Commit c61cd18c authored by Andrey Filippov's avatar Andrey Filippov

Working on metrics for the current heuristic DSI

parent 0b346308
......@@ -52,7 +52,7 @@ public class MLStats {
// }
public static boolean dsiHistogram(String dir) {
Path path= Paths.get(dir);
int disparity_bins = 400;
int disparity_bins = 1000;
int strength_bins = 100;
double disparity_min_drop = -0.1;
......@@ -64,6 +64,10 @@ public class MLStats {
double strength_max_drop = 1.0; //
double strength_max_clip = 0.9; //
boolean normalize = true;
double master_weight_power = 1.0;
double master_weight_floor = 0.08;
double disparity_outlier = 1.0;
String mask = ".*-DSI_COMBO\\.tiff";
......@@ -80,6 +84,9 @@ public class MLStats {
gd.addNumericField("Drop tiles with strength above", strength_max_drop, 3);
gd.addNumericField("Clip high strength with", strength_max_clip, 3);
gd.addCheckbox("Normalize histogram to average 1.0", normalize);
gd.addNumericField("Master weight power (after floor)", master_weight_power, 3);
gd.addNumericField("Master weight floor", master_weight_floor, 3);
gd.addNumericField("Ignore tiles with disparity difference higher", disparity_outlier, 3);
gd.showDialog ();
if (gd.wasCanceled()) return false;
......@@ -95,6 +102,9 @@ public class MLStats {
strength_max_drop = gd.getNextNumber();
strength_max_clip = gd.getNextNumber();
normalize = gd.getNextBoolean();
master_weight_power = gd.getNextNumber();
master_weight_floor = gd.getNextNumber();
disparity_outlier = gd.getNextNumber();
// get list of all files:
System.out.println("File mask = "+mask);
......@@ -116,7 +126,9 @@ public class MLStats {
e.printStackTrace();
}
int [][] hist = new int [disparity_bins][strength_bins];
int [] slices = {TwoQuadCLT.DSI_DISPARITY_RIG,TwoQuadCLT.DSI_STRENGTH_RIG};
int [] slices = {TwoQuadCLT.DSI_DISPARITY_RIG,TwoQuadCLT.DSI_STRENGTH_RIG, TwoQuadCLT.DSI_DISPARITY_MAIN,TwoQuadCLT.DSI_STRENGTH_MAIN};
double [][][] ds_error = new double [disparity_bins][strength_bins][2];
double disparity_outlier2 = disparity_outlier*disparity_outlier;
double disparity_step = (disparity_max_clip - disparity_min_clip) / disparity_bins;
double strength_step = (strength_max_clip - strength_min_clip) / strength_bins;
double disparity_offs = disparity_min_clip - disparity_step/2; // last and first bin that include clip will be 0.5 width
......@@ -155,31 +167,56 @@ public class MLStats {
// int [][] hist = new int [disparity_bins][strength_bins];
hist[dbin][sbin]++;
nut++;
double dm = dsi_float[2][nTile];
double sm = dsi_float[3][nTile] - master_weight_floor;
double de2 = (dm - d);
de2 *= de2;
if ((de2 <= disparity_outlier2) && (sm > 0.0)) {
double w = 1.0;
if (master_weight_power > 0.0) {
w = sm;
if (master_weight_power != 1.0) {
w = Math.pow(w, master_weight_power);
}
ds_error[dbin][sbin][0] += w* de2;
ds_error[dbin][sbin][1] += w;
}
}
}
}
System.out.println(p.getFileName()+": "+nut+" useful tiles counted");
total_tiles_used += nut;
}
System.out.println("Total number of useful tiles: "+total_tiles_used);
double [] hist_double = new double [disparity_bins*strength_bins];
double [][] hist_double = new double [2][disparity_bins*strength_bins];
double scale = 1.0;
if (normalize) {
scale *= (1.0* disparity_bins * strength_bins) / total_tiles_used;
}
for (int nTile = 0; nTile < hist_double.length; nTile++) {
// ds_error[dbin][sbin][0] += w* de2;
// ds_error[dbin][sbin][1] += w;
for (int nTile = 0; nTile < hist_double[0].length; nTile++) {
int dbin = nTile % disparity_bins;
int sbin = nTile / disparity_bins;
hist_double[nTile] = scale * hist[dbin][sbin];
hist_double[0][nTile] = scale * hist[dbin][sbin];
if (ds_error[dbin][sbin][1] > 0.0) {
hist_double[1][nTile] = Math.sqrt(ds_error[dbin][sbin][0]/ds_error[dbin][sbin][1]);
} else {
hist_double[1][nTile] = Double.NaN;
}
}
// ImagePlus imp= makeArrays(pixels, width, height, title);
// if (imp!=null) imp.show();
// ImagePlus imp = (new showDoubleFloatArrays()).makeArrays(dsi,quadCLT_main.tp.getTilesX(), quadCLT_main.tp.getTilesY(), title, DSI_SLICES);
String [] titles = {"histogram", "disp_err"};
ImagePlus imp = (new showDoubleFloatArrays()).makeArrays(
hist_double,
disparity_bins,
strength_bins,
"DSI_histogram");
"DSI_histogram",
titles
);
imp.setProperty("disparity_bins", disparity_bins+"");
imp.setProperty("comment_disparity_bins", "Number of disparity bins");
imp.setProperty("strength_bins", strength_bins+"");
......@@ -206,6 +243,14 @@ public class MLStats {
imp.setProperty("total_tiles_used", total_tiles_used+"");
imp.setProperty("comment_total_tiles_used", "Total number of tiles used");
imp.setProperty("master_weight_power", master_weight_power+"");
imp.setProperty("comment_master_weight_power", "Master weight power (after floor)");
imp.setProperty("master_weight_floor", master_weight_floor+"");
imp.setProperty("comment_master_weight_floor", "Master weight floor");
imp.setProperty("disparity_outlier", disparity_outlier+"");
imp.setProperty("comment_disparity_outlier", "Ignore tiles with disparity difference higher");
(new JP46_Reader_camera(false)).encodeProperiesToInfo(imp);
imp.show();
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment