Commit b9cc7d77 authored by Andrey Filippov's avatar Andrey Filippov

Fixing disparity scaling (GPU only so far) between diameter cameras and

quad (square)
parent 9fb7ab22
......@@ -740,6 +740,8 @@ public class Corr2dLMA {
/**
* Calculate initial disparity by polynomial approximation. Only works with a single tile now
* Note: combo correlation scale is one pixel for 1 pixel disparity for diameter cameras, while standard
* (pre-shift) disparity refers to a quad-camera (square) pixel offset. So the returned disparity should be divided by sqrt(2)
* @param corr_wnd_inv_limited window (same as for finding convex) to boost gain in peripheral areas, but not the very marginal ones
* @param max_offset maximal abs(disparity) value to trust
* @param dgg_title if !=null - generate debug image with this title
......
......@@ -577,7 +577,7 @@ public class Correlation2d {
public int getCombOffset() {return mcorr_comb_offset;}
public double getCombDisp() {return mcorr_comb_disp;}
@Deprecated
public void generateResampleOld( // should be called before
final int mcorr_comb_width, // combined correlation tile width
final int mcorr_comb_height, // combined correlation tile full height
......@@ -714,7 +714,7 @@ public class Correlation2d {
final int mcorr_comb_width, // combined correlation tile width
final int mcorr_comb_height, // combined correlation tile full height
final int mcorr_comb_offset, // combined correlation tile height offset: 0 - centered (-height/2 to height/2), height/2 - only positive (0 to height)
final double mcorr_comb_disp){ // Combined tile per-pixel disparity for baseline == side of a square
final double mcorr_comb_disp){ // Combined tile per-pixel disparity for baseline == side of a square -> diameter !
final double ignore_contrib = 0.001; // ignore contributors with weight below
this.mcorr_comb_width = mcorr_comb_width; // combined correlation tile width
this.mcorr_comb_height = mcorr_comb_height; // combined correlation tile full height
......@@ -2405,12 +2405,15 @@ public class Correlation2d {
/**
* Analyze 1d correlation (single centerline of the 3D phase correlation combined output
* from all pairs or only diameters to detect double maximum (simultaneous FG+BG)
* from all pairs or only diameters to detect double maximum (simultaneous FG+BG)
* @param disparity_scale multiply pixel coordinates in combo_corrs to match bominal disparity
* pixels (measured for quad square camera). It is now 1/sqrt(2)
* @param combo_corrs 2D phase correlation, now 15x15 = 255 pixels long
* @param min_fraction minimal ratio of weaker maximum to the strongest
* @return array of 1 or 2 {disparity, strength} pairs (zero pairs if no local max)
*/
public double [][] getDoublePoly(
double disparity_scale,
double [] combo_corrs,
double min_fraction
){
......@@ -2439,7 +2442,7 @@ public class Correlation2d {
double c = combo_corrs[imx[i]];
double a = (combo_corrs[imx[i] + 1] + combo_corrs[imx[i] - 1]) / 2 - c;
double b = (combo_corrs[imx[i] + 1] - combo_corrs[imx[i] - 1]);
maxes[i][0] = imx[i]- center_x - 0.5 * b / a;
maxes[i][0] = -disparity_scale * (imx[i]- center_x - 0.5 * b / a); // disparity, not x!
maxes[i][1] = c - 0.25 * b * b / a;
}
return maxes;
......@@ -3921,6 +3924,7 @@ public class Correlation2d {
tileY);
}
public Corr2dLMA corrLMA2Single( // single tile
ImageDttParameters imgdtt_params,
boolean adjust_ly, // adjust Lazy Eye
......@@ -3931,6 +3935,7 @@ public class Correlation2d {
double [][] rXY, // non-distorted X,Y offset per nominal pixel of disparity
boolean [] pair_mask, // which pairs to process
double[] disp_str, // -preliminary center x in pixels for largest baseline
// Not anymore, it is expressed in quad camera disparity (-x offset divided by sqrt(2)!
double[] poly_ds, // null or pair of disparity/strength
double vasw_pwr, // value as weight to this power,
double [] debug_lma_tile,
......@@ -3970,7 +3975,10 @@ public class Correlation2d {
pair_offsets = lma.getPairsOffsets(
corrs, // double [][] corrs,
pair_mask, // boolean [] pair_mask,
disp_str[0]/imgdtt_params.lmamask_magic, // double disparity,
// disp_str[0]/imgdtt_params.lmamask_magic, // double disparity,
// Moved to the caller
/// disp_str[0]/Math.sqrt(2), // *Math.sqrt(2), // double disparity,
disp_str[0], // *Math.sqrt(2), // double disparity,
disp_dist); // double [][] disp_dist);
corr_shape = getCorrShape(
corrs, // double [][] corrs,
......@@ -4099,6 +4107,454 @@ public class Correlation2d {
for (int i = 1; i < samplesWeight[npair].length; i++) if (samplesWeight[npair][i] > 0.0) {
int ix = i % corr_size; // >=0
int iy = i / corr_size; // >=0
double v = corrs[npair][i]; // not blurred
double w = samplesWeight[npair][i];
if (vasw_pwr != 0) {
w *= Math.pow(Math.abs(v), vasw_pwr);
}
lma.addSample( // x = 0, y=0 - center
0, // tile
npair,
ix, // int x, // x coordinate on the common scale (corresponding to the largest baseline), along the disparity axis
iy, // int y, // y coordinate (0 - disparity axis)
v, // double v, // correlation value at that point
w); //double w) // sample weight
}
}
if (debug_lma_tile != null) { // calculate and return number of non-zero tiles
debug_lma_tile[0] = num_disp_samples;
debug_lma_tile[1] = num_cnvx_samples;
debug_lma_tile[2] = num_comb_samples;
debug_lma_tile[3] = -1; // number of LMA iterations
debug_lma_tile[4] = -1; // last number of LMA iterations
debug_lma_tile[5] = -1; // LMA RMA
}
if (debug_graphic) {
if (dbg_corr != null) {
(new ShowDoubleFloatArrays()).showArrays(
dbg_corr,
corr_size,
corr_size,
true,
"corr_blurred"+"_x"+tileX+"_y"+tileY,
getCorrTitles());
}
if (filtWeight != null) {
(new ShowDoubleFloatArrays()).showArrays(
filtWeight,
corr_size,
corr_size,
true,
"filt_weight"+"_x"+tileX+"_y"+tileY,
getCorrTitles());
}
if (samplesWeight != null) {
(new ShowDoubleFloatArrays()).showArrays(
samplesWeight,
corr_size,
corr_size,
true,
"samples_weights"+"_x"+tileX+"_y"+tileY,
getCorrTitles());
}
}
// double [][] disp_str = {{xcenter, 1.0}}; // temporary
double [][] disp_str2 = {{0.0, 1.0}}; // temporary // will be calculated/set later
if (disp_str != null) {
disp_str2[0] = disp_str;
}
boolean lmaSuccess = false;
int num_lma_retries = 0;
double [] disp = null;
// adjust_ly
double [][] ly_offsets_pairs = null;
if (adjust_ly) {
ly_offsets_pairs = getPairsCenters(
corrs, // double [][] corrs,
samplesWeight); // double [][] weights)
}
double step_weight = 0.5; // scale corrections
double min_correction = 0.1; // exit when maximal XY correction is below
while (!lmaSuccess) {
num_lma_retries ++; // debug
// FIXME: ugly fix
double [][] disp_str2_scaled = disp_str2.clone();
for (int i = 0; i < disp_str2_scaled.length; i++) {
if (disp_str2_scaled[i] != null) {
disp_str2_scaled[i] = disp_str2_scaled[i].clone();
disp_str2_scaled[i][0] /= imgdtt_params.lmamask_magic;
}
}
lma.initVector(
imgdtt_params.lmas_adjust_wm, // boolean adjust_width, // adjust width of the maximum - lma_adjust_wm
imgdtt_params.lmas_adjust_ag, // boolean adjust_scales, // adjust 2D correlation scales - lma_adjust_ag
imgdtt_params.lmas_adjust_wy, // boolean adjust_ellipse, // allow non-circular correlation maximums lma_adjust_wy
(adjust_ly ? imgdtt_params.lma_adjust_wxy : false), //imgdtt_params.lma_adjust_wxy, // boolean adjust_lazyeye_par, // adjust disparity corrections parallel to disparities lma_adjust_wxy
(adjust_ly ? imgdtt_params.lma_adjust_ly1: false), // imgdtt_params.lma_adjust_ly1, // boolean adjust_lazyeye_ortho, // adjust disparity corrections orthogonal to disparities lma_adjust_ly1
disp_str2_scaled, // xcenter,
imgdtt_params.lma_half_width, // double half_width, // A=1/(half_widh)^2 lma_half_width
(adjust_ly ? imgdtt_params.lma_cost_wy : 0.0), // imgdtt_params.lma_cost_wy, // double cost_lazyeye_par, // cost for each of the non-zero disparity corrections lma_cost_wy
(adjust_ly ? imgdtt_params.lma_cost_wxy : 0.0) //imgdtt_params.lma_cost_wxy // double cost_lazyeye_odtho // cost for each of the non-zero ortho disparity corrections lma_cost_wxy
);
lma.setMatrices(disp_dist);
lma.initMatrices(); // should be called after initVector and after setMatrices
boolean all_sensors_used = lma.setInitialLYOffsets(
ly_offsets_pairs, // double [][] pair_centers,
step_weight, // double step_weight, // scale corrections
min_correction, // double min_correction ){ // exit when maximal XY correction is below
(debug_level > 0)); //
if (adjust_ly && !all_sensors_used) {
return null; //LY requested, but not all sensors present
}
//center
disp = null;
if (need_poly) {
disp = lma.polyDisparity(
corr_wnd_inv_limited,
transform_size-1-imgdtt_params.lma_soft_marg,//double max_offset, // 5?
debug_graphic?dbg_title:null); // double [] rslt = {-approx2d[0], approx2d[2], hwx, hwy};
if (disp == null) {
if (imgdtt_params.lmas_poly_continue && (disp == null)) {
disp = disp_str2[0];
if (debug_level > 0) {
System.out.println("Poly disparity=NULL, using tile center for initial LMA");
}
} else {
if (debug_level > 0) {
System.out.println("Poly disparity=NULL, set lmas_poly_continue to true to use tile center instead");
}
}
} else {
disp[1] *= imgdtt_params.lmas_poly_str_scale;
disp[0] /= Math.sqrt(2); // disparity is expressed in pixels of a quad camera, combo correlation is for diameter cameras
if (debug_level > 0) {
System.out.println(String.format("Poly disparity (quad camera scale) =%8.5f , str=%8.5f, disp_str2[0][0]=%8.5f, disp_str2[0][1]=%8.5f",
disp[0],disp[1],disp_str2[0][0],disp_str2[0][1]));
}
if (disp[1] < imgdtt_params.lmas_poly_str_min) {
if (debug_level > 0) {
System.out.println("Poly strength too low ("+disp[1]+" < "+imgdtt_params.lmas_poly_str_min+")");
}
disp = null;
}
}
// double[] poly_ds, // null or pair of disparity/strength
if (poly_ds != null) {
poly_ds[0] = (disp==null) ? Double.NaN: disp[0];
poly_ds[1] = (disp==null) ? 0.0: disp[1];
}
} else {
disp = disp_str;
}
if (disp != null) {
disp_str2[0] = disp;
lma.initDisparity( // USED in lwir null pointer
disp_str2); // double [][] disp_str // initial value of disparity
if (debug_level > 1) {
System.out.println("Input data:");
lma.printInputDataFx(false);
lma.printParams();
}
lmaSuccess = lma.runLma(
imgdtt_params.lmas_lambda_initial, // double lambda, // 0.1
imgdtt_params.lma_lambda_scale_good, // double lambda_scale_good,// 0.5
imgdtt_params.lma_lambda_scale_bad, // double lambda_scale_bad, // 8.0
imgdtt_params.lma_lambda_max, // double lambda_max, // 100
imgdtt_params.lmas_rms_diff, // double rms_diff, // 0.001
imgdtt_params.lmas_num_iter, // int num_iter, // 20
debug_level); // imgdtt_params.lma_debug_level1); // 4); // int debug_level) // > 3
if (!lmaSuccess && (lma.getBadTile() >= 0)) {
if (debug_level > -2) {
System.out.println("Found bad tile/pair during single (probably wrong initial maximum - try around preliminary? "+lma.getBadTile());
}
} else {
break;
}
} else {
break;
}
}
if (lmaSuccess) {
lma.updateFromVector();
double [][] dispStr = lma.lmaDisparityStrength( //TODO: add parameter to filter out negative minimums ?
imgdtt_params.lmas_min_amp, // minimal ratio of minimal pair correlation amplitude to maximal pair correlation amplitude
imgdtt_params.lmas_max_rel_rms, // maximal relative (to average max/min amplitude LMA RMS) // May be up to 0.3)
imgdtt_params.lmas_min_strength, // minimal composite strength (sqrt(average amp squared over absolute RMS)
imgdtt_params.lmas_min_ac, // minimal of A and C coefficients maximum (measures sharpest point/line)
imgdtt_params.lmas_min_min_ac, // minimal of A and C coefficients minimum (measures sharpest point)
imgdtt_params.lmas_max_area, //double lma_max_area, // maximal half-area (if > 0.0)
imgdtt_params.lma_str_scale, // convert lma-generated strength to match previous ones - scale
imgdtt_params.lma_str_offset // convert lma-generated strength to match previous ones - add to result
);
if (dispStr[0][1] <= 0) {
lmaSuccess = false;
if (debug_level > -2) { // 0
System.out.println(String.format("Poly disparity=%8.5f , str=%8.5f", disp[0],disp[1]));
}
if (debug_lma_tile != null) {
debug_lma_tile[3] = num_lma_retries; // number of wasted attempts
debug_lma_tile[4] = lma.getNumIter();
}
} else {
if (debug_level > -2) {
System.out.println(String.format("Poly disparity=%8.5f , str=%8.5f, LMA disparity=%8.5f, str=%8.5f",
disp[0],disp[1],dispStr[0][0],dispStr[0][1]));
}
// System.out.println("dispStr[0][0]="+dispStr[0][0]+" dispStr[0][1]="+dispStr[0][1]);
double [] rms = lma.getRMS();
if (debug_lma_tile != null) {
debug_lma_tile[3] = num_lma_retries; // number of wasted attempts
debug_lma_tile[4] = lma.getNumIter();
debug_lma_tile[5] = rms[1]; // pure rms
}
if (debug_level > 0) {
System.out.println("LMA -> "+lmaSuccess+" RMS="+rms[0]+", pure RMS="+rms[1]);
lma.printParams();
}
if (debug_level > 1) {
System.out.println("Input data and approximation:");
lma.printInputDataFx(true);
}
// double [][] ds = null;
if (debug_graphic && lmaSuccess) {
String [] sliceTitles = lma.dbgGetSliceTitles();
// if (corrs.length == 1) { // only for single-tile cluster (here it is always single, and corrs is double [][], not double [][][]
(new ShowDoubleFloatArrays()).showArrays(
lma.dbgGetSamples(null,0)[0],
corr_size,
corr_size,
true,
"corr_values"+"_x"+tileX+"_y"+tileY, sliceTitles);
(new ShowDoubleFloatArrays()).showArrays(
lma.dbgGetSamples(null,2)[0],
corr_size,
corr_size,
true,
"corr_fx"+"_x"+tileX+"_y"+tileY, sliceTitles);
(new ShowDoubleFloatArrays()).showArrays(
lma.dbgGetSamples(null,1)[0],
corr_size,
corr_size,
true,
"corr_weights_late"+"_x"+tileX+"_y"+tileY, sliceTitles);
// }
}
}
} else if (debug_lma_tile != null) {
debug_lma_tile[3] = num_lma_retries; // number of wasted attempts
}
return lmaSuccess? lma: null;
}
public Corr2dLMA corrLMA2DualMax( // single tile
ImageDttParameters imgdtt_params,
boolean adjust_ly, // adjust Lazy Eye
double [][] corr_wnd, // correlation window to save on re-calculation of the window
double [] corr_wnd_inv_limited, // correlation window, limited not to be smaller than threshold - used for finding max/convex areas (or null)
double [][] corrs, // may have more elements than pair_mask (corrs may have combo as last elements)
double [][] disp_dist, // per camera disparity matrix as a 1d (linescan order)
double [][] rXY, // non-distorted X,Y offset per nominal pixel of disparity
boolean [] pair_mask, // which pairs to process
// should never be null
double[][] disp_str_dual, // -preliminary center x in pixels for largest baseline
double[] poly_ds, // null or pair of disparity/strength
double vasw_pwr, // value as weight to this power,
double [] debug_lma_tile,
int debug_level,
int tileX, // just for debug output
int tileY
)
{
// corrs are organized as PAIRS, some are null if not used
// for each enabled and available pair find a maximum, filter convex and create sample list
// boolean need_poly = (disp_str == null); // true; // find initial disparity by polynomial approximation
boolean debug_graphic = imgdtt_params.lma_debug_graphic && (imgdtt_params.lma_debug_level1 > 3) && (debug_level > 0) ;
debug_graphic |= imgdtt_params.lmamask_dbg && (debug_level > 0);
String dbg_title = null;
if (debug_graphic) {
dbg_title = String.format("tX%d_tY%d",tileX,tileY);
}
DoubleGaussianBlur gb = null;
if (imgdtt_params.lma_sigma > 0) gb = new DoubleGaussianBlur();
int center = transform_size - 1;
int corr_size = 2 * transform_size - 1;
Corr2dLMA lma = new Corr2dLMA(
1,
this, // Correlation2d correlation2d,
transform_size,
corr_wnd,
rXY, //double [][] rXY, // non-distorted X,Y offset per nominal pixel of disparity
imgdtt_params.lmas_gaussian //boolean gaussian_mode
);
double [][] corr_shapes = new double [disp_str_dual.length][];
double [][] corr_shapes_dia = new double [disp_str_dual.length][];
double [][] norm_shapes = new double [disp_str_dual.length][];
double [][][] pair_shapes_masks = new double [disp_str_dual.length][][];
double [][][] pair_offsets = new double [disp_str_dual.length][][];
for (int nmax = 0; nmax < disp_str_dual.length; nmax++) {
pair_offsets[nmax] = lma.getPairsOffsets(
corrs, // double [][] corrs,
pair_mask, // boolean [] pair_mask,
// disp_str_dual[nmax][0]/imgdtt_params.lmamask_magic, // double disparity,
/// disp_str_dual[nmax][0]/Math.sqrt(2), // *Math.sqrt(2), // double disparity,
// sqrt(2) moved to the caller
disp_str_dual[nmax][0], // *Math.sqrt(2), // double disparity,
disp_dist); // double [][] disp_dist);
corr_shapes[nmax] = getCorrShape(
corrs, // double [][] corrs,
pair_offsets[nmax]); // double [][] xy_offsets)
if (debug_graphic) {
int min_dia = 96;
double [][] corrs_dia = new double[corrs.length][];
for (int i = min_dia; i < corrs.length; i++) {
corrs_dia[i] = corrs[i];
}
corr_shapes_dia[nmax] = getCorrShape(
corrs_dia, // double [][] corrs,
pair_offsets[nmax]); // double [][] xy_offsets)
}
norm_shapes[nmax] = conditionCorrShape(
corr_shapes[nmax], // double [] corrs_shape,
imgdtt_params.lmamask_min_main, // double min_main,
imgdtt_params.lmamask_min_neib, // double min_neib,
imgdtt_params.lmamask_weight_neib, // double weight_neib);
imgdtt_params.lmamask_weight_neib_neib); // double weight_neib_neib
pair_shapes_masks[nmax] = applyCorrShape(
norm_shapes[nmax], // double [] corrs_shape,
pair_offsets[nmax]); // double [][] xy_offsets)
}
double [][] dbg_corr = debug_graphic ? new double [corrs.length][] : null;
if (debug_graphic) {
(new ShowDoubleFloatArrays()).showArrays(
corrs,
corr_size,
corr_size,
true,
"corr_pairs"+"_x"+tileX+"_y"+tileY,
getCorrTitles());
if (corr_shapes != null) {
for (int nmax = 0; nmax < disp_str_dual.length; nmax++) {
(new ShowDoubleFloatArrays()).showArrays(
new double [][] {corr_shapes[nmax],norm_shapes[nmax], corr_shapes_dia[nmax]},
corr_size,
corr_size,
true,
"corr_shape"+"_x"+tileX+"_y"+tileY+"_M"+nmax,
new String [] {"corr_shape","norm_shape","corr_shape_dia"});
}
}
if (pair_shapes_masks != null) {
for (int nmax = 0; nmax < disp_str_dual.length; nmax++) {
(new ShowDoubleFloatArrays()).showArrays(
pair_shapes_masks[nmax],
corr_size,
corr_size,
true,
"corr_shape_masks"+"_x"+tileX+"_y"+tileY+"_M"+nmax,
getCorrTitles());
}
}
}
// try alternative mask generation by accumulation of the pre-shifted (from CM estimation with magic 0.85) correlations
/*
double [][] filtWeight = new double [corrs.length][];
double [][] samplesWeight = new double [corrs.length][];
int num_disp_samples = 0;
int num_cnvx_samples = 0;
int num_comb_samples = 0;
for (int npair = 0; npair < pair_mask.length; npair++) if ((corrs[npair] != null) && (pair_mask[npair])){
double [] corr_blur = null;
if (imgdtt_params.cnvx_en || (pair_shape_masks == null)) {
corr_blur = corrs[npair].clone();
if (corr_wnd_inv_limited != null) {
for (int i = 0; i < corr_blur.length; i++) {
corr_blur[i] *= corr_wnd_inv_limited[i];
}
}
if (imgdtt_params.lma_sigma > 0) {
gb.blurDouble(corr_blur, corr_size, corr_size, imgdtt_params.lma_sigma, imgdtt_params.lma_sigma, 0.01);
}
int imx = imgdtt_params.lma_soft_marg * (corr_size + 1);
for (int iy = imgdtt_params.lma_soft_marg; iy < (corr_size - imgdtt_params.lma_soft_marg); iy++) {
for (int ix = imgdtt_params.lma_soft_marg; ix < (corr_size - imgdtt_params.lma_soft_marg); ix++) {
int indx = iy * corr_size + ix;
if (corr_blur[indx] > corr_blur[imx]) imx = indx;
}
}
// filter convex
int ix0 = (imx % corr_size) - center; // signed, around center to match filterConvex
int iy0 = (imx / corr_size) - center; // signed, around center to match filterConvex
filtWeight[npair] = filterConvex(
corr_blur, // double [] corr_data,
imgdtt_params.cnvx_hwnd_size, // int hwin,
ix0, // int x0,
iy0, // int y0,
imgdtt_params.cnvx_add3x3, // boolean add3x3,
imgdtt_params.cnvx_weight, // double nc_cost,
(debug_level > 2)); // boolean debug);
}
if (dbg_corr != null) dbg_corr [npair] = corr_blur;
// Normalize weight for each pair to compensate for different number of convex samples?
// Combine/use window masks
if (filtWeight[npair] == null) {
samplesWeight[npair] = (pair_shape_masks != null)? pair_shape_masks[npair] : null;
} else if ((pair_shape_masks == null) || (pair_shape_masks[npair] == null) || !imgdtt_params.lmamask_en) {
samplesWeight[npair] = filtWeight[npair];
} else {
samplesWeight[npair] = filtWeight[npair].clone();
if (imgdtt_params.cnvx_or) {
for (int i = 0; i < samplesWeight[npair].length; i++) {
samplesWeight[npair][i] = Math.max(samplesWeight[npair][i], pair_shape_masks[npair][i]);
}
} else {
for (int i = 0; i < samplesWeight[npair].length; i++) {
samplesWeight[npair][i] *= pair_shape_masks[npair][i];
}
}
}
if (debug_lma_tile != null) { // calculate and return number of non-zero tiles
if (pair_shape_masks[npair] != null) {
for (int i = 0; i < samplesWeight[npair].length; i++) if (samplesWeight[npair][i] > 0.0) num_disp_samples++;
}
if (filtWeight[npair] != null) {
for (int i = 0; i < filtWeight[npair].length; i++) if (filtWeight[npair][i] > 0.0) num_cnvx_samples++;
}
if (samplesWeight[npair] != null) {
for (int i = 0; i < samplesWeight[npair].length; i++) if (samplesWeight[npair][i] > 0.0) num_comb_samples++;
}
}
for (int i = 1; i < samplesWeight[npair].length; i++) if (samplesWeight[npair][i] > 0.0) {
int ix = i % corr_size; // >=0
int iy = i / corr_size; // >=0
......@@ -4350,6 +4806,8 @@ public class Correlation2d {
debug_lma_tile[3] = num_lma_retries; // number of wasted attempts
}
return lmaSuccess? lma: null;
*/
return null;
}
/**
......
......@@ -221,7 +221,7 @@ public class ImageDtt extends ImageDttCPU {
ortho_weights[i] = 0.5*(1.0+Math.cos(Math.PI*dx))/imgdtt_params.ortho_eff_height;
}
}
if (globalDebugLevel > 0){
if (globalDebugLevel > 1){
System.out.println("ortho_height="+ imgdtt_params.ortho_height+" ortho_eff_height="+ imgdtt_params.ortho_eff_height);
for (int i = 0; i < corr_size; i++){
System.out.println(" ortho_weights["+i+"]="+ ortho_weights[i]);
......@@ -229,7 +229,7 @@ public class ImageDtt extends ImageDttCPU {
}
if (globalDebugLevel > 0) {
if (globalDebugLevel > 1) {
System.out.println("clt_aberrations_quad_corr(): width="+width+" height="+height+" transform_size="+transform_size+
" debug_tileX="+debug_tileX+" debug_tileY="+debug_tileY+" globalDebugLevel="+globalDebugLevel);
}
......@@ -1350,7 +1350,7 @@ public class ImageDtt extends ImageDttCPU {
ortho_weights[i] = 0.5*(1.0+Math.cos(Math.PI*dx))/imgdtt_params.ortho_eff_height;
}
}
if (globalDebugLevel > 0){
if (globalDebugLevel > 1){
System.out.println("ortho_height="+ imgdtt_params.ortho_height+" ortho_eff_height="+ imgdtt_params.ortho_eff_height);
for (int i = 0; i < corr_size; i++){
System.out.println(" ortho_weights["+i+"]="+ ortho_weights[i]);
......@@ -1358,7 +1358,7 @@ public class ImageDtt extends ImageDttCPU {
}
if (globalDebugLevel > 0) {
if (globalDebugLevel > 1) {
System.out.println("clt_aberrations_quad_corr(): width="+width+" height="+height+" transform_size="+transform_size+
" debug_tileX="+debug_tileX+" debug_tileY="+debug_tileY+" globalDebugLevel="+globalDebugLevel);
}
......@@ -2015,7 +2015,7 @@ public class ImageDtt extends ImageDttCPU {
ortho_weights[i] = 0.5*(1.0+Math.cos(Math.PI*dx))/imgdtt_params.ortho_eff_height;
}
}
if (globalDebugLevel > 0){
if (globalDebugLevel > 1){
System.out.println("ortho_height="+ imgdtt_params.ortho_height+" ortho_eff_height="+ imgdtt_params.ortho_eff_height);
for (int i = 0; i < corr_size; i++){
System.out.println(" ortho_weights["+i+"]="+ ortho_weights[i]);
......@@ -2023,7 +2023,7 @@ public class ImageDtt extends ImageDttCPU {
}
if (globalDebugLevel > 0) {
if (globalDebugLevel > 1) {
System.out.println("clt_aberrations_quad_corr(): width="+width+" height="+height+" transform_size="+transform_size+
" debug_tileX="+debug_tileX+" debug_tileY="+debug_tileY+" globalDebugLevel="+globalDebugLevel);
}
......@@ -2303,6 +2303,7 @@ public class ImageDtt extends ImageDttCPU {
final int threadsMax, // maximal number of threads to launch
final int globalDebugLevel)
{
final double disparity_scale = 1.0/Math.sqrt(2); // combo pixels -> disparity pixels
final boolean diameters_combo = (imgdtt_params.mcorr_dual_fract > 0.0); // add diameters-only combo after all-combo
if (this.gpuQuad == null) {
System.out.println("clt_aberrations_quad_corr_GPU(): this.gpuQuad is null, bailing out");
......@@ -2364,7 +2365,7 @@ public class ImageDtt extends ImageDttCPU {
ortho_weights[i] = 0.5*(1.0+Math.cos(Math.PI*dx))/imgdtt_params.ortho_eff_height;
}
}
if (globalDebugLevel > 0){
if (globalDebugLevel > 1){
System.out.println("ortho_height="+ imgdtt_params.ortho_height+" ortho_eff_height="+ imgdtt_params.ortho_eff_height);
for (int i = 0; i < corr_size; i++){
System.out.println(" ortho_weights["+i+"]="+ ortho_weights[i]);
......@@ -2372,7 +2373,7 @@ public class ImageDtt extends ImageDttCPU {
}
if (globalDebugLevel > 00) {
if (globalDebugLevel > 1) {
System.out.println("clt_aberrations_quad_corr(): width="+width+" height="+height+" transform_size="+transform_size+
" debug_tileX="+debug_tileX+" debug_tileY="+debug_tileY+" globalDebugLevel="+globalDebugLevel);
}
......@@ -2537,7 +2538,7 @@ public class ImageDtt extends ImageDttCPU {
corrs[npair] , //double [] corr_tile,
npair); // int num_pair)
if (pair_width < 0.1) {
if (globalDebugLevel > 0) {
if (globalDebugLevel > 1) {
System.out.println("pair_width["+npair+"]="+pair_width);
}
} else {
......@@ -2612,6 +2613,7 @@ public class ImageDtt extends ImageDttCPU {
System.out.println("clt_process_tl_correlations(): debugTile1");
}
double [][] maxes = correlation2d.getDoublePoly(
disparity_scale, // double disparity_scale,
((corr_dia_tile != null) ? corr_dia_tile : corr_combo_tile), // double [] combo_corrs,
imgdtt_params.mcorr_dual_fract); //double min_fraction
// TODO: add corr layer - copy of combo with singles as nulls
......@@ -2623,9 +2625,31 @@ public class ImageDtt extends ImageDttCPU {
if (debugTile1) {
System.out.println("clt_process_tl_correlations() maxes=");
for (int i = 0; i < maxes.length; i++) {
System.out.println(String.format("maxes[%d][0]=%f, maxes[%d][1]=%f", i, maxes[i][0], i, maxes[i][1]));
System.out.println(String.format("maxes[%d][0]=%f (quadcam disparity pixels, not combo pixels), maxes[%d][1]=%f", i, maxes[i][0], i, maxes[i][1]));
}
}
if (debugTile1) {
correlation2d.corrLMA2DualMax( // null pointer
imgdtt_params, // ImageDttParameters imgdtt_params,
imgdtt_params.lmas_LY_single, // false, // boolean adjust_ly, // adjust Lazy Eye
corr_wnd, // double [][] corr_wnd, // correlation window to save on re-calculation of the window
corr_wnd_inv_limited, // corr_wnd_limited, // correlation window, limited not to be smaller than threshold - used for finding max/convex areas (or null)
corrs, // corrs, // double [][] corrs,
disp_dist,
rXY, // double [][] rXY, // non-distorted X,Y offset per nominal pixel of disparity
// all that are not null in corr_tiles
correlation2d.selectAll(), // longToArray(imgdtt_params.dbg_pair_mask), // int pair_mask, // which pairs to process
maxes, //double[][] disp_str_dual, // -preliminary center x in pixels for largest baseline
null, // poly_disp, // double[] poly_ds, // null or pair of disparity/strength
imgdtt_params.ortho_vasw_pwr, // double vasw_pwr, // value as weight to this power,
null, // debug_lma_tile, // double [] debug_lma_tile,
(debugTile0 ? 1: -2), // int debug_level,
// -2, //0, // tile_lma_debug_level, // +2, // int debug_level,
tileX, // int tileX, // just for debug output
tileY );
}
if (disparity_map != null) {
int [] ixy = correlation2d.getMaxXYInt( // find integer pair or null if below threshold // USED in lwir
corr_combo_tile, // double [] data, // [data_size * data_size]
......@@ -2642,7 +2666,10 @@ public class ImageDtt extends ImageDttCPU {
ixy[0], // int ixcenter, // integer center x
false); // debugCluster); // (tile_lma_debug_level > 0)); // boolean debug);
if (corr_stat != null) { // almost always
disp_str = new double [] {-corr_stat[0], corr_stat[1]};
// FIXME: apply that for non-GPU version (and other variants) !
// convert to disparity for a quad camera (used in pre-shift)
disp_str = new double [] {-corr_stat[0]/Math.sqrt(2), corr_stat[1]};
// disp_str = new double [] {-corr_stat[0], corr_stat[1]};
if (disparity_map!=null) {
disparity_map[DISPARITY_INDEX_CM ][nTile] = disp_str[0];
disparity_map[DISPARITY_INDEX_CM + 1 ][nTile] = disp_str[1];
......@@ -2874,7 +2901,7 @@ public class ImageDtt extends ImageDttCPU {
ortho_weights[i] = 0.5*(1.0+Math.cos(Math.PI*dx))/imgdtt_params.ortho_eff_height;
}
}
if (globalDebugLevel > 0){
if (globalDebugLevel > 1){
System.out.println("ortho_height="+ imgdtt_params.ortho_height+" ortho_eff_height="+ imgdtt_params.ortho_eff_height);
for (int i = 0; i < corr_size; i++){
System.out.println(" ortho_weights["+i+"]="+ ortho_weights[i]);
......@@ -2882,7 +2909,7 @@ public class ImageDtt extends ImageDttCPU {
}
if (globalDebugLevel > 0) {
if (globalDebugLevel > 1) {
System.out.println("clt_aberrations_quad_corr(): width="+width+" height="+height+" transform_size="+transform_size+
" debug_tileX="+debug_tileX+" debug_tileY="+debug_tileY+" globalDebugLevel="+globalDebugLevel);
}
......
......@@ -1826,7 +1826,7 @@ public class ImageDttCPU {
ortho_weights[i] = 0.5*(1.0+Math.cos(Math.PI*dx))/imgdtt_params.ortho_eff_height;
}
}
if (globalDebugLevel > 0){
if (globalDebugLevel > 1){
System.out.println("ortho_height="+ imgdtt_params.ortho_height+" ortho_eff_height="+ imgdtt_params.ortho_eff_height);
for (int i = 0; i < corr_size; i++){
System.out.println(" ortho_weights["+i+"]="+ ortho_weights[i]);
......@@ -1834,7 +1834,7 @@ public class ImageDttCPU {
}
if (globalDebugLevel > 0) {
if (globalDebugLevel > 1) {
System.out.println("clt_aberrations_quad_corr(): width="+width+" height="+height+" transform_size="+transform_size+
" debug_tileX="+debug_tileX+" debug_tileY="+debug_tileY+" globalDebugLevel="+globalDebugLevel);
}
......@@ -1842,7 +1842,7 @@ public class ImageDttCPU {
final double [] filter = doubleGetCltLpfFd(corr_sigma);
// prepare disparity maps and weights
if (globalDebugLevel > 0){
if (globalDebugLevel > 1){
System.out.println("corr_fat_zero= "+corr_fat_zero);
System.out.println("disparity_array[0][0]= "+disparity_array[0][0]);
......@@ -3629,14 +3629,14 @@ public class ImageDttCPU {
ortho_weights[i] = 0.5*(1.0+Math.cos(Math.PI*dx))/imgdtt_params.ortho_eff_height;
}
}
if (globalDebugLevel > 0){
if (globalDebugLevel > 1){
System.out.println("ortho_height="+ imgdtt_params.ortho_height+" ortho_eff_height="+ imgdtt_params.ortho_eff_height);
for (int i = 0; i < corr_size; i++){
System.out.println(" ortho_weights["+i+"]="+ ortho_weights[i]);
}
}
if (globalDebugLevel > 0) {
if (globalDebugLevel > 1) {
System.out.println("clt_aberrations_quad_corr(): width="+width+" height="+height+" transform_size="+transform_size+
" debug_tileX="+debug_tileX+" debug_tileY="+debug_tileY+" globalDebugLevel="+globalDebugLevel);
}
......@@ -4605,14 +4605,14 @@ public class ImageDttCPU {
ortho_weights[i] = 0.5*(1.0+Math.cos(Math.PI*dx))/imgdtt_params.ortho_eff_height;
}
}
if (globalDebugLevel > 0){
if (globalDebugLevel > 1){
System.out.println("ortho_height="+ imgdtt_params.ortho_height+" ortho_eff_height="+ imgdtt_params.ortho_eff_height);
for (int i = 0; i < corr_size; i++){
System.out.println(" ortho_weights["+i+"]="+ ortho_weights[i]);
}
}
if (globalDebugLevel > 0) {
if (globalDebugLevel > 1) {
System.out.println("clt_aberrations_quad_corr(): width="+width+" height="+height+" transform_size="+transform_size+
" debug_tileX="+debug_tileX+" debug_tileY="+debug_tileY+" globalDebugLevel="+globalDebugLevel);
}
......@@ -7879,7 +7879,7 @@ public class ImageDttCPU {
ortho_weights[i] = 0.5*(1.0+Math.cos(Math.PI*dx))/imgdtt_params.ortho_eff_height;
}
}
if (globalDebugLevel > 0){
if (globalDebugLevel > 1){
System.out.println("ortho_height="+ imgdtt_params.ortho_height+" ortho_eff_height="+ imgdtt_params.ortho_eff_height);
for (int i = 0; i < corr_size; i++){
System.out.println(" ortho_weights["+i+"]="+ ortho_weights[i]);
......@@ -12225,7 +12225,7 @@ public class ImageDttCPU {
ortho_weights[i] = 0.5*(1.0+Math.cos(Math.PI*dx))/clt_parameters.img_dtt.ortho_eff_height;
}
}
if (globalDebugLevel > 0){
if (globalDebugLevel > 1){
System.out.println("ortho_height="+ clt_parameters.img_dtt.ortho_height+" ortho_eff_height="+ clt_parameters.img_dtt.ortho_eff_height);
for (int i = 0; i < corr_size; i++){
System.out.println(" ortho_weights["+i+"]="+ ortho_weights[i]);
......@@ -13162,7 +13162,7 @@ public class ImageDttCPU {
ortho_weights[i] = 0.5*(1.0+Math.cos(Math.PI*dx))/clt_parameters.img_dtt.ortho_eff_height;
}
}
if (globalDebugLevel > 0){
if (globalDebugLevel > 1){
System.out.println("ortho_height="+ clt_parameters.img_dtt.ortho_height+" ortho_eff_height="+ clt_parameters.img_dtt.ortho_eff_height);
for (int i = 0; i < corr_size; i++){
System.out.println(" ortho_weights["+i+"]="+ ortho_weights[i]);
......@@ -13879,14 +13879,14 @@ public class ImageDttCPU {
ortho_weights[i] = 0.5*(1.0+Math.cos(Math.PI*dx))/clt_parameters.img_dtt.ortho_eff_height;
}
}
if (globalDebugLevel > 0){
if (globalDebugLevel > 1){
System.out.println("ortho_height="+ clt_parameters.img_dtt.ortho_height+" ortho_eff_height="+ clt_parameters.img_dtt.ortho_eff_height);
for (int i = 0; i < corr_size; i++){
System.out.println(" ortho_weights["+i+"]="+ ortho_weights[i]);
}
}
if (globalDebugLevel > 0) {
if (globalDebugLevel > 1) {
System.out.println("clt_aberrations_quad_corr(): width="+width+" height="+height+" transform_size="+transform_size+
" debug_tileX="+debug_tileX+" debug_tileY="+debug_tileY+" globalDebugLevel="+globalDebugLevel);
}
......@@ -14291,7 +14291,7 @@ public class ImageDttCPU {
ortho_weights[i] = 0.5*(1.0+Math.cos(Math.PI*dx))/imgdtt_params.ortho_eff_height;
}
}
if (globalDebugLevel > 0){
if (globalDebugLevel > 1){
System.out.println("ortho_height="+ imgdtt_params.ortho_height+" ortho_eff_height="+ imgdtt_params.ortho_eff_height);
for (int i = 0; i < corr_size; i++){
System.out.println(" ortho_weights["+i+"]="+ ortho_weights[i]);
......@@ -14301,7 +14301,7 @@ public class ImageDttCPU {
if (globalDebugLevel > 0) {
if (globalDebugLevel > 1) {
System.out.println("clt_aberrations_quad_corr(): width="+width+" height="+height+" transform_size="+transform_size+
" debug_tileX="+debug_tileX+" debug_tileY="+debug_tileY+" globalDebugLevel="+globalDebugLevel);
}
......@@ -16027,7 +16027,7 @@ public class ImageDttCPU {
corrs[npair] , //double [] corr_tile,
npair); // int num_pair)
if (pair_width < 0.1) {
if (globalDebugLevel > 0) {
if (globalDebugLevel > 1) {
System.out.println("pair_width["+npair+"]="+pair_width);
}
} else {
......
......@@ -80,7 +80,7 @@ public class ImageDttParameters {
//lmamask_
public boolean lmamask_dbg = false; // show LMA images, exit after single BG
public boolean lmamask_en = false; // Use disparity-based LMA samples filter
public double lmamask_magic = 0.85;
public double lmamask_magic = 0.85; // Now only used for initial disparity from estimated by CM/Poly
public double lmamask_min_main = 0.4;
public double lmamask_min_neib = 0.10;
public double lmamask_weight_neib = 0.75;
......@@ -456,7 +456,7 @@ public class ImageDttParameters {
gd.addCheckbox ("Use disparity-based LMA samples filtering", this.lmamask_en,
"Generate weighs by averaging 2D correlation shape and per-pair shifting for estimated from CM disparity");
gd.addNumericField("Divide estimated disparity by magic 0.85", this.lmamask_magic, 6,8,"",
"Increase estimated disparity before averaging correlation shape and per-pair shifting the result");
"Increase estimated disparity for iniital LMA setiings");
gd.addNumericField("Minimal relative sample value for unconditional inclusion", this.lmamask_min_main, 6,8,"",
"Relatrive (to maximal) value in averaged correlation to be assigned window vlaue of 1.0 regardless of neighbors");
gd.addNumericField("Minimal relative sample value for neighbor inclusion", this.lmamask_min_neib, 6,8,"",
......
......@@ -12858,7 +12858,7 @@ public class QuadCLTCPU {
final boolean save_diff = save_textures || need_diffs; // true; // separately save differences and
final boolean save_lowres = save_textures || need_diffs; // true; // low-res images
if (clust_radius > 00) { // will not generate textures
if (clust_radius > 0) { // will not generate textures
// set tasks for all non-NaN target disparities
TpTask [] tp_tasks_target = GpuQuad.setTasks(
num_sensors, // final int num_cams,
......@@ -12976,7 +12976,7 @@ public class QuadCLTCPU {
tp_tasks, // final TpTask [] tp_tasks, // data from the reference frame - will be applied to LMW for the integrated correlations
geometryCorrection.getRXY(false), // final double [][] rXY, // from geometryCorrection
// next both can be nulls
null, // final double [][][][] clt_corr_out, // sparse (by the first index) [type][tilesY][tilesX][(2*transform_size-1)*(2*transform_size-1)] or null
clt_corr_out, // null, // final double [][][][] clt_corr_out, // sparse (by the first index) [type][tilesY][tilesX][(2*transform_size-1)*(2*transform_size-1)] or null
// combo will be added as extra pair if mcorr_comb_width > 0 and clt_corr_out has a slot for it
// to be converted to float
dcorr_tiles, // final double [][][] dcorr_tiles, // [tile][pair][(2*transform_size-1)*(2*transform_size-1)] // if null - will not calculate
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment