfm 4.2
{
732.000
,
1950.500
},
//-1, 0
{
831.500
,
1604.500
},
//-1, 0
{
1892.000
,
1830.500
},
//+1,+1
{
1826.000
,
1456.000
}
//-.5,+1
}
};
public
static
String
[]
src_files
=
{
"/media/elphel/SSD3-4GB/lwir16-proc/berdich3/debug/agent_orange/terrain-merged/1697877488_162849-TERRAIN-MERGED.tiff"
,
"/media/elphel/SSD3-4GB/lwir16-proc/berdich3/debug/agent_orange/terrain-merged/1697877490_930437-TERRAIN-MERGED.tiff"
,
"/media/elphel/SSD3-4GB/lwir16-proc/berdich3/debug/agent_orange/terrain-merged/1697877491_613999-TERRAIN-MERGED.tiff"
,
"/media/elphel/SSD3-4GB/lwir16-proc/berdich3/debug/agent_orange/terrain-merged/1697877491_997460-TERRAIN-MERGED.tiff"
,
"/media/elphel/SSD3-4GB/lwir16-proc/berdich3/debug/agent_orange/terrain-merged/1697877492_314232-TERRAIN-MERGED.tiff"
,
"/media/elphel/SSD3-4GB/lwir16-proc/berdich3/debug/agent_orange/terrain-merged/1697877492_614332-TERRAIN-MERGED.tiff"
};
public
static
double
[]
value_offsets
=
{
33.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
};
public
static
String
merged_file
=
"/media/elphel/SSD3-4GB/lwir16-proc/berdich3/debug/agent_orange/terrain-merged/04-third-corr/merged_seq_scale2.0-slices260_x92_y280_w320_h120_zeronan.tiff"
;
public
static
double
points_scale
=
4.0
;
public
static
double
[][][]
matching_points
=
{
// /media/elphel/SSD3-4GB/lwir16-proc/berdich3/debug/agent_orange/terrain-merged/02-first_point_correction/
{
// 1697877488_162849 - 117 sfm 37.1
{
105.500
,
453.500
},
//-1, 0
{
292.500
,
123.500
},
//+2, 0
{
1299.833
,
552.333
},
// 0, +.5
{
1304.500
,
164.667
}
//-1, 0
},
{
// 1697877490_930437 - 42 sfm 6.4
{
411.167
,
982.833
},
// 0,+1
{
585.500
,
653.500
},
// 0,+1
{
1578.167
,
1128.833
},
//-1, 0
{
1606.750
,
741.500
}
// 0, 0
},
{
// 1697877491_613999 - 76 sfm 12.2 0, 76
{
421.000
,
1260.250
},
//+.5,0
{
596.833
,
937.500
},
// 0, 0
{
1586.000
,
1404.000
},
// 0, 0
{
1613.167
,
1020.167
}
// 0,+.5
},
{
// 1697877491_997460 - 85 sfm 14.2 MASTER
{
464.000
,
1551.000
},
{
617.167
,
1222.500
},
{
1630.167
,
1624.500
},
{
1630.250
,
1239.500
}
},
{
// 1697877492_314232 - 43 sfm 5.1
{
637.000
,
1828.000
},
// 0, 0
{
764.667
,
1489.167
},
//-.5,0
{
1806.167
,
1806.167
},
//+1,+1
{
1770.833
,
1422.000
}
//0,-.5
},
{
// 1697877492_614332 - 38 sfm 4.2
{
732.000
,
1950.000
},
// 0,-.5
{
830.500
,
1604.500
},
//-1, 0
{
1893.000
,
1830.500
},
//+1, 0
{
1826.000
,
1455.000
}
// 0,-1
}
};
public
static
int
[][]
full_segments
=
{{
0
,
117
},{
0
,
42
},{
0
,
76
},{
0
,
85
},{
0
,
43
},{
0
,
38
}};
public
static
int
[][]
match_segments
=
{{
0
,
117
},{
0
,
7
},{
0
,
76
},{
62
,
85
},{
24
,
43
},{
20
,
38
}};
// maybe improve to cut symmetrically?
public
static
int
[][]
single_segments
=
{{
60
,
61
},{
0
,
1
},{
0
,
1
},{
0
,
1
},{
0
,
1
},{
0
,
1
}};
public
static
void
processMerged
()
{
int
num_vert
=
1
;
//4;
int
vgap
=
0
;
// 10;
double
diff_time_rt
=
2.9
;
// 5.5;
double
diff_time_rxy
=
2.9
;
// 5.5;
double
space_rt
=
2.9
;
// 5.5;
double
space_rxy
=
2.9
;
// 5.5;
double
frac_outliers
=
0.1
;
boolean
repeat_border
=
true
;
boolean
show_orig_dt
=
false
;
boolean
show_derivs_dt
=
true
;
ImagePlus
imp_merged
=
new
ImagePlus
(
merged_file
);
ImageStack
stack
=
imp_merged
.
getImageStack
();
final
int
width
=
imp_merged
.
getWidth
();
// final int merged_height = imp_merged.getHeight();
// String [] stack_labels = stack.getSliceLabels();
final
double
[][]
dpixels
=
new
double
[
stack
.
getSize
()][];
for
(
int
i
=
0
;
i
<
dpixels
.
length
;
i
++)
{
float
[]
fpixels
=
(
float
[])
stack
.
getPixels
(
i
+
1
);
dpixels
[
i
]
=
new
double
[
fpixels
.
length
];
for
(
int
j
=
0
;
j
<
fpixels
.
length
;
j
++)
{
dpixels
[
i
][
j
]
=
fpixels
[
j
];
}
}
if
(
show_orig_dt
)
{
double
[][]
out_data_dt
=
timeToY
(
dpixels
,
// final double [][] multi_image,
width
,
// final int width,
num_vert
,
// final int num_vert,
vgap
);
// final int vgap)
int
out_height
=
out_data_dt
[
0
].
length
/
width
;
String
[]
titles
=
new
String
[
out_data_dt
.
length
];
for
(
int
i
=
0
;
i
<
titles
.
length
;
i
++)
{
if
(
num_vert
==
1
)
{
titles
[
i
]=
String
.
format
(
"row %d"
,
i
);
}
else
{
titles
[
i
]=
String
.
format
(
"rows: %d-%d"
,
i
*
num_vert
,(
i
+
1
)*
num_vert
-
1
);
}
}
ShowDoubleFloatArrays
.
showArrays
(
out_data_dt
,
width
,
out_height
,
true
,
"time_section-"
+
out_data_dt
.
length
,
titles
);
}
double
[][][]
kernel_diff_time
=
kernelDiffTime
(
diff_time_rt
,
//double rt,
diff_time_rxy
);
// double rxy)
showKernel
(
kernel_diff_time
,
// double [][][] kernel,
"kernel_diff_time_rt"
+
diff_time_rt
+
"_rxy"
+
diff_time_rxy
);
// String title)
double
[][]
time_derivs
=
convolve3d
(
dpixels
,
// final double [][] data_in, // fill NaN before running, will treat NaN as 0 on input, skip if center is NaN
width
,
// final int width,
kernel_diff_time
,
// final double [][][] kernel, // (odd)x(odd)x(odd}
repeat_border
);
// final boolean repeat_border)
double
[][][][]
space_kernels
=
new
double
[
5
][][][];
// double space_rt = 5.5;
// double space_rxy = 5.5;
for
(
int
dir
=
0
;
dir
<
space_kernels
.
length
;
dir
++)
{
space_kernels
[
dir
]=
kernelXY
(
dir
,
// int dir, // 0: +y, 1: +x+y, 2:+x, 3 +x-t, 4: 0: +center will be voting 1 of 10 (each plus and minus), weighted by abs(kernelDiffTime)
space_rt
,
// double rt,
space_rxy
);
// double rxy)
showKernel
(
space_kernels
[
dir
],
// double [][][] kernel,
"space_kernels-dir"
+
dir
+
"_rt"
+
space_rt
+
"_rxy"
+
space_rxy
);
// String title)
}
double
[][][]
space_conv
=
new
double
[
5
][][];
double
[][][]
space_conv_temp
=
new
double
[
5
][][];
for
(
int
dir
=
0
;
dir
<
space_kernels
.
length
;
dir
++)
{
space_conv
[
dir
]
=
convolve3d
(
dpixels
,
// final double [][] data_in, // fill NaN before running, will treat NaN as 0 on input, skip if center is NaN
width
,
// final int width,
space_kernels
[
dir
],
// final double [][][] kernel, // (odd)x(odd)x(odd}
repeat_border
);
// final boolean repeat_border)
}
double
[]
scales
=
normalizeSpaceKernels
(
space_conv
);
// double [][][] conv_data) // same data convolved with different kernels, may have NaNs
double
average_space
=
scales
[
space_kernels
.
length
];
// average std of all space kernels
double
[]
time_averages
=
normalizeTimeDerivs
(
// return {std, average abs()}
time_derivs
,
// final double [][] conv_data,
frac_outliers
);
// final double frac_outliers)
double
time_std
=
time_averages
[
0
];
// [1] - average of the absolute values;
for
(
int
dir
=
0
;
dir
<
space_kernels
.
length
;
dir
++)
{
scaleConvolutions
(
space_conv
[
dir
],
// final double [][] conv_data, // same data convolved with different kernels, may have NaNs
scales
[
dir
]);
// final double scale)
}
scaleConvolutions
(
time_derivs
,
// final double [][] conv_data, // same data convolved with different kernels, may have NaNs
average_space
/
time_std
);
// final double scale)
int
[][]
best_space_dir
=
new
int
[
space_conv
[
0
].
length
][];
double
[][]
best_space_value
=
getBestSpace
(
space_conv
,
// final double [][][] space_conv,
best_space_dir
);
// final int [][] best_space) // null or int [nimg][]
if
(
show_derivs_dt
)
{
for
(
int
dir
=
0
;
dir
<
space_kernels
.
length
;
dir
++)
{
space_conv_temp
[
dir
]
=
timeToY
(
space_conv
[
dir
],
// final double [][] multi_image,
width
,
// final int width,
num_vert
,
// final int num_vert,
vgap
);
// final int vgap)
}
double
[][]
time_derivs_temp
=
timeToY
(
time_derivs
,
// final double [][] multi_image,
width
,
// final int width,
num_vert
,
// final int num_vert,
vgap
);
// final int vgap)
int
out_height
=
time_derivs_temp
[
0
].
length
/
width
;
String
[]
titles
=
new
String
[
time_derivs_temp
.
length
];
for
(
int
i
=
0
;
i
<
titles
.
length
;
i
++)
{
if
(
num_vert
==
1
)
{
titles
[
i
]=
String
.
format
(
"row %d"
,
i
);
}
else
{
titles
[
i
]=
String
.
format
(
"rows: %d-%d"
,
i
*
num_vert
,(
i
+
1
)*
num_vert
-
1
);
}
}
ShowDoubleFloatArrays
.
showArrays
(
time_derivs_temp
,
width
,
out_height
,
true
,
"time_derivs-rt"
+
diff_time_rt
+
"-rxy"
+
diff_time_rxy
,
titles
);
for
(
int
dir
=
0
;
dir
<
space_kernels
.
length
;
dir
++)
{
ShowDoubleFloatArrays
.
showArrays
(
space_conv_temp
[
dir
],
width
,
out_height
,
true
,
"space_conv-dir"
+
dir
+
"-rt"
+
space_rt
+
"-rxy"
+
space_rxy
,
titles
);
}
double
[][]
best_space_value_temp
=
timeToY
(
best_space_value
,
// final double [][] multi_image,
width
,
// final int width,
num_vert
,
// final int num_vert,
vgap
);
// final int vgap)
ShowDoubleFloatArrays
.
showArrays
(
best_space_value_temp
,
width
,
out_height
,
true
,
"best_space_value-rt"
+
space_rt
+
"-rxy"
+
space_rxy
,
titles
);
double
[][]
best_space_dir_dbg
=
new
double
[
best_space_dir
.
length
][
best_space_dir
[
0
].
length
];
for
(
int
nimg
=
0
;
nimg
<
best_space_dir
.
length
;
nimg
++)
{
Arrays
.
fill
(
best_space_dir_dbg
[
nimg
],
Double
.
NaN
);
for
(
int
i
=
0
;
i
<
best_space_dir
[
nimg
].
length
;
i
++)
if
(
best_space_dir
[
nimg
][
i
]
>=
0
){
best_space_dir_dbg
[
nimg
][
i
]
=
best_space_dir
[
nimg
][
i
];
}
}
double
[][]
best_space_dir_temp
=
timeToY
(
best_space_dir_dbg
,
// final double [][] multi_image,
width
,
// final int width,
num_vert
,
// final int num_vert,
vgap
);
// final int vgap)
ShowDoubleFloatArrays
.
showArrays
(
best_space_dir_temp
,
width
,
out_height
,
true
,
"best_space_dir-rt"
+
space_rt
+
"-rxy"
+
space_rxy
,
titles
);
}
return
;
}
public
static
double
[][]
getBestSpace
(
final
double
[][][]
space_conv
,
final
int
[][]
best_space
){
// null or int [nimg][]
final
int
num_kernels
=
space_conv
.
length
;
// may be modified, if there will be extra layers
final
int
num_images
=
space_conv
[
0
].
length
;
final
int
num_pixels
=
space_conv
[
0
][
0
].
length
;
final
double
[][]
best_val
=
new
double
[
num_images
][
num_pixels
];
final
Thread
[]
threads
=
ImageDtt
.
newThreadArray
();
final
AtomicInteger
ai
=
new
AtomicInteger
(
0
);
// final AtomicInteger ati = new AtomicInteger(0);
for
(
int
nimg
=
0
;
nimg
<
num_images
;
nimg
++)
{
final
int
fimg
=
nimg
;
Arrays
.
fill
(
best_val
[
fimg
],
Double
.
NaN
);
if
(
best_space
!=
null
)
{
best_space
[
fimg
]
=
new
int
[
space_conv
[
0
][
0
].
length
];
Arrays
.
fill
(
best_space
[
fimg
],
-
1
);
}
ai
.
set
(
0
);
// ati.set(0);
for
(
int
ithread
=
0
;
ithread
<
threads
.
length
;
ithread
++)
{
threads
[
ithread
]
=
new
Thread
()
{
public
void
run
()
{
// int nthread = ati.getAndIncrement();
for
(
int
ipix
=
ai
.
getAndIncrement
();
ipix
<
num_pixels
;
ipix
=
ai
.
getAndIncrement
())
{
int
best_dir
=
-
1
;
int
best_sgn
=
0
;
double
bestv
=
0
;
for
(
int
dir
=
0
;
dir
<
num_kernels
;
dir
++)
{
double
d
=
space_conv
[
dir
][
fimg
][
ipix
];
if
(!
Double
.
isNaN
(
d
))
{
for
(
int
sgn
=
0
;
sgn
<
2
;
sgn
++)
{
if
(
sgn
>
0
)
{
d
=
-
d
;
}
if
(
d
>
bestv
)
{
best_dir
=
dir
;
best_sgn
=
sgn
;
bestv
=
d
;
}
}
}
}
if
(
best_dir
>=
0
)
{
best_val
[
fimg
][
ipix
]
=
bestv
;
if
(
best_space
!=
null
)
{
if
(
best_dir
<
4
)
{
best_space
[
fimg
][
ipix
]
=
best_dir
+
best_sgn
*
4
;
}
else
{
best_space
[
fimg
][
ipix
]
=
10
+
best_sgn
;
}
//best_space[fimg][ipix] = best_dir + best_sgn * num_kernels;
}
}
}
}
};
}
ImageDtt
.
startAndJoin
(
threads
);
}
return
best_val
;
}
public
static
double
[]
normalizeSpaceKernels
(
double
[][][]
conv_data
)
{
// same data convolved with different kernels, may have NaNs
final
Thread
[]
threads
=
ImageDtt
.
newThreadArray
();
final
AtomicInteger
ai
=
new
AtomicInteger
(
0
);
final
AtomicInteger
ati
=
new
AtomicInteger
(
0
);
final
double
[][]
s0t
=
new
double
[
threads
.
length
][
conv_data
.
length
];
final
double
[][]
sdt
=
new
double
[
threads
.
length
][
conv_data
.
length
];
final
double
[][]
sdat
=
new
double
[
threads
.
length
][
conv_data
.
length
];
// will compare l2 and abs
final
double
[][]
sd2t
=
new
double
[
threads
.
length
][
conv_data
.
length
];
final
double
[]
s0
=
new
double
[
conv_data
.
length
];
final
double
[]
sd
=
new
double
[
conv_data
.
length
];
final
double
[]
sda
=
new
double
[
conv_data
.
length
];
// will compare l2 and abs
final
double
[]
sd2
=
new
double
[
conv_data
.
length
];
final
double
[]
std
=
new
double
[
conv_data
.
length
];
final
double
[]
coeffs_std
=
new
double
[
conv_data
.
length
+
1
];
final
double
[]
coeffs_abs
=
new
double
[
conv_data
.
length
+
1
];
for
(
int
nkern
=
0
;
nkern
<
conv_data
.
length
;
nkern
++)
{
final
int
fnkern
=
nkern
;
for
(
int
nimg
=
0
;
nimg
<
conv_data
[
fnkern
].
length
;
nimg
++)
{
final
int
fimg
=
nimg
;
ai
.
set
(
0
);
ati
.
set
(
0
);
for
(
int
ithread
=
0
;
ithread
<
threads
.
length
;
ithread
++)
{
threads
[
ithread
]
=
new
Thread
()
{
public
void
run
()
{
int
nthread
=
ati
.
getAndIncrement
();
for
(
int
ipix
=
ai
.
getAndIncrement
();
ipix
<
conv_data
[
fnkern
][
fimg
].
length
;
ipix
=
ai
.
getAndIncrement
())
{
double
d
=
conv_data
[
fnkern
][
fimg
][
ipix
];
if
(!
Double
.
isNaN
(
d
))
{
s0t
[
nthread
][
fnkern
]
+=
1.0
;
sdt
[
nthread
][
fnkern
]
+=
d
;
sd2t
[
nthread
][
fnkern
]
+=
d
*
d
;
sdat
[
nthread
][
fnkern
]
+=
Math
.
abs
(
d
);
}
}
}
};
}
ImageDtt
.
startAndJoin
(
threads
);
}
for
(
int
nthread
=
0
;
nthread
<
s0t
.
length
;
nthread
++)
{
s0
[
nkern
]
+=
s0t
[
nthread
][
nkern
];
sd
[
nkern
]
+=
sdt
[
nthread
][
nkern
];
sd2
[
nkern
]
+=
sd2t
[
nthread
][
nkern
];
sda
[
nkern
]
+=
sdat
[
nthread
][
nkern
];
}
}
double
avg_std
=
0.0
;
double
avg_abs
=
0.0
;
for
(
int
nkern
=
0
;
nkern
<
conv_data
.
length
;
nkern
++)
{
sd
[
nkern
]
/=
s0
[
nkern
];
sda
[
nkern
]
/=
s0
[
nkern
];
sd2
[
nkern
]
/=
s0
[
nkern
];
std
[
nkern
]
=
Math
.
sqrt
(
sd2
[
nkern
]
-
sd
[
nkern
]
*
sd
[
nkern
]);
avg_std
+=
std
[
nkern
];
avg_abs
+=
sda
[
nkern
];
}
avg_std
/=
conv_data
.
length
;
avg_abs
/=
conv_data
.
length
;
for
(
int
nkern
=
0
;
nkern
<
conv_data
.
length
;
nkern
++)
{
coeffs_std
[
nkern
]
=
avg_std
/
std
[
nkern
];
coeffs_abs
[
nkern
]
=
avg_abs
/
sda
[
nkern
];
}
coeffs_std
[
conv_data
.
length
]
=
avg_std
;
// last element - average
coeffs_abs
[
conv_data
.
length
]
=
avg_abs
;
return
coeffs_std
;
}
public
static
double
[]
normalizeTimeDerivs
(
// return {std, average abs()}
final
double
[][]
conv_data
,
final
double
frac_outliers
)
{
final
int
num_bins
=
10000
;
final
Thread
[]
threads
=
ImageDtt
.
newThreadArray
();
final
AtomicInteger
ai
=
new
AtomicInteger
(
0
);
final
AtomicInteger
ati
=
new
AtomicInteger
(
0
);
final
double
[]
max_abs
=
new
double
[
threads
.
length
];
for
(
int
nimg
=
0
;
nimg
<
conv_data
.
length
;
nimg
++)
{
final
double
[]
data
=
conv_data
[
nimg
];
ai
.
set
(
0
);
ati
.
set
(
0
);
for
(
int
ithread
=
0
;
ithread
<
threads
.
length
;
ithread
++)
{
threads
[
ithread
]
=
new
Thread
()
{
public
void
run
()
{
int
nthread
=
ati
.
getAndIncrement
();
for
(
int
ipix
=
ai
.
getAndIncrement
();
ipix
<
data
.
length
;
ipix
=
ai
.
getAndIncrement
())
if
(!
Double
.
isNaN
(
data
[
ipix
]))
{
max_abs
[
nthread
]
=
Math
.
max
(
max_abs
[
nthread
],
Math
.
abs
(
data
[
ipix
]));
}
}
};
}
ImageDtt
.
startAndJoin
(
threads
);
}
double
amax
=
0
;
for
(
int
nthread
=
0
;
nthread
<
max_abs
.
length
;
nthread
++)
{
amax
=
Math
.
max
(
amax
,
max_abs
[
nthread
]);
}
// final double fmax = amax;
// final double scale = amax/num_bins;
final
double
step
=
amax
/
num_bins
;
final
double
[][]
histograms
=
new
double
[
threads
.
length
][
num_bins
];
for
(
int
nimg
=
0
;
nimg
<
conv_data
.
length
;
nimg
++)
{
final
double
[]
data
=
conv_data
[
nimg
];
ai
.
set
(
0
);
ati
.
set
(
0
);
for
(
int
ithread
=
0
;
ithread
<
threads
.
length
;
ithread
++)
{
threads
[
ithread
]
=
new
Thread
()
{
public
void
run
()
{
int
nthread
=
ati
.
getAndIncrement
();
for
(
int
ipix
=
ai
.
getAndIncrement
();
ipix
<
data
.
length
;
ipix
=
ai
.
getAndIncrement
())
if
(!
Double
.
isNaN
(
data
[
ipix
]))
{
double
ad
=
Math
.
abs
(
data
[
ipix
]);
int
bin
=
(
int
)
Math
.
floor
(
ad
/
step
);
if
((
bin
>=
0
)
&&
(
bin
<
num_bins
))
{
histograms
[
nthread
][
bin
]
+=
1.0
;
}
}
}
};
}
ImageDtt
.
startAndJoin
(
threads
);
}
final
double
[]
histogram
=
new
double
[
num_bins
];
ai
.
set
(
0
);
for
(
int
ithread
=
0
;
ithread
<
threads
.
length
;
ithread
++)
{
threads
[
ithread
]
=
new
Thread
()
{
public
void
run
()
{
for
(
int
bin
=
ai
.
getAndIncrement
();
bin
<
num_bins
;
bin
=
ai
.
getAndIncrement
())
{
for
(
int
i
=
0
;
i
<
histograms
.
length
;
i
++)
{
histogram
[
bin
]+=
histograms
[
i
][
bin
];
}
}
}
};
}
ImageDtt
.
startAndJoin
(
threads
);
double
sum
=
0
;
for
(
int
i
=
0
;
i
<
num_bins
;
i
++)
{
sum
+=
histogram
[
i
];
}
double
threshold
=
sum
*
frac_outliers
;
double
run_sum
=
0
;
double
prev_sum
=
0
;
double
alim
=
0
;
for
(
int
bin
=
num_bins
-
1
;
bin
>=
0
;
bin
--)
{
prev_sum
=
run_sum
;
run_sum
+=
histogram
[
bin
];
if
(
run_sum
>=
threshold
)
{
alim
=
amax
*(
bin
+
(
run_sum
-
threshold
)/(
run_sum
-
prev_sum
))/
num_bins
;
break
;
}
}
final
double
flim
=
alim
;
// alim - absolute limit to remove outliers
final
double
[]
s0t
=
new
double
[
threads
.
length
];
final
double
[]
sdt
=
new
double
[
threads
.
length
];
final
double
[]
sdat
=
new
double
[
threads
.
length
];
// will compare l2 and abs
final
double
[]
sd2t
=
new
double
[
threads
.
length
];
for
(
int
nimg
=
0
;
nimg
<
conv_data
.
length
;
nimg
++)
{
final
double
[]
data
=
conv_data
[
nimg
];
ai
.
set
(
0
);
ati
.
set
(
0
);
for
(
int
ithread
=
0
;
ithread
<
threads
.
length
;
ithread
++)
{
threads
[
ithread
]
=
new
Thread
()
{
public
void
run
()
{
int
nthread
=
ati
.
getAndIncrement
();
for
(
int
ipix
=
ai
.
getAndIncrement
();
ipix
<
data
.
length
;
ipix
=
ai
.
getAndIncrement
())
{
double
d
=
data
[
ipix
];
if
(!
Double
.
isNaN
(
d
)
&&
(
Math
.
abs
(
d
)
<
flim
))
{
s0t
[
nthread
]
+=
1.0
;
sdt
[
nthread
]
+=
d
;
sd2t
[
nthread
]
+=
d
*
d
;
sdat
[
nthread
]
+=
Math
.
abs
(
d
);
}
}
}
};
}
ImageDtt
.
startAndJoin
(
threads
);
}
double
s0
=
0
,
sd
=
0
,
sd2
=
0
,
sda
=
0
;
for
(
int
nthread
=
0
;
nthread
<
s0t
.
length
;
nthread
++)
{
s0
+=
s0t
[
nthread
];
sd
+=
sdt
[
nthread
];
sd2
+=
sd2t
[
nthread
];
sda
+=
sdat
[
nthread
];
}
sd
/=
s0
;
sda
/=
s0
;
sd2
/=
s0
;
double
std
=
Math
.
sqrt
(
sd2
-
sd
*
sd
);
return
new
double
[]
{
std
,
sda
};
}
public
static
void
scaleConvolutions
(
final
double
[][]
conv_data
,
// same data convolved with different kernels, may have NaNs
final
double
scale
)
{
final
Thread
[]
threads
=
ImageDtt
.
newThreadArray
();
final
AtomicInteger
ai
=
new
AtomicInteger
(
0
);
for
(
int
nimg
=
0
;
nimg
<
conv_data
.
length
;
nimg
++)
{
final
double
[]
data
=
conv_data
[
nimg
];
ai
.
set
(
0
);
for
(
int
ithread
=
0
;
ithread
<
threads
.
length
;
ithread
++)
{
threads
[
ithread
]
=
new
Thread
()
{
public
void
run
()
{
for
(
int
ipix
=
ai
.
getAndIncrement
();
ipix
<
data
.
length
;
ipix
=
ai
.
getAndIncrement
())
{
data
[
ipix
]
*=
scale
;
}
}
};
}
ImageDtt
.
startAndJoin
(
threads
);
}
}
public
static
double
[][]
timeToY
(
final
double
[][]
multi_image
,
final
int
width
,
final
int
num_vert
,
final
int
vgap
){
final
int
height
=
multi_image
[
0
].
length
/
width
;
final
int
num_img_in
=
multi_image
.
length
-
1
;
//last slice is average
final
int
num_slices
=
(
height
+
num_vert
-
1
)/
num_vert
;
final
int
out_height
=
num_img_in
*
num_vert
+
vgap
*(
num_vert
-
1
);
final
double
[][]
out_data
=
new
double
[
num_slices
][
width
*
out_height
];
for
(
int
i
=
0
;
i
<
out_data
.
length
;
i
++)
{
Arrays
.
fill
(
out_data
[
i
],
Double
.
NaN
);
}
for
(
int
nimg
=
0
;
nimg
<
num_img_in
;
nimg
++)
{
for
(
int
nrow
=
0
;
nrow
<
height
;
nrow
++)
{
int
nout_slice
=
nrow
/
num_vert
;
int
nsub
=
nrow
%
num_vert
;
int
offs_out
=
((
num_img_in
+
vgap
)*
nsub
+
nimg
)*
width
;
// copy row
System
.
arraycopy
(
multi_image
[
nimg
],
nrow
*
width
,
out_data
[
nout_slice
],
offs_out
,
width
);
}
}
return
out_data
;
}
public
static
void
showKernel
(
double
[][][]
kernel
,
String
title
)
{
final
int
rT
=
(
kernel
.
length
-
1
)/
2
;
if
(
kernel
.
length
!=
(
2
*
rT
+
1
))
{
throw
new
IllegalArgumentException
(
"Not all kernel dimensions are odd"
);
}
int
height
=
kernel
[
0
].
length
;
int
width
=
kernel
[
0
][
0
].
length
;
String
[]
titles
=
new
String
[
kernel
.
length
];
double
[][]
data
=
new
double
[
kernel
.
length
][
width
*
height
];
for
(
int
t
=
0
;
t
<
kernel
.
length
;
t
++)
{
titles
[
t
]
=
"t "
+(
t
-
rT
);
for
(
int
row
=
0
;
row
<
kernel
[
0
].
length
;
row
++)
{
System
.
arraycopy
(
kernel
[
t
][
row
],
0
,
data
[
t
],
width
*
row
,
width
);
}
}
ShowDoubleFloatArrays
.
showArrays
(
data
,
width
,
height
,
true
,
title
,
titles
);
}
public
static
double
[][]
convolve3d
(
final
double
[][]
data_in
,
// fill NaN before running, will treat NaN as 0 on input, skip if center is NaN
final
int
width
,
final
double
[][][]
kernel
,
// (odd)x(odd)x(odd}
final
boolean
repeat_border
){
final
int
height
=
data_in
[
0
].
length
/
width
;
final
int
rT
=
(
kernel
.
length
-
1
)/
2
;
final
int
rY
=
(
kernel
[
0
].
length
-
1
)/
2
;
final
int
rX
=
(
kernel
[
0
][
0
].
length
-
1
)/
2
;
if
((
kernel
.
length
!=
(
2
*
rT
+
1
))
||
(
kernel
[
0
].
length
!=
(
2
*
rY
+
1
))
||
(
kernel
[
0
][
0
].
length
!=
(
2
*
rX
+
1
)))
{
throw
new
IllegalArgumentException
(
"Not all kernel dimensions are odd"
);
}
final
double
[][]
data_out
=
new
double
[
data_in
.
length
][
data_in
[
0
].
length
];
for
(
int
i
=
0
;
i
<
data_out
.
length
;
i
++)
{
Arrays
.
fill
(
data_out
[
i
],
Double
.
NaN
);
}
final
int
lenXY
=
data_in
[
0
].
length
;
final
int
lenT
=
data_in
.
length
;
final
int
total_pix
=
lenXY
*
lenT
;
final
int
lenTm1
=
lenT
-
1
;
final
int
lenYm1
=
height
-
1
;
final
int
lenXm1
=
width
-
1
;
final
Thread
[]
threads
=
ImageDtt
.
newThreadArray
();
final
AtomicInteger
ai
=
new
AtomicInteger
(
0
);
for
(
int
ithread
=
0
;
ithread
<
threads
.
length
;
ithread
++)
{
threads
[
ithread
]
=
new
Thread
()
{
public
void
run
()
{
for
(
int
ipix
=
ai
.
getAndIncrement
();
ipix
<
total_pix
;
ipix
=
ai
.
getAndIncrement
())
{
int
iT
=
ipix
/
lenXY
;
int
iXY
=
ipix
%
lenXY
;
if
(!
Double
.
isNaN
(
data_in
[
iT
][
iXY
]))
{
int
iY
=
iXY
/
width
;
int
iX
=
iXY
%
width
;
int
t0
=
iT
-
rT
,
t1
=
iT
+
rT
,
y0
=
iY
-
rY
,
y1
=
iY
+
rY
,
x0
=
iX
-
rX
,
x1
=
iX
+
rX
;
int
kTindx
=
2
*
rT
,
kYindx
=
2
*
rY
,
kXindx
=
2
*
rX
;
boolean
limited
=
(
t0
<
0
)
||
(
t1
>=
lenT
)
||
(
y0
<
0
)
||
(
y1
>=
height
)
||
(
x0
<
0
)
||
(
x1
>=
width
);
if
(
limited
)
{
if
(!
repeat_border
)
{
if
(
t0
<
0
)
{
kTindx
+=
t0
;
// negative
t0
=
0
;
}
if
(
t1
>=
lenT
)
t1
=
lenT
-
1
;
if
(
y0
<
0
)
{
kYindx
+=
y0
;
// negative
y0
=
0
;
}
if
(
y1
>=
height
)
y1
=
height
-
1
;
if
(
x0
<
0
)
{
kXindx
+=
x0
;
// negative
x0
=
0
;
}
if
(
x1
>=
width
)
x1
=
width
-
1
;
}
int
kTi
=
kTindx
;
double
s
=
0
;
for
(
int
tt
=
t0
;
tt
<=
t1
;
tt
++)
{
int
t
=
Math
.
min
(
lenTm1
,
Math
.
max
(
tt
,
0
));
// if repeating
int
kYi
=
kYindx
;
for
(
int
yy
=
y0
;
yy
<=
y1
;
yy
++
)
{
int
y
=
Math
.
min
(
lenYm1
,
Math
.
max
(
yy
,
0
));
// if repeating
int
kXi
=
kXindx
;
for
(
int
xx
=
x0
;
xx
<=
x1
;
xx
++
)
{
int
x
=
Math
.
min
(
lenXm1
,
Math
.
max
(
xx
,
0
));
// if repeating
int
xy
=
x
+
width
*
y
;
double
d
=
data_in
[
t
][
xy
];
if
(!
Double
.
isNaN
(
d
))
{
s
+=
d
*
kernel
[
kTi
][
kYi
][
kXi
];
}
kXi
--;
}
kYi
--;
}
kTi
--;
}
data_out
[
iT
][
iXY
]
=
s
;
}
else
{
// same faster, w/o tests
int
kTi
=
kTindx
;
double
s
=
0
;
for
(
int
t
=
t0
;
t
<=
t1
;
t
++)
{
int
kYi
=
kYindx
;
for
(
int
y
=
y0
;
y
<=
y1
;
y
++
)
{
int
kXi
=
kXindx
;
for
(
int
x
=
x0
;
x
<=
x1
;
x
++
)
{
int
xy
=
x
+
width
*
y
;
double
d
=
data_in
[
t
][
xy
];
if
(!
Double
.
isNaN
(
d
))
{
s
+=
d
*
kernel
[
kTi
][
kYi
][
kXi
];
}
kXi
--;
}
kYi
--;
}
kTi
--;
}
data_out
[
iT
][
iXY
]
=
s
;
}
}
}
}
};
}
ImageDtt
.
startAndJoin
(
threads
);
return
data_out
;
}
public
static
double
[][][]
kernelDiffTime
(
double
rt
,
double
rxy
)
{
int
irt
=
(
int
)
Math
.
floor
(
rt
);
int
irxy
=
(
int
)
Math
.
floor
(
rxy
);
int
lt
=
2
*
irt
+
1
;
int
lxy
=
2
*
irxy
+
1
;
double
[][][]
kernel
=
new
double
[
lt
][
lxy
][
lxy
];
for
(
int
it
=
0
;
it
<
lt
;
it
++)
{
double
t
=
it
-
irt
;
double
wt
=
-
t
*
Math
.
cos
(
0.5
*
Math
.
PI
*
t
/
rt
);
for
(
int
iy
=
0
;
iy
<
lxy
;
iy
++)
{
double
y
=
iy
-
irxy
;
double
wty
=
wt
*
Math
.
cos
(
0.5
*
Math
.
PI
*
y
/
rxy
);
for
(
int
ix
=
0
;
ix
<
lxy
;
ix
++)
{
double
x
=
ix
-
irxy
;
kernel
[
it
][
iy
][
ix
]
=
wty
*
Math
.
cos
(
0.5
*
Math
.
PI
*
x
/
rxy
);
}
}
}
double
[][][]
norm_kernel
=
kernelNormalize2
(
kernel
);
return
norm_kernel
;
}
public
static
double
[][][]
kernelXY
(
int
dir
,
// 0: +y, 1: +x+y, 2:+x, 3 +x-t, 4: 0: +center will be voting 1 of 10 (each plus and minus), weighted by abs(kernelDiffTime)
double
rt
,
double
rxy
)
{
double
rxy2
=
rxy
*
rxy
;
int
irt
=
(
int
)
Math
.
floor
(
rt
);
int
irxy
=
(
int
)
Math
.
floor
(
rxy
);
int
lt
=
2
*
irt
+
1
;
int
lxy
=
2
*
irxy
+
1
;
double
[][][]
kernel
=
new
double
[
lt
][
lxy
][
lxy
];
for
(
int
it
=
0
;
it
<
lt
;
it
++)
{
double
sum_cos
=
0
;
double
sum_patt
=
0
;
double
[][]
cos_patt
=
new
double
[
lxy
][
lxy
];
double
t
=
it
-
irt
;
double
wt
=
Math
.
cos
(
0.5
*
Math
.
PI
*
t
/
rt
);
for
(
int
iy
=
0
;
iy
<
lxy
;
iy
++)
{
double
y
=
iy
-
irxy
;
// double wty = wt * Math.cos(0.5*Math.PI* y / rxy);
for
(
int
ix
=
0
;
ix
<
lxy
;
ix
++)
{
double
x
=
ix
-
irxy
;
double
r2
=(
x
*
x
+
y
*
y
)/
rxy2
;
double
w
=
0
;
if
(
r2
<
1
)
{
double
r
=
Math
.
sqrt
(
r2
);
w
=
wt
*
Math
.
cos
(
0.5
*
Math
.
PI
*
r
);
cos_patt
[
iy
][
ix
]
=
w
;
sum_cos
+=
w
;
switch
(
dir
)
{
case
0
:
w
*=
y
;
break
;
case
1
:
w
*=
y
-
x
;
break
;
case
2
:
w
*=
-
x
;
break
;
case
3
:
w
*=
-
y
-
x
;
break
;
case
4
:
w
*=
Math
.
cos
(
Math
.
PI
*
r
);
break
;
// center
}
sum_patt
+=
w
;
}
kernel
[
it
][
iy
][
ix
]
=
w
;
}
}
double
cos_corr
=
sum_patt
/
sum_cos
;
// balance average=0
for
(
int
iy
=
0
;
iy
<
lxy
;
iy
++)
{
for
(
int
ix
=
0
;
ix
<
lxy
;
ix
++)
{
kernel
[
it
][
iy
][
ix
]
-=
cos_corr
*
cos_patt
[
iy
][
ix
];
}
}
}
return
kernelNormalize2
(
kernel
);
}
public
static
double
[][][]
kernelNormalize2
(
double
[][][]
kernel
){
double
[][][]
kernel_out
=
new
double
[
kernel
.
length
][
kernel
[
0
].
length
][
kernel
[
0
][
0
].
length
];
double
s
=
0
;
for
(
int
t
=
0
;
t
<
kernel
.
length
;
t
++)
{
for
(
int
y
=
0
;
y
<
kernel
[
t
].
length
;
y
++)
{
for
(
int
x
=
0
;
x
<
kernel
[
t
][
y
].
length
;
x
++)
{
double
d
=
kernel
[
t
][
y
][
x
];
s
+=
d
*
d
;
}
}
}
if
(
s
==
0
)
{
throw
new
IllegalArgumentException
(
"Kernel of all zeros"
);
}
double
k
=
1.0
/
Math
.
sqrt
(
s
);
for
(
int
t
=
0
;
t
<
kernel
.
length
;
t
++)
{
for
(
int
y
=
0
;
y
<
kernel
[
t
].
length
;
y
++)
{
for
(
int
x
=
0
;
x
<
kernel
[
t
][
y
].
length
;
x
++)
{
kernel_out
[
t
][
y
][
x
]
=
kernel
[
t
][
y
][
x
]
*
k
;
}
}
}
return
kernel_out
;
}
public
static
double
[]
applyWeights
(
final
double
[][]
data_in
,
final
double
[][]
weights
)
{
final
double
[]
data_out
=
new
double
[
data_in
[
0
].
length
];
final
double
[]
sum_weights
=
new
double
[
data_in
[
0
].
length
];
final
Thread
[]
threads
=
ImageDtt
.
newThreadArray
();
final
AtomicInteger
ai
=
new
AtomicInteger
(
0
);
for
(
int
nimg
=
0
;
nimg
<
weights
.
length
;
nimg
++)
{
final
int
fimg
=
nimg
;
ai
.
set
(
0
);
for
(
int
ithread
=
0
;
ithread
<
threads
.
length
;
ithread
++)
{
threads
[
ithread
]
=
new
Thread
()
{
public
void
run
()
{
for
(
int
ipix
=
ai
.
getAndIncrement
();
ipix
<
data_in
[
fimg
].
length
;
ipix
=
ai
.
getAndIncrement
())
{
double
w
=
weights
[
fimg
][
ipix
];
if
(
w
>
0
)
{
double
d
=
data_in
[
fimg
][
ipix
];
if
(!
Double
.
isNaN
(
d
))
{
sum_weights
[
ipix
]
+=
w
;
data_out
[
ipix
]
+=
w
*
d
;
}
}
}
}
};
}
ImageDtt
.
startAndJoin
(
threads
);
}
ai
.
set
(
0
);
for
(
int
ithread
=
0
;
ithread
<
threads
.
length
;
ithread
++)
{
threads
[
ithread
]
=
new
Thread
()
{
public
void
run
()
{
for
(
int
ipix
=
ai
.
getAndIncrement
();
ipix
<
data_out
.
length
;
ipix
=
ai
.
getAndIncrement
())
{
if
(
sum_weights
[
ipix
]
>
0
)
{
data_out
[
ipix
]
/=
sum_weights
[
ipix
];
}
else
{
data_out
[
ipix
]
=
Double
.
NaN
;
}
}
}
};
}
ImageDtt
.
startAndJoin
(
threads
);
return
data_out
;
}
public
static
void
testOrange
()
{
boolean
zero_is_nan
=
true
;
int
master
=
3
;
final
double
[]
voffsets
=
value_offsets
;
int
[][]
segments
=
match_segments
;
// full_segments; // single_segments;
double
oscale
=
2.0
;
// Rectangle woi = new Rectangle(0,0,640,512); // full window;
// Rectangle woi = new Rectangle(92,223,320,240); // approx. overlap
Rectangle
woi
=
new
Rectangle
(
92
,
280
,
320
,
120
);
// minimal overlap
final
Rectangle
owoi
=
new
Rectangle
(
(
int
)
Math
.
round
(
oscale
*
woi
.
x
),
(
int
)
Math
.
round
(
oscale
*
woi
.
y
),
(
int
)
Math
.
round
(
oscale
*
woi
.
width
),
(
int
)
Math
.
round
(
oscale
*
woi
.
height
));
int
[][]
seg_offs_len
=
new
int
[
segments
.
length
][
2
];
int
offs
=
0
;
for
(
int
nimg
=
0
;
nimg
<
seg_offs_len
.
length
;
nimg
++)
{
seg_offs_len
[
nimg
][
0
]
=
offs
;
int
len
=
segments
[
nimg
][
1
]
-
segments
[
nimg
][
0
];
// length;
seg_offs_len
[
nimg
][
1
]
=
len
;
offs
+=
len
;
}
final
int
indx_avg
=
offs
;
final
int
olen
=
owoi
.
width
*
owoi
.
height
;
final
int
owidth
=
owoi
.
width
;
final
double
[][]
out_data
=
new
double
[
offs
+
1
][
owoi
.
width
*
owoi
.
height
];
final
int
[]
num_valid
=
new
int
[
owoi
.
width
*
owoi
.
height
];
String
[]
titles
=
new
String
[
out_data
.
length
];
titles
[
indx_avg
]
=
"average"
;
for
(
int
i
=
0
;
i
<
offs
;
i
++)
{
Arrays
.
fill
(
out_data
[
i
],
Double
.
NaN
);
}
final
Thread
[]
threads
=
ImageDtt
.
newThreadArray
();
final
AtomicInteger
ai
=
new
AtomicInteger
(
0
);
/*
faded_textures[nslice][0] = TileProcessor.fillNaNs(
faded_textures[nslice][0], // final double [] data,
null, // final boolean [] prohibit,
width, // int width,
// CAREFUL ! Remaining NaN is grown by unsharp mask filter ************* !
100, // 2*width, // 16, // final int grow,
0.7, // double diagonal_weight, // relative to ortho
100, // int num_passes,
0.03, // final double max_rchange, // = 0.01 - does not need to be accurate
THREADS_MAX); // final int threadsMax) // maximal number of threads to launch
*/
for
(
int
nimg
=
0
;
nimg
<
seg_offs_len
.
length
;
nimg
++)
{
final
double
voffs
=
+
voffsets
[
nimg
];
final
int
foffs
=
seg_offs_len
[
nimg
][
0
];
ImagePlus
imp_src
=
new
ImagePlus
(
src_files
[
nimg
]);
ImageStack
stack
=
imp_src
.
getImageStack
();
final
int
src_width
=
imp_src
.
getWidth
();
final
int
src_height
=
imp_src
.
getHeight
();
String
[]
stack_labels
=
stack
.
getSliceLabels
();
final
double
[][]
dpixels
=
new
double
[
seg_offs_len
[
nimg
][
1
]][];
for
(
int
i
=
0
;
i
<
seg_offs_len
[
nimg
][
1
];
i
++)
{
titles
[
seg_offs_len
[
nimg
][
0
]
+
i
]
=
nimg
+
":"
+
stack_labels
[
segments
[
nimg
][
0
]+
i
];
float
[]
fpixels
=
(
float
[])
stack
.
getPixels
(
segments
[
nimg
][
0
]+
i
+
1
);
dpixels
[
i
]
=
new
double
[
fpixels
.
length
];
for
(
int
j
=
0
;
j
<
dpixels
[
i
].
length
;
j
++)
{
dpixels
[
i
][
j
]
=
fpixels
[
j
];
if
(
zero_is_nan
&&
(
dpixels
[
i
][
j
]
==
0.0
))
{
dpixels
[
i
][
j
]
=
Double
.
NaN
;
}
}
// fpixels[i] = (float[]) stack.getPixels(segments[nimg][0]+i+1);
}
final
double
[][]
points0
=
new
double
[
matching_points
[
master
].
length
][];
final
double
[][]
points1
=
new
double
[
points0
.
length
][];
// matching_points[nimg];
for
(
int
i
=
0
;
i
<
points0
.
length
;
i
++)
{
points0
[
i
]
=
new
double
[]
{
matching_points
[
master
][
i
][
0
]/
points_scale
,
matching_points
[
master
][
i
][
1
]/
points_scale
};
points1
[
i
]
=
new
double
[]
{
matching_points
[
nimg
][
i
][
0
]/
points_scale
,
matching_points
[
nimg
][
i
][
1
]/
points_scale
};
}
//points_scale
double
[][]
ab1
=
ComboMatch
.
getAffineMatrix
(
points0
,
// double [][] x,
points1
);
// double [][] y){
double
k
=
1.0
/
oscale
;
final
double
[][]
a1
=
{{
k
*
ab1
[
0
][
0
],
k
*
ab1
[
0
][
1
]},{
k
*
ab1
[
1
][
0
],
k
*
ab1
[
1
][
1
]}};
// final double [] b1 = {k*ab1[2][0] + woi.x, k*ab1[2][1]+ woi.y}; // from output coordinates to image2 coordinates
// final double [] b1 = {ab1[2][0] + woi.x, ab1[2][1]+ woi.y}; // from output coordinates to image2 coordinates
final
double
[]
b1
=
{
ab1
[
2
][
0
]
+
a1
[
0
][
0
]*
owoi
.
x
+
a1
[
0
][
1
]*
owoi
.
y
,
ab1
[
2
][
1
]
+
a1
[
1
][
0
]*
owoi
.
x
+
a1
[
1
][
1
]*
owoi
.
y
};
// from output coordinates to image2 coordinates
ai
.
set
(
0
);
for
(
int
ithread
=
0
;
ithread
<
threads
.
length
;
ithread
++)
{
threads
[
ithread
]
=
new
Thread
()
{
public
void
run
()
{
for
(
int
ipix
=
ai
.
getAndIncrement
();
ipix
<
olen
;
ipix
=
ai
.
getAndIncrement
())
{
int
y
=
ipix
/
owidth
;
// output image coordinates
int
x
=
ipix
%
owidth
;
// output image coordinates
// int p = x + y * width;
double
fx
=
a1
[
0
][
0
]
*
x
+
a1
[
0
][
1
]
*
y
+
b1
[
0
];
double
fy
=
a1
[
1
][
0
]
*
x
+
a1
[
1
][
1
]
*
y
+
b1
[
1
];
int
ix0
=
(
int
)
Math
.
floor
(
fx
);
int
iy0
=
(
int
)
Math
.
floor
(
fy
);
int
ix1
=
ix0
+
1
;
int
iy1
=
iy0
+
1
;
if
((
ix1
>=
0
)
&&
(
iy1
>=
0
)
&&
(
ix0
<
src_width
)
&&
(
iy0
<
src_height
))
{
double
dx
=
fx
-
ix0
;
double
dy
=
fy
-
iy0
;
if
(
ix0
<
0
)
ix0
=
0
;
if
(
iy0
<
0
)
iy0
=
0
;
if
(
ix1
>=
src_width
)
ix1
=
src_width
-
1
;
if
(
iy1
>=
src_height
)
iy1
=
src_height
-
1
;
int
indx00
=
ix0
+
iy0
*
src_width
;
int
indx01
=
ix1
+
iy0
*
src_width
;
int
indx10
=
ix0
+
iy1
*
src_width
;
int
indx11
=
ix1
+
iy1
*
src_width
;
for
(
int
islice
=
0
;
islice
<
dpixels
.
length
;
islice
++)
{
int
oslice
=
islice
+
foffs
;
double
d00
=
dpixels
[
islice
][
indx00
];
double
d01
=
dpixels
[
islice
][
indx01
];
double
d10
=
dpixels
[
islice
][
indx10
];
double
d11
=
dpixels
[
islice
][
indx11
];
double
d
=
d00
*(
1
-
dx
)*(
1
-
dy
)+
d01
*
dx
*(
1
-
dy
)+
d10
*(
1
-
dx
)*
dy
+
d11
*
dx
*
dy
+
voffs
;
out_data
[
oslice
][
ipix
]=
d
;
if
(!
Double
.
isNaN
(
d
))
{
out_data
[
indx_avg
][
ipix
]
+=
d
;
num_valid
[
ipix
]++;
}
}
}
}
}
};
}
ImageDtt
.
startAndJoin
(
threads
);
}
for
(
int
ipix
=
0
;
ipix
<
olen
;
ipix
++)
{
if
(
num_valid
[
ipix
]
==
0
)
{
out_data
[
indx_avg
][
ipix
]
=
Double
.
NaN
;
}
else
{
out_data
[
indx_avg
][
ipix
]/=
num_valid
[
ipix
];
}
}
ShowDoubleFloatArrays
.
showArrays
(
out_data
,
owoi
.
width
,
owoi
.
height
,
true
,
"merged_seq_scale"
+
oscale
+
"-slices"
+
indx_avg
+
"_x"
+
woi
.
x
+
"_y"
+
woi
.
y
+
"_w"
+
woi
.
width
+
"_h"
+
woi
.
height
+(
zero_is_nan
?
"_zeronan"
:
""
),
titles
);
return
;
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment