Commit a91aab50 authored by Andrey Filippov's avatar Andrey Filippov

Tested tensorflow model on the data in inside this program

parent 6e5aa3ce
......@@ -387,6 +387,7 @@ private Panel panel1,
public PixelMapping.InterSensor.DisparityTiles DISPARITY_TILES=null;
public ImagePlus DBG_IMP = null;
public ImagePlus CORRELATE_IMP = null;
public TensorflowInferModel TENSORFLOW_INFER_MODEL = null;
public class SyncCommand{
public boolean isRunning= false;
......@@ -4754,18 +4755,21 @@ private Panel panel1,
return;
/* ======================================================================== */
} else if (label.equals("TF TEST")) {
// link 1 (general): https://www.tensorflow.org/api_docs/java/reference/org/tensorflow/package-summary
// link 2 (example of an TF & IJ plugin): https://github.com/google/microscopeimagequality/blob/main/microscopeimagequality/data/imagej/src/main/java/MicroscopeImageFocusQualityClassifier.java
TensorflowExamplePlugin t = new TensorflowExamplePlugin();
t.run();
DEBUG_LEVEL=MASTER_DEBUG_LEVEL;
boolean keep_empty = true;
if (TENSORFLOW_INFER_MODEL == null) {
TENSORFLOW_INFER_MODEL = new TensorflowInferModel(
324, // int tilesX,
242, // int tilesY,
9, // int corr_side,
4 //int num_layers
);
}
TENSORFLOW_INFER_MODEL.test_tensorflow(keep_empty);
return;
//JTabbedTest
// End of buttons code
}
DEBUG_LEVEL=MASTER_DEBUG_LEVEL;
}
public String getSaveCongigPath() {
......
......@@ -3,20 +3,17 @@
* SPDX-License-Identifier: GPL-3.0-or-later
*/
import org.tensorflow.Graph;
import org.tensorflow.Session;
import org.tensorflow.Tensor;
import org.tensorflow.Tensors;
import org.tensorflow.TensorFlow;
import java.nio.FloatBuffer;
import java.nio.IntBuffer;
import java.util.ArrayList;
import org.tensorflow.SavedModelBundle;
import org.tensorflow.OperationBuilder;
import org.tensorflow.Shape;
import org.tensorflow.Output;
import org.tensorflow.Operation;
import org.tensorflow.Tensor;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
import ij.IJ;
import ij.ImagePlus;
import ij.ImageStack;
import ij.WindowManager;
/**
......@@ -48,223 +45,297 @@ Sessions and Tensors
*/
public class TensorflowExamplePlugin
public class TensorflowInferModel
{
public final static String EXPORTDIR = "/home/oleg/GIT/python3-imagej-tiff/data_sets/tf_data_5x5_main_13_heur/exportdir";
// tf.saved_model.tag_constants.SERVING = "serve"
public final static String SERVING = "serve";
public static void run()
{
System.out.println("TensorflowExamplePlugin run");
try {
main();
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
/**
* From https://github.com/DIVSIO/tensorflow_java_cli_example/blob/master/src/main/java/divisio/example/tensorflow/cli/RunRegression.java
*/
/**
* wraps a single float in a tensor
* @param f the float to wrap
* @return a tensor containing the float
final static String TRAINED_MODEL = "trained_model"; // /home/oleg/GIT/python3-imagej-tiff/data_sets/tf_data_5x5_main_13_heur/exportdir";
final static String SERVING = "serve";
final int tilesX, tilesY, num_tiles, num_layers;
final int corr_side, corr_side2;
// final long [] shape_corr2d;
// final long [] shape_target_disparity;
// final long [] shape_tiles_stage1;
// final long [] shape_tiles_stage2;
final FloatBuffer fb_corr2d;
final FloatBuffer fb_target_disparity;
final IntBuffer fb_tiles_stage1;
final IntBuffer fb_tiles_stage2;
final FloatBuffer fb_predicted;
/*
long[] shape = new long[] {batch, imageSize};
*/
private static Tensor<Float> toTensor(final float f, final Collection<Tensor<?>> tensorsToClose) {
final Tensor<Float> t = Tensors.create(f);
if (tensorsToClose != null) {
tensorsToClose.add(t);
}
return t;
}
private static Tensor<Float> toTensor2DFloat(final float [][] f, final Collection<Tensor<?>> tensorsToClose) {
final Tensor<Float> t = Tensors.create(f);
if (tensorsToClose != null) {
tensorsToClose.add(t);
}
return t;
}
private static Tensor<Integer> toTensor1DInt(final int [] f, final Collection<Tensor<?>> tensorsToClose) {
final Tensor<Integer> t = Tensors.create(f);
if (tensorsToClose != null) {
tensorsToClose.add(t);
}
return t;
}
private static void closeTensors(final Collection<Tensor<?>> ts) {
for (final Tensor<?> t : ts) {
try {
t.close();
} catch (final Exception e) {
System.err.println("Error closing Tensor.");
e.printStackTrace();
}
}
ts.clear();
}
// public
final SavedModelBundle bundle;
public static void main() throws Exception {
final Graph smpb;
// init for variable?
float [][] rv_stage1_out = new float[78408][32];
// from infer_qcds_01.py
float [][] img_corr2d = new float[78408][324];
float [][] img_target = new float[78408][ 1];
int [] img_ntile = new int[78408];
// init ntile for testing?
for(int i=0;i<img_ntile.length;i++){
img_ntile[i] = i;
public TensorflowInferModel(int tilesX, int tilesY, int corr_side, int num_layers)
{
this.tilesX = tilesX;
this.tilesY = tilesY;
this.num_tiles = tilesX*tilesY;
this.num_layers = num_layers;
this.corr_side = corr_side;
this.corr_side2 = corr_side * corr_side;
// allocate buffers to be used for tensors
this.fb_corr2d = FloatBuffer.allocate(num_tiles * corr_side2*num_layers);
this.fb_target_disparity = FloatBuffer.allocate(num_tiles );
this.fb_tiles_stage1 = IntBuffer.allocate(num_tiles );
this.fb_tiles_stage2 = IntBuffer.allocate(num_tiles );
this.fb_predicted = FloatBuffer.allocate(num_tiles );
String abs_model_path = getClass().getClassLoader().getResource(TRAINED_MODEL).getFile();
System.out.println("TensorflowInferModel model path: "+abs_model_path);
// this will load graph/data and open a session that does not need to be closed until the program is closed
//// bundle = null;
bundle = SavedModelBundle.load(abs_model_path,SERVING);
// Operation opr = bundle.graph().operation("rv_stage1_out");
}
final SavedModelBundle bundle = SavedModelBundle.load(EXPORTDIR,SERVING);
final List<Tensor<?>> tensorsToClose = new ArrayList<Tensor<?>>(5);
System.out.println("OK");
try {
System.out.println("S0:");
// read Variable info test
Operation opr = bundle.graph().operation("rv_stage1_out");
System.out.println(opr.toString());
System.out.println("S1:");
//opr = bundle.graph().operation("rv_stageY_out");
//System.out.println(opr.toString());
// init variable via constant?
//Tensor<Float> tsr = toTensor2DFloat(rv_stage1_out, tensorsToClose);
/*
Output builder_init = bundle.graph()
.opBuilder("Const", "rv_stage1_out_init")
.setAttr ("dtype", tsr.dataType())
.setAttr ("value", tsr)
.build()
.output(0);
*/
//System.out.println(builder_init);
// variable
//OperationBuilder builder2 = bundle.graph().opBuilder("Variable", "rv_stage1_out_extra_variable");
//.addInput(builder_init);
//builder2.
//bundle.graph().opBuilder("Assign", "Assign/" + builder2.op().name()).addInput(variable).addInput(value).build().output(0);
//Tensor<Float> tensorVal = tsr;
//Output oValue = bundle.graph().opBuilder("Const", "rv_stage1_out_2").setAttr("dtype", tensorVal.dataType()).setAttr("value", tensorVal).build().output(0);
//System.out.println(oValue);
//Output oValue = bundle.graph().opBuilder("Variable", "rv_stage1_out").setAttr("value", tensorVal).build().output(0);
//bundle.graph().opBuilder("Assign", "Assign/rv_stage1_out").setAttr("value", tsr).build();
System.out.println("Stage 0.1");
//bundle.session().runner().fetch("rv_stageY_out").run();
System.out.println("Stage 0.2");
bundle.session().runner().fetch("rv_stage1_out").run();
System.out.println("Stage 1");
// stage 1
bundle.session().runner()
.feed("ph_corr2d",toTensor2DFloat(img_corr2d, tensorsToClose))
.feed("ph_target_disparity",toTensor2DFloat(img_target, tensorsToClose))
.feed("ph_ntile",toTensor1DInt(img_ntile, tensorsToClose))
public void run_stage1(
FloatBuffer fb_corr2d,
FloatBuffer fb_target_disparity,
IntBuffer fb_tiles_stage1)
{
int ntiles = fb_tiles_stage1.limit(); // actual number of entries
long [] shape_corr2d = new long [] {ntiles, corr_side2*num_layers};
long [] shape_target_disparity = new long [] {ntiles, 1};
long [] shape_tiles_stage1 = new long [] {ntiles};
final Tensor<Float> t_corr2d = Tensor.create(shape_corr2d, fb_corr2d);
final Tensor<Float> target_disparity = Tensor.create(shape_target_disparity, fb_target_disparity);
final Tensor<Integer> t_tiles_stage1 = Tensor.create(shape_tiles_stage1,fb_tiles_stage1);
// this run does not output any data, but maybe it should still be captured and disposed of?
final Tensor<?> t_result_stage1 = bundle.session().runner()
.feed("ph_corr2d", t_corr2d)
.feed("ph_target_disparity", target_disparity)
.feed("ph_ntile", t_tiles_stage1)
.fetch("Disparity_net/stage1done:0")
.run()
.get(0);
System.out.println("Stage 1 DONE");
System.out.println("Stage 2");
t_result_stage1. close();
t_corr2d. close();
target_disparity. close();
t_tiles_stage1. close();
}
// stage 2
final Tensor<?> result = bundle.session().runner()
.feed("ph_ntile_out",toTensor1DInt(img_ntile, tensorsToClose))
public void run_stage2(
IntBuffer fb_tiles_stage2,
FloatBuffer fb_disparity) {
int ntiles = fb_tiles_stage2.limit(); // actual number of entries
long [] shape_tiles_stage2 = new long [] {ntiles};
final Tensor<Integer> t_tiles_stage2 = Tensor.create(shape_tiles_stage2, fb_tiles_stage2);
final Tensor<?> t_result_disparity = bundle.session().runner()
.feed("ph_ntile_out",t_tiles_stage2)
.fetch("Disparity_net/stage2_out_sparse:0")
.run()
.get(0);
fb_disparity.rewind();
t_result_disparity.writeTo(fb_disparity);
System.out.println("Stage 2 DONE: "+result.shape());
t_result_disparity. close();
t_tiles_stage2. close();
}
tensorsToClose.add(result);
System.out.println("Copy result to variable");
float [][] resultValues = (float[][]) result.copyTo(new float[78408][1]);
//**************************
// helper class to prepare TileProcessor task
class TfInTile{
float [] corr2d;
float target_disparity;
float gt_disparity;
float gt_strength;
int tile;
public void setFromCorr2d(
float [][] data,
int tileX,
int tileY,
int corr_side,
int tilesX
) {
int corr_side2 = corr_side*corr_side;
int layers = data.length -1;
this.corr2d = new float [layers * corr_side2];
float [] other = new float [corr_side2];
int width = tilesX * corr_side;
int tl = tileY * corr_side * width + tileX * corr_side; // index to the
for (int nl = 0; nl <= layers; nl++) {
if (nl < layers) {
for (int row = 0; row < corr_side; row++) {
System.arraycopy(data[nl], tl+width*row, corr2d, nl*corr_side2 + row*corr_side, corr_side);
}
} else {
for (int row = 0; row < corr_side; row++) {
System.arraycopy(data[layers], tl+width*row, other, row*corr_side, corr_side);
}
this.target_disparity = other[ImageDtt.ML_OTHER_TARGET];
this.gt_disparity = other[ImageDtt.ML_OTHER_GTRUTH];
this.gt_strength = other[ImageDtt.ML_OTHER_GTRUTH_STRENGTH];
}
}
if (Float.isNaN(this.target_disparity)) {
corr2d = new float[corr2d.length]; // zero them all
}
this.tile = tileY*tilesX + tileX;
System.out.println("DONE");
}
//System.arraycopy(sym_conv, 0, tile_in, 0, n2*n2)
//} catch (final IllegalStateException ise) {
// System.out.println("Very Bad Error (VBE): "+ise);
// closeTensors(tensorsToClose);
} catch (final NumberFormatException nfe) {
//just skip unparsable lines ?!
} finally {
closeTensors(tensorsToClose);
}
public int test_tensorflow(
boolean keep_empty) {
int dbgX = 162;
int dbgY = 121;
// int dbgT = tilesX ^ dbgY + dbgX;
int corr_side = 9;
String [] slices = {"hor-pairs","vert-pairs","diagm-pair","vert-pairs","other"};
ImagePlus imp_src = WindowManager.getCurrentImage();
if (imp_src==null){
IJ.showMessage("Error","2D Correlation image stack required");
return -1;
}
ImageStack corr_stack = imp_src.getStack();
String [] labels = corr_stack.getSliceLabels();
// for (int ii = 0; ii < labels.length; ii++) {
// System.out.println(ii+": "+labels[ii]);
// }
int tilesX= corr_stack.getWidth() / corr_side;
int tilesY= corr_stack.getHeight() / corr_side;
float [][] corr_data = new float [slices.length][];
for (int nslice = 0; nslice < slices.length; nslice++ ) {
int ns = -1;
for (int i = 0; i < labels.length; i++) {
if (slices[nslice].equals(labels[i])) {
ns = i;
break;
}
}
if (ns < 0) {
System.out.println("Slice "+slices[nslice]+" is not found in the image");
return -1;
} else {
corr_data[nslice] = (float[]) corr_stack.getPixels(ns + 1) ;
}
}
ArrayList<TfInTile> tf_tiles = new ArrayList<TfInTile>();
for (int tileY = 0; tileY < tilesY; tileY++) {
for (int tileX = 0; tileX < tilesX; tileX++) {
if ((tileY==dbgY) && (tileX==dbgX)) {
System.out.println("tileY = "+tileY+", tileX = "+tileX+" tile = "+(tileY*tilesX + tileX));
}
TfInTile tf_tile = new TfInTile();
tf_tile.setFromCorr2d(
corr_data, // float [][] data,
tileX, // int tileX,
tileY, // int tileY,
corr_side, // int corr_side,
tilesX); // int tilesX
if (keep_empty || !Float.isNaN(tf_tile.target_disparity)) {
// if (Float.isNaN(tf_tile.target_disparity)) {
// tf_tile.target_disparity = 0.0f;
// tf_tile.gt_strength = 0.0f;
// }
tf_tiles.add(tf_tile);
}
}
}
//try (){
// sets the limit to the capacity and the position to zero.
fb_corr2d.clear();
fb_target_disparity.clear();
fb_tiles_stage1.clear();
fb_tiles_stage2.clear();
for (int i = 0; i < tf_tiles.size(); i++) {
TfInTile tf_tile = tf_tiles.get(i);
fb_corr2d.put (tf_tile.corr2d);
float td = tf_tile.target_disparity;
if (Float.isNaN(td)) td = 0.0f;
fb_target_disparity.put(i, td);
fb_tiles_stage1.put(tf_tile.tile);
fb_tiles_stage2.put(tf_tile.tile);
}
// fb_target_disparity.limit(tf_tiles.size()); // put float absolute does not movew the pointer
fb_target_disparity.position(tf_tiles.size()); // put float absolute does not movew the pointer
fb_tiles_stage1. position(tf_tiles.size()); // put float absolute does not movew the pointer
fb_tiles_stage2. position(tf_tiles.size()); // put float absolute does not movew the pointer
//sets the limit to the current position and then sets the position to zero.
fb_corr2d. flip();
fb_target_disparity.flip();
fb_tiles_stage1. flip();
fb_tiles_stage2. flip();
String [] titles = {"predicted", "target", "gt_disparity", "gt_strength", "nn_out", "nn_error","abs_err","abs_heur","clean_nn"};
fb_predicted.rewind(); // not needed for absolute get();
float [][] result = new float [titles.length][tilesX*tilesY];
/*
for (int i = 0; i < tf_tiles.size(); i++) {
TfInTile tf_tile = tf_tiles.get(i);
// result[0][i] = tf_tile.target_disparity + fb_predicted.get(i);
result[1][i] = tf_tile.target_disparity;
result[2][i] = tf_tile.gt_disparity;
result[3][i] = tf_tile.gt_strength;
}
//smpb = b.graph();
(new showDoubleFloatArrays()).showArrays(
result,
tilesX,
tilesY,
true,
"NN_disparity-pre",
titles);
*/
//Session sess = b.session();
//System.out.println(b.metaGraphDef());
//final List<String> labels = tensorFlowService.loadLabels(source,
// MODEL_NAME, "imagenet_comp_graph_label_strings.txt");
//System.out.println("Loaded graph and " + labels.size() + " labels");
//if (corr_side > 0) return 0; // always
run_stage1(
fb_corr2d, // FloatBuffer fb_corr2d,
fb_target_disparity, // FloatBuffer fb_target_disparity,
fb_tiles_stage1); // IntBuffer fb_tiles_stage1);
run_stage2(
fb_tiles_stage2, // IntBuffer fb_tiles_stage2,
fb_predicted); // FloatBuffer fb_disparity)
//output = sess.runner().feed(o, t).fetch().run().get(0).copyTo()
/*
try (
final Session s = new Session(g);
@SuppressWarnings("unchecked")
final Tensor<Float> result = (Tensor<Float>) s.runner().feed("input", image)//
.fetch("output").run().get(0)
){
...
if (!keep_empty) {
for (int i =0; i < result[0].length; i++) {
result[0][i]=Float.NaN;
result[1][i]=Float.NaN;
result[2][i]=Float.NaN;
}
*/
//}
try (Graph g = new Graph()) {
final String value = "Hello from " + TensorFlow.version();
// Construct the computation graph with a single operation, a constant
// named "MyConst" with a value "value".
try (Tensor t = Tensor.create(value.getBytes("UTF-8"))) {
// The Java API doesn't yet include convenience functions for adding operations.
g.opBuilder("Const", "MyConst").setAttr("dtype", t.dataType()).setAttr("value", t).build();
}
// Execute the "MyConst" operation in a Session.
try (Session s = new Session(g);
// Generally, there may be multiple output tensors, all of them must be closed to prevent resource leaks.
Tensor output = s.runner().fetch("MyConst").run().get(0)) {
System.out.println(new String(output.bytesValue(), "UTF-8"));
s.close();
output.close();
}
fb_predicted.rewind(); // not needed for absolute get();
for (int i = 0; i < tf_tiles.size(); i++) {
TfInTile tf_tile = tf_tiles.get(i);
result[0][i] = tf_tile.target_disparity + fb_predicted.get(i);
result[1][i] = tf_tile.target_disparity;
result[2][i] = tf_tile.gt_disparity;
result[3][i] = tf_tile.gt_strength;
result[4][i] = fb_predicted.get(i);
result[5][i] = (result[3][i] > 0)?(result[0][i]-result[2][i]):Float.NaN;
result[6][i] = (result[3][i] > 0)?Math.abs(result[5][i]):Float.NaN;
result[7][i] = (result[3][i] > 0)?Math.abs(result[1][i] - result[2][i]):Float.NaN;
result[8][i] = (result[3][i] > 0)?result[0][i]:Float.NaN;
}
(new showDoubleFloatArrays()).showArrays(
result,
tilesX,
tilesY,
true,
"NN_disparity",
titles);
return 0;
}
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment