Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
I
imagej-elphel
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
3
Issues
3
List
Board
Labels
Milestones
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Commits
Issue Boards
Open sidebar
Elphel
imagej-elphel
Commits
9898d7a6
Commit
9898d7a6
authored
Dec 25, 2016
by
Andrey Filippov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
more experimenting
parent
2034f62d
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
853 additions
and
145 deletions
+853
-145
EyesisCorrectionParameters.java
src/main/java/EyesisCorrectionParameters.java
+40
-22
Eyesis_Correction.java
src/main/java/Eyesis_Correction.java
+119
-5
FactorConvKernel.java
src/main/java/FactorConvKernel.java
+694
-118
No files found.
src/main/java/EyesisCorrectionParameters.java
View file @
9898d7a6
...
...
@@ -1650,20 +1650,25 @@ public class EyesisCorrectionParameters {
public
static
class
DCTParameters
{
public
int
dct_size
=
32
;
//
public
int
asym_size
=
6
;
//
public
int
asym_pixels
=
10
;
// maximal number of non-zero pixels in direct convolution kernel
public
int
asym_distance
=
2
;
// how far to try a new asym kernel pixel from existing ones
public
int
dct_window
=
1
;
// currently only 3 types of windows - 0 (none), 1 and 2
public
int
LMA_steps
=
100
;
public
double
fact_precision
=
0.003
;
// stop iterations if error rms less than this part of target kernel rms
public
double
compactness
=
1.0
;
public
int
asym_tax_free
=
1
;
// "compactness" does not apply to pixels with |x|<=asym_tax_free and |y| <= asym_tax_free
public
int
asym_tax_free
=
5
;
// "compactness" does not apply to pixels with |x|<=asym_tax_free and |y| <= asym_tax_free
public
double
dbg_x
=
0
;
public
double
dbg_y
=
0
;
public
double
dbg_x1
=
0
;
public
double
dbg_y1
=
0
;
public
double
dbg_sigma
=
2.0
;
public
String
dbg_mask
=
".........:::::::::.........:::::::::......*..:::::*:::.........:::::::::........."
;
public
DCTParameters
(
int
dct_size
,
int
asym_size
,
int
dct_window
,
double
compactness
,
int
asym_tax_free
)
{
public
DCTParameters
(
int
dct_size
,
int
asym_size
,
int
asym_pixels
,
int
asym_distance
,
int
dct_window
,
double
compactness
,
int
asym_tax_free
)
{
this
.
dct_size
=
dct_size
;
this
.
asym_size
=
asym_size
;
this
.
asym_pixels
=
asym_pixels
;
this
.
asym_distance
=
asym_distance
;
this
.
dct_window
=
dct_window
;
this
.
compactness
=
compactness
;
this
.
asym_tax_free
=
asym_tax_free
;
...
...
@@ -1671,36 +1676,44 @@ public class EyesisCorrectionParameters {
public
void
setProperties
(
String
prefix
,
Properties
properties
){
properties
.
setProperty
(
prefix
+
"dct_size"
,
this
.
dct_size
+
""
);
properties
.
setProperty
(
prefix
+
"asym_size"
,
this
.
asym_size
+
""
);
properties
.
setProperty
(
prefix
+
"asym_pixels"
,
this
.
asym_pixels
+
""
);
properties
.
setProperty
(
prefix
+
"asym_distance"
,
this
.
asym_distance
+
""
);
properties
.
setProperty
(
prefix
+
"dct_window"
,
this
.
dct_window
+
""
);
properties
.
setProperty
(
prefix
+
"compactness"
,
this
.
compactness
+
""
);
properties
.
setProperty
(
prefix
+
"fact_precision"
,
this
.
fact_precision
+
""
);
properties
.
setProperty
(
prefix
+
"asym_tax_free"
,
this
.
asym_tax_free
+
""
);
properties
.
setProperty
(
prefix
+
"LMA_steps"
,
this
.
LMA_steps
+
""
);
properties
.
setProperty
(
prefix
+
"dbg_x"
,
this
.
dbg_x
+
""
);
properties
.
setProperty
(
prefix
+
"dbg_y"
,
this
.
dbg_y
+
""
);
properties
.
setProperty
(
prefix
+
"dbg_x1"
,
this
.
dbg_x1
+
""
);
properties
.
setProperty
(
prefix
+
"dbg_y1"
,
this
.
dbg_y1
+
""
);
properties
.
setProperty
(
prefix
+
"dbg_sigma"
,
this
.
dbg_sigma
+
""
);
properties
.
setProperty
(
prefix
+
"dbg_mask"
,
this
.
dbg_mask
+
""
);
}
public
void
getProperties
(
String
prefix
,
Properties
properties
){
if
(
properties
.
getProperty
(
prefix
+
"dct_size"
)!=
null
)
this
.
dct_size
=
Integer
.
parseInt
(
properties
.
getProperty
(
prefix
+
"dct_size"
));
if
(
properties
.
getProperty
(
prefix
+
"asym_size"
)!=
null
)
this
.
asym_size
=
Integer
.
parseInt
(
properties
.
getProperty
(
prefix
+
"asym_size"
));
if
(
properties
.
getProperty
(
prefix
+
"asym_pixels"
)!=
null
)
this
.
asym_pixels
=
Integer
.
parseInt
(
properties
.
getProperty
(
prefix
+
"asym_pixels"
));
if
(
properties
.
getProperty
(
prefix
+
"asym_distance"
)!=
null
)
this
.
asym_distance
=
Integer
.
parseInt
(
properties
.
getProperty
(
prefix
+
"asym_distance"
));
if
(
properties
.
getProperty
(
prefix
+
"dct_window"
)!=
null
)
this
.
dct_window
=
Integer
.
parseInt
(
properties
.
getProperty
(
prefix
+
"dct_window"
));
if
(
properties
.
getProperty
(
prefix
+
"compactness"
)!=
null
)
this
.
compactness
=
Double
.
parseDouble
(
properties
.
getProperty
(
prefix
+
"compactness"
));
if
(
properties
.
getProperty
(
prefix
+
"fact_precision"
)!=
null
)
this
.
fact_precision
=
Double
.
parseDouble
(
properties
.
getProperty
(
prefix
+
"fact_precision"
));
if
(
properties
.
getProperty
(
prefix
+
"asym_tax_free"
)!=
null
)
this
.
asym_tax_free
=
Integer
.
parseInt
(
properties
.
getProperty
(
prefix
+
"asym_tax_free"
));
if
(
properties
.
getProperty
(
prefix
+
"LMA_steps"
)!=
null
)
this
.
LMA_steps
=
Integer
.
parseInt
(
properties
.
getProperty
(
prefix
+
"LMA_steps"
));
if
(
properties
.
getProperty
(
prefix
+
"dbg_x"
)!=
null
)
this
.
dbg_x
=
Double
.
parseDouble
(
properties
.
getProperty
(
prefix
+
"dbg_x"
));
if
(
properties
.
getProperty
(
prefix
+
"dbg_y"
)!=
null
)
this
.
dbg_y
=
Double
.
parseDouble
(
properties
.
getProperty
(
prefix
+
"dbg_y"
));
if
(
properties
.
getProperty
(
prefix
+
"dbg_x1"
)!=
null
)
this
.
dbg_x1
=
Double
.
parseDouble
(
properties
.
getProperty
(
prefix
+
"dbg_x1"
));
if
(
properties
.
getProperty
(
prefix
+
"dbg_y1"
)!=
null
)
this
.
dbg_y1
=
Double
.
parseDouble
(
properties
.
getProperty
(
prefix
+
"dbg_y1"
));
if
(
properties
.
getProperty
(
prefix
+
"dbg_sigma"
)!=
null
)
this
.
dbg_sigma
=
Double
.
parseDouble
(
properties
.
getProperty
(
prefix
+
"dbg_sigma"
));
if
(
properties
.
getProperty
(
prefix
+
"dbg_mask"
)!=
null
)
this
.
dbg_mask
=
properties
.
getProperty
(
prefix
+
"dbg_mask"
);
}
public
boolean
showDialog
()
{
GenericDialog
gd
=
new
GenericDialog
(
"Set DCT parameters"
);
gd
.
addNumericField
(
"DCT size"
,
this
.
dct_size
,
0
);
//32
gd
.
addNumericField
(
"Size of asymmetrical (non-DCT) kernel"
,
this
.
asym_size
,
0
);
//6
gd
.
addNumericField
(
"Maximal number of non-zero pixels in direct convolution kernel"
,
this
.
asym_pixels
,
0
);
//6
gd
.
addNumericField
(
"How far to try a new asym kernel pixel from existing ones"
,
this
.
asym_distance
,
0
);
//6
gd
.
addNumericField
(
"MDCT window type (0,1,2)"
,
this
.
dct_window
,
0
);
//0..2
gd
.
addNumericField
(
"LMA_steps"
,
this
.
LMA_steps
,
0
);
//0..2
gd
.
addNumericField
(
"Compactness (punish off-center asym_kernel pixels (proportional to r^2)"
,
this
.
compactness
,
2
);
//0..2
...
...
@@ -1712,11 +1725,14 @@ public class EyesisCorrectionParameters {
gd
.
addNumericField
(
"dbg_x1"
,
this
.
dbg_x1
,
2
);
//0..2
gd
.
addNumericField
(
"dbg_y1"
,
this
.
dbg_y1
,
2
);
//0..2
gd
.
addNumericField
(
"dbg_sigma"
,
this
.
dbg_sigma
,
3
);
//0..2
gd
.
addStringField
(
"Debug mask (anything but * is false)"
,
this
.
dbg_mask
,
100
);
// gd.addNumericField("Debug Level:", MASTER_DEBUG_LEVEL, 0);
gd
.
showDialog
();
if
(
gd
.
wasCanceled
())
return
false
;
this
.
dct_size
=
(
int
)
gd
.
getNextNumber
();
this
.
asym_size
=
(
int
)
gd
.
getNextNumber
();
this
.
asym_pixels
=
(
int
)
gd
.
getNextNumber
();
this
.
asym_distance
=
(
int
)
gd
.
getNextNumber
();
this
.
dct_window
=
(
int
)
gd
.
getNextNumber
();
this
.
LMA_steps
=
(
int
)
gd
.
getNextNumber
();
this
.
compactness
=
gd
.
getNextNumber
();
...
...
@@ -1727,6 +1743,8 @@ public class EyesisCorrectionParameters {
this
.
dbg_x1
=
gd
.
getNextNumber
();
this
.
dbg_y1
=
gd
.
getNextNumber
();
this
.
dbg_sigma
=
gd
.
getNextNumber
();
this
.
dbg_mask
=
gd
.
getNextString
();
// MASTER_DEBUG_LEVEL= (int) gd.getNextNumber();
return
true
;
}
...
...
src/main/java/Eyesis_Correction.java
View file @
9898d7a6
...
...
@@ -87,9 +87,11 @@ private Panel panel1,panel2,panel3,panel4,panel5,panel5a, panel6,panel7,panelPos
public
static
EyesisCorrectionParameters
.
DCTParameters
DCT_PARAMETERS
=
new
EyesisCorrectionParameters
.
DCTParameters
(
32
,
// dct_size
6
,
// asym_size
10
,
// asym_pixels = 10; // maximal number of non-zero pixels in direct convolution kernel
2
,
// asym_distance = 2; // how far to try a new asym kernel pixel from existing ones
1
,
// dct_window
1.0
,
// double compactness
1
// asym_tax_free);
1.0
,
// double compactness
5
// asym_tax_free);
);
public
static
EyesisDCT
EYESIS_DCT
=
null
;
...
...
@@ -452,6 +454,7 @@ private Panel panel1,panel2,panel3,panel4,panel5,panel5a, panel6,panel7,panelPos
addButton
(
"DCT test 3"
,
panelDct1
,
color_process
);
addButton
(
"DCT test 4"
,
panelDct1
,
color_process
);
addButton
(
"Test Kernel Factorization"
,
panelDct1
,
color_process
);
addButton
(
"Min Kernel Factorization"
,
panelDct1
,
color_process
);
addButton
(
"Create DCT kernels"
,
panelDct1
,
color_process
);
add
(
panelDct1
);
}
...
...
@@ -2874,11 +2877,31 @@ private Panel panel1,panel2,panel3,panel4,panel5,panel5a, panel6,panel7,panelPos
}
}
boolean
[]
mask
=
null
;
if
(!
DCT_PARAMETERS
.
dbg_mask
.
equals
(
""
)){
mask
=
new
boolean
[
DCT_PARAMETERS
.
asym_size
*
DCT_PARAMETERS
.
asym_size
];
for
(
int
ii
=
0
;
ii
<
mask
.
length
;
ii
++)
{
mask
[
ii
]
=
((
ii
<=
DCT_PARAMETERS
.
dbg_mask
.
length
())
&&
(
DCT_PARAMETERS
.
dbg_mask
.
charAt
(
ii
)
==
'*'
));
}
/*
System.out.println("asym mask: ");
for (int ii=0;ii<DCT_PARAMETERS.asym_size;ii++){
System.out.print(ii+": ");
for (int jj=0;jj<DCT_PARAMETERS.asym_size;jj++){
System.out.print((mask[ii*DCT_PARAMETERS.asym_size+jj]?" X":" .")+" ");
}
System.out.println();
}
*/
}
boolean
result
=
factorConvKernel
.
calcKernels
(
target_expanded
,
DCT_PARAMETERS
.
asym_size
,
DCT_PARAMETERS
.
dct_size
,
DCT_PARAMETERS
.
fact_precision
);
DCT_PARAMETERS
.
fact_precision
,
mask
);
System
.
out
.
println
(
"factorConvKernel.calcKernels() returned: >>> "
+
result
+
" <<<"
);
double
[]
sym_kernel
=
factorConvKernel
.
getSymKernel
();
double
[]
asym_kernel
=
factorConvKernel
.
getAsymKernel
();
...
...
@@ -2893,8 +2916,99 @@ private Panel panel1,panel2,panel3,panel4,panel5,panel5a, panel6,panel7,panelPos
SDFA_INSTANCE
.
showArrays
(
compare_kernels
,
target_expanded_size
,
target_expanded_size
,
true
,
"compare_kernels"
);
// SDFA_INSTANCE.showArrays(convolved, target_kernel_size, target_kernel_size, "convolved");
return
;
}
else
if
(
label
.
equals
(
"Min Kernel Factorization"
)){
DEBUG_LEVEL
=
MASTER_DEBUG_LEVEL
;
if
(!
DCT_PARAMETERS
.
showDialog
())
return
;
FactorConvKernel
factorConvKernel
=
new
FactorConvKernel
();
factorConvKernel
.
setDebugLevel
(
DEBUG_LEVEL
);
factorConvKernel
.
numIterations
=
DCT_PARAMETERS
.
LMA_steps
;
factorConvKernel
.
setAsymCompactness
(
DCT_PARAMETERS
.
compactness
,
DCT_PARAMETERS
.
asym_tax_free
);
int
target_kernel_size
=
2
*
DCT_PARAMETERS
.
dct_size
-
1
;
double
[]
target_kernel
=
new
double
[
target_kernel_size
*
target_kernel_size
];
for
(
int
ii
=
0
;
ii
<
target_kernel
.
length
;
ii
++)
target_kernel
[
ii
]=
0.0
;
double
dist
=
Math
.
sqrt
((
DCT_PARAMETERS
.
dbg_x1
-
DCT_PARAMETERS
.
dbg_x
)*(
DCT_PARAMETERS
.
dbg_x1
-
DCT_PARAMETERS
.
dbg_x
)+
(
DCT_PARAMETERS
.
dbg_y1
-
DCT_PARAMETERS
.
dbg_y
)*(
DCT_PARAMETERS
.
dbg_y1
-
DCT_PARAMETERS
.
dbg_y
));
int
num_steps
=
(
int
)
Math
.
round
(
dist
+
0.5
);
dist
=
num_steps
;
for
(
int
ii
=
0
;
ii
<=
num_steps
;
ii
++)
{
int
dbg_x
=
(
int
)
Math
.
round
((
DCT_PARAMETERS
.
dbg_x1
-
DCT_PARAMETERS
.
dbg_x
)*
ii
/
dist
+
DCT_PARAMETERS
.
dbg_x
);
int
dbg_y
=
(
int
)
Math
.
round
((
DCT_PARAMETERS
.
dbg_y1
-
DCT_PARAMETERS
.
dbg_y
)*
ii
/
dist
+
DCT_PARAMETERS
.
dbg_y
);
target_kernel
[(
target_kernel_size
/
2
+
dbg_y
)*
target_kernel_size
+(
target_kernel_size
/
2
+
dbg_x
)]
=
1.0
;
if
(
MASTER_DEBUG_LEVEL
>
2
)
{
System
.
out
.
println
(
ii
+
": "
+((
DCT_PARAMETERS
.
dbg_x1
-
DCT_PARAMETERS
.
dbg_x
)*
ii
/
dist
+
DCT_PARAMETERS
.
dbg_x
)+
" / "
+
((
DCT_PARAMETERS
.
dbg_y1
-
DCT_PARAMETERS
.
dbg_y
)*
ii
/
dist
+
DCT_PARAMETERS
.
dbg_y
)+
" ("
+
dbg_x
+
":"
+
dbg_y
+
")"
);
}
}
double
blurSigma
=
DCT_PARAMETERS
.
dbg_sigma
;
DoubleGaussianBlur
gb
=
null
;
if
(
blurSigma
>
0
)
gb
=
new
DoubleGaussianBlur
();
if
(
blurSigma
>
0
)
gb
.
blurDouble
(
target_kernel
,
target_kernel_size
,
target_kernel_size
,
blurSigma
,
blurSigma
,
0.01
);
// SDFA_INSTANCE.showArrays(target_kernel, target_kernel_size, target_kernel_size, "target_kernel");
int
target_expanded_size
=
2
*
DCT_PARAMETERS
.
dct_size
+
DCT_PARAMETERS
.
asym_size
-
2
;
double
[]
target_expanded
=
new
double
[
target_expanded_size
*
target_expanded_size
];
for
(
int
ii
=
0
;
ii
<
target_expanded
.
length
;
ii
++)
target_expanded
[
ii
]=
0.0
;
int
left_top_margin
=
((
DCT_PARAMETERS
.
asym_size
-
1
)/
2
);
for
(
int
ii
=
0
;
ii
<
target_kernel_size
;
ii
++){
for
(
int
jj
=
0
;
jj
<
target_kernel_size
;
jj
++){
target_expanded
[(
ii
+
left_top_margin
)*
target_expanded_size
+
(
jj
+
left_top_margin
)]
=
target_kernel
[
ii
*
target_kernel_size
+
jj
];
}
}
int
numPixels
=
factorConvKernel
.
calcKernels
(
target_expanded
,
DCT_PARAMETERS
.
asym_size
,
DCT_PARAMETERS
.
dct_size
,
DCT_PARAMETERS
.
fact_precision
,
DCT_PARAMETERS
.
asym_pixels
,
DCT_PARAMETERS
.
asym_distance
);
/*
public int calcKernels(
double []target_kernel,
int asym_size,
int sym_radius,
double fact_precision,
int asym_pixels, // maximal number of non-zero pixels in asymmmetrical kernel
int asym_distance){ // how far to seed a new pixel
*/
System
.
out
.
println
(
"factorConvKernel.calcKernels() returned: >>> "
+
numPixels
+
" <<<"
);
double
[]
sym_kernel
=
factorConvKernel
.
getSymKernel
();
double
[]
asym_kernel
=
factorConvKernel
.
getAsymKernel
();
double
[]
convolved
=
factorConvKernel
.
getConvolved
();
double
[][]
compare_kernels
=
{
target_expanded
,
convolved
};
System
.
out
.
println
(
"DCT_PARAMETERS.dct_size="
+
DCT_PARAMETERS
.
dct_size
+
" DCT_PARAMETERS.asym_size="
+
DCT_PARAMETERS
.
asym_size
);
System
.
out
.
println
(
"sym_kernel.length="
+
sym_kernel
.
length
);
System
.
out
.
println
(
"asym_kernel.length="
+
asym_kernel
.
length
);
System
.
out
.
println
(
"convolved.length="
+
convolved
.
length
);
SDFA_INSTANCE
.
showArrays
(
sym_kernel
,
DCT_PARAMETERS
.
dct_size
,
DCT_PARAMETERS
.
dct_size
,
"sym_kernel"
);
SDFA_INSTANCE
.
showArrays
(
asym_kernel
,
DCT_PARAMETERS
.
asym_size
,
DCT_PARAMETERS
.
asym_size
,
"asym_kernel"
);
SDFA_INSTANCE
.
showArrays
(
compare_kernels
,
target_expanded_size
,
target_expanded_size
,
true
,
"compare_kernels"
);
// SDFA_INSTANCE.showArrays(convolved, target_kernel_size, target_kernel_size, "convolved");
return
;
}
else
if
(
label
.
equals
(
"DCT test 4"
))
{
/*
public int calcKernels(
double []target_kernel,
int asym_size,
int sym_radius,
double fact_precision,
int asym_pixels, // maximal number of non-zero pixels in asymmmetrical kernel
int asym_distance){ // how far to seed a new pixel
*/
DEBUG_LEVEL
=
MASTER_DEBUG_LEVEL
;
EYESIS_CORRECTIONS
.
setDebug
(
DEBUG_LEVEL
);
String
configPath
=
null
;
...
...
src/main/java/FactorConvKernel.java
View file @
9898d7a6
...
...
@@ -23,6 +23,9 @@
** -----------------------------------------------------------------------------**
**
*/
import
java.util.ArrayList
;
import
java.util.Random
;
import
Jama.LUDecomposition
;
import
Jama.Matrix
;
import
ij.IJ
;
...
...
@@ -36,7 +39,8 @@ import ij.IJ;
* Bayer mosaic data.
* 1. Do as now, then select N of the highest absolute value asymmetrical elements, mask out (and zero) all others
* 2. Optionally try to improve: Remove some from step 1, then add one-by-one: select from neighbors (or neighbors of neighbors?)
* add the one that gets the best improvement
* add the one that gets the best improvement.
* 3. Try "jumping" (one remove, one add)?
*/
...
...
@@ -47,6 +51,8 @@ public class FactorConvKernel {
public
double
target_rms
;
// Target kernel rma (to compare with residual error)
public
int
debugLevel
=
3
;
public
double
init_lambda
=
0.001
;
public
int
asym_pixels
=
10
;
// maximal number of non-zero pixels in asymmmetrical kernel
public
int
asym_distance
=
2
;
// how far to seed a new pixel
public
double
compactness_weight
=
1.0
;
// realtive "importance of asymmetrical kernel being compact"
public
int
asym_tax_free
=
1
;
// do not apply compactness_weight for pixels close to the center
...
...
@@ -56,7 +62,7 @@ public class FactorConvKernel {
public
double
lambdaStepDown
=
0.5
;
// multiply lambda by this if result is better
public
double
thresholdFinish
=
0.001
;
// (copied from series) stop iterations if 2 last steps had less improvement (but not worsening )
public
int
numIterations
=
100
;
// maximal number of iterations
public
double
maxLambda
=
100.0
;
// max lambda to fail
public
double
maxLambda
=
100
0
.0
;
// max lambda to fail
public
boolean
stopOnFailure
=
true
;
...
...
@@ -74,6 +80,7 @@ public class FactorConvKernel {
public
double
firstRMSPure
=
-
1.0
;
// RMS before current series of LMA started
// public boolean [] vector_mask = null;
public
double
[]
currentfX
=
null
;
// conv
public
double
[]
nextfX
=
null
;
public
double
[]
currentVector
=
null
;
//kern_vector;
...
...
@@ -84,7 +91,7 @@ public class FactorConvKernel {
public
LMAArrays
lMAArrays
=
null
;
public
LMAArrays
savedLMAArrays
=
null
;
public
double
[]
lastImprovements
=
{-
1.0
,-
1.0
};
// {last improvement, previous improvement}. If both >0 and < thresholdFinish - done
public
double
goal_rms_pure
;
public
class
LMAArrays
{
...
...
@@ -111,12 +118,261 @@ public class FactorConvKernel {
double
[]
target_kernel
,
int
asym_size
,
int
sym_radius
,
double
fact_precision
){
double
fact_precision
,
boolean
[]
mask
){
this
.
asym_size
=
asym_size
;
this
.
sym_radius
=
sym_radius
;
this
.
target_kernel
=
target_kernel
;
return
levenbergMarquardt
(
fact_precision
);
initLevenbergMarquardt
(
fact_precision
);
if
(
mask
!=
null
){
if
(
this
.
debugLevel
>
2
)
{
System
.
out
.
println
(
"calcKernels(): this.currentVector 0"
);
for
(
int
i
=
63
;
i
<
this
.
currentVector
.
length
;
i
++){
System
.
out
.
println
(
i
+
": "
+
this
.
currentVector
[
i
]);
}
}
int
asym_start
=
sym_radius
*
sym_radius
-
1
;
for
(
int
i
=
0
;
i
<
mask
.
length
;
i
++)
if
(!
mask
[
i
])
this
.
currentVector
[
asym_start
+
i
]
=
Double
.
NaN
;
if
(
debugLevel
>
0
){
System
.
out
.
println
(
"mask.length="
+
mask
.
length
+
" asym_start="
+
asym_start
+
" this.currentVector.length="
+
this
.
currentVector
.
length
);
System
.
out
.
println
(
"asym mask: "
);
for
(
int
ii
=
0
;
ii
<
asym_size
;
ii
++){
System
.
out
.
print
(
ii
+
": "
);
for
(
int
jj
=
0
;
jj
<
asym_size
;
jj
++){
System
.
out
.
print
((
mask
[
ii
*
asym_size
+
jj
]?
" X"
:
" ."
)+
" "
);
}
System
.
out
.
println
();
}
}
}
if
(
this
.
debugLevel
>
2
)
{
System
.
out
.
println
(
"calcKernels(): this.currentVector 1"
);
for
(
int
i
=
63
;
i
<
this
.
currentVector
.
length
;
i
++){
System
.
out
.
println
(
i
+
": "
+
this
.
currentVector
[
i
]);
}
}
return
levenbergMarquardt
();
}
public
int
calcKernels
(
double
[]
target_kernel
,
int
asym_size
,
int
sym_radius
,
double
fact_precision
,
int
asym_pixels
,
// maximal number of non-zero pixels in asymmmetrical kernel
int
asym_distance
){
// how far to seed a new pixel
this
.
asym_size
=
asym_size
;
this
.
sym_radius
=
sym_radius
;
this
.
target_kernel
=
target_kernel
;
this
.
asym_pixels
=
asym_pixels
;
this
.
asym_distance
=
asym_distance
;
int
asym_start
=
sym_radius
*
sym_radius
-
1
;
int
num_lma
=
0
;
double
s
=
0.0
;
for
(
int
i
=
0
;
i
<
target_kernel
.
length
;
i
++){
s
+=
target_kernel
[
i
]*
target_kernel
[
i
];
}
this
.
goal_rms_pure
=
Math
.
sqrt
(
s
/
target_kernel
.
length
)*
fact_precision
;
double
[]
bestRms
=
new
double
[
asym_pixels
];
int
[]
enPixels
=
new
int
[
asym_pixels
];
// int numPixels = 0;
this
.
startTime
=
System
.
nanoTime
();
double
[]
initialVector
=
setInitialVector
(
target_kernel
,
null
);
// should be (asym_size + 2*sym_radius-1)**2
enPixels
[
0
]
=
center_i0
*
asym_size
+
center_j0
;
boolean
[]
mask
=
new
boolean
[
asym_size
*
asym_size
];
for
(
int
i
=
0
;
i
<
mask
.
length
;
i
++)
mask
[
i
]
=
false
;
mask
[
enPixels
[
0
]]
=
true
;
this
.
currentVector
=
initialVector
.
clone
();
System
.
out
.
println
(
"mask.length="
+
mask
.
length
+
" asym_start="
+
asym_start
+
" this.currentVector.length="
+
this
.
currentVector
.
length
);
for
(
int
i
=
0
;
i
<
mask
.
length
;
i
++)
if
(!
mask
[
i
])
this
.
currentVector
[
asym_start
+
i
]
=
Double
.
NaN
;
boolean
OK
=
levenbergMarquardt
();
num_lma
++;
bestRms
[
0
]
=
this
.
currentRMSPure
;
/*
for (int i = 0; i<numPixels; i++) mask[enPixels[i]] = true;
this.currentVector = initialVector.clone();
for (int i = 0; i<mask.length; i++) if (!mask[i]) this.currentVector[asym_start+1] = Double.NaN;
boolean OK = levenbergMarquardt();
if (numPixels == 1){
bestRms[numPixels-1] = this.currentRMSPure;
}
*/
int
numPixels
=
0
;
for
(
numPixels
=
1
;
numPixels
<
asym_pixels
;
numPixels
++)
{
if
(
debugLevel
>
0
)
{
System
.
out
.
println
(
"calcKernels() numPixels="
+
numPixels
);
}
for
(
int
i
=
0
;
i
<
mask
.
length
;
i
++)
mask
[
i
]
=
false
;
for
(
int
i
=
0
;
i
<
numPixels
;
i
++)
mask
[
enPixels
[
i
]]
=
true
;
boolean
[]
mask0
=
mask
.
clone
();
for
(
int
n
=
0
;
n
<
asym_distance
;
n
++){
boolean
[]
mask1
=
mask0
.
clone
();
if
(
asym_size
<
0
){
asym_size
=
-
asym_size
;
for
(
int
i
=
0
;
i
<
asym_size
;
i
++){
for
(
int
j
=
1
;
j
<
asym_size
;
j
++){
mask1
[
asym_size
*
i
+
j
]
|=
mask0
[
asym_size
*
i
+
j
-
1
];
mask1
[
asym_size
*
i
+
(
asym_size
-
j
-
1
)]
|=
mask0
[
asym_size
*
i
+
(
asym_size
-
j
)];
mask1
[
asym_size
*
j
+
i
]
|=
mask0
[
asym_size
*(
j
-
1
)
+
i
];
mask1
[
asym_size
*(
asym_size
-
j
-
1
)
+
i
]
|=
mask0
[
asym_size
*(
asym_size
-
j
)
+
i
];
}
}
}
else
{
// hor
for
(
int
i
=
0
;
i
<
asym_size
;
i
++){
for
(
int
j
=
1
;
j
<
asym_size
;
j
++){
mask1
[
asym_size
*
i
+
j
]
|=
mask0
[
asym_size
*
i
+
j
-
1
];
mask1
[
asym_size
*
i
+
(
asym_size
-
j
-
1
)]
|=
mask0
[
asym_size
*
i
+
(
asym_size
-
j
)];
}
}
// vert
mask0
=
mask1
.
clone
();
for
(
int
i
=
0
;
i
<
asym_size
;
i
++){
for
(
int
j
=
1
;
j
<
asym_size
;
j
++){
mask1
[
asym_size
*
j
+
i
]
|=
mask0
[
asym_size
*(
j
-
1
)
+
i
];
mask1
[
asym_size
*(
asym_size
-
j
-
1
)
+
i
]
|=
mask0
[
asym_size
*(
asym_size
-
j
)
+
i
];
}
}
}
mask0
=
mask1
.
clone
();
if
(
debugLevel
>
1
)
{
System
.
out
.
println
(
"mask0: (n="
+
n
+
"), asym_size="
+
asym_size
+
" mask0.length="
+
mask0
.
length
);
for
(
int
i
=
0
;
i
<
asym_size
;
i
++){
System
.
out
.
print
(
i
+
": "
);
for
(
int
j
=
0
;
j
<
asym_size
;
j
++){
System
.
out
.
print
((
mask0
[
i
*
asym_size
+
j
]?
" X"
:
" ."
)+
" "
);
}
System
.
out
.
println
();
}
System
.
out
.
println
(
"calcKernels() numPixels="
+
numPixels
);
}
}
if
(
debugLevel
>
0
)
{
System
.
out
.
println
(
"mask/mask0: , asym_size="
+
asym_size
+
" mask0.length="
+
mask0
.
length
);
for
(
int
i
=
0
;
i
<
asym_size
;
i
++){
System
.
out
.
print
(
i
+
": "
);
for
(
int
j
=
0
;
j
<
asym_size
;
j
++){
System
.
out
.
print
((
mask
[
i
*
asym_size
+
j
]?
" O"
:(
mask0
[
i
*
asym_size
+
j
]?
" X"
:
" ."
))+
" "
);
}
System
.
out
.
println
();
}
System
.
out
.
println
(
"calcKernels() numPixels="
+
numPixels
);
}
ArrayList
<
Integer
>
asym_candidates
=
new
ArrayList
<
Integer
>();
for
(
int
i
=
0
;
i
<
mask
.
length
;
i
++)
if
(
mask0
[
i
]
&&
!
mask
[
i
])
asym_candidates
.
add
(
new
Integer
(
i
));
double
[]
results
=
new
double
[
asym_candidates
.
size
()];
System
.
out
.
println
(
"asym_candidates.size()="
+
asym_candidates
.
size
()+
" asym_start="
+
asym_start
);
for
(
int
ncand
=
0
;
ncand
<
asym_candidates
.
size
();
ncand
++){
mask0
=
mask
.
clone
();
mask0
[
asym_candidates
.
get
(
ncand
)]
=
true
;
this
.
currentVector
=
initialVector
.
clone
();
for
(
int
i
=
0
;
i
<
mask0
.
length
;
i
++)
if
(!
mask0
[
i
])
this
.
currentVector
[
asym_start
+
i
]
=
Double
.
NaN
;
if
(
debugLevel
>
0
)
{
System
.
out
.
println
(
"+++ mask0: asym_size="
+
asym_size
+
" mask0.length="
+
mask0
.
length
);
for
(
int
i
=
0
;
i
<
asym_size
;
i
++){
System
.
out
.
print
(
i
+
": "
);
for
(
int
j
=
0
;
j
<
asym_size
;
j
++){
System
.
out
.
print
((
mask0
[
i
*
asym_size
+
j
]?
" X"
:
" ."
)+
" "
);
}
System
.
out
.
println
();
}
System
.
out
.
println
(
"calcKernels() numPixels="
+
numPixels
);
}
if
(
debugLevel
>
1
)
{
System
.
out
.
println
(
"Before calling levenbergMarquardt numPixels = "
+
numPixels
+
" ncand="
+
ncand
);
}
OK
=
levenbergMarquardt
();
num_lma
++;
if
(
debugLevel
>
1
)
{
System
.
out
.
println
(
"After calling levenbergMarquardt, OK="
+
OK
+
" numPixels = "
+
numPixels
+
" ncand="
+
ncand
);
}
if
(
debugLevel
>
2
)
{
for
(
int
i
=
asym_start
;
i
<
this
.
currentVector
.
length
;
i
++){
System
.
out
.
println
(
"currentVector["
+
i
+
"]="
+
currentVector
[
i
]);
}
}
results
[
ncand
]
=
this
.
currentRMSPure
;
}
int
best_cand
=
0
;
for
(
int
ncand
=
1
;
ncand
<
asym_candidates
.
size
();
ncand
++){
if
(
results
[
ncand
]
<
results
[
best_cand
]){
best_cand
=
ncand
;
}
}
bestRms
[
numPixels
]
=
results
[
best_cand
];
enPixels
[
numPixels
]
=
asym_candidates
.
get
(
best_cand
);
if
(
results
[
best_cand
]
<
this
.
goal_rms_pure
)
{
if
(
debugLevel
>
0
)
{
System
.
out
.
println
(
"Reached goal at numPixels="
+(
numPixels
+
1
)+
" results["
+
best_cand
+
"]= "
+
results
[
best_cand
]+
" < "
+
this
.
goal_rms_pure
);
}
numPixels
++;
break
;
}
}
// Re-run with the best settings
for
(
int
i
=
0
;
i
<
mask
.
length
;
i
++)
mask
[
i
]
=
false
;
for
(
int
i
=
0
;
i
<
numPixels
;
i
++)
mask
[
enPixels
[
i
]]
=
true
;
this
.
currentVector
=
initialVector
.
clone
();
for
(
int
i
=
0
;
i
<
mask
.
length
;
i
++)
if
(!
mask
[
i
])
this
.
currentVector
[
asym_start
+
i
]
=
Double
.
NaN
;
if
(
debugLevel
>
0
)
{
System
.
out
.
println
(
"Final mask"
);
for
(
int
i
=
0
;
i
<
asym_size
;
i
++){
System
.
out
.
print
(
i
+
": "
);
for
(
int
j
=
0
;
j
<
asym_size
;
j
++){
System
.
out
.
print
((
mask
[
i
*
asym_size
+
j
]?
" X"
:
" ."
)+
" "
);
}
System
.
out
.
println
();
}
System
.
out
.
println
(
"calcKernels() numPixels="
+
numPixels
);
}
OK
=
levenbergMarquardt
();
if
(
debugLevel
>
0
)
{
for
(
int
i
=
0
;
i
<
numPixels
;
i
++){
System
.
out
.
println
(
i
+
": "
+
bestRms
[
i
]+
" i="
+(
enPixels
[
i
]/
asym_size
)+
" j="
+(
enPixels
[
i
]%
asym_size
));
}
System
.
out
.
println
(
"Target pure rms is="
+
this
.
goal_rms_pure
);
}
System
.
out
.
println
(
"Number of LMA runs = "
+
num_lma
+
", spent "
+
IJ
.
d2s
(
0.000000001
*(
System
.
nanoTime
()-
startTime
),
3
)+
" sec"
);
return
numPixels
;
}
/*
properties.setProperty(prefix+"asym_pixels",this.asym_pixels+"");
properties.setProperty(prefix+"asym_distance",this.asym_distance+"");
*/
public
double
[]
getSymKernel
(){
return
getSymKernel
(
currentVector
,
sym_kernel_scale
);
...
...
@@ -170,14 +426,18 @@ public class FactorConvKernel {
// initial estimation
private
double
[]
setInitialVector
(
double
[]
target_kernel
)
// should be (asym_size + 2*sym_radius-1)**2
double
[]
target_kernel
,
// should be (asym_size + 2*sym_radius-1)**2
boolean
[]
asym_mask
)
// which of the asymmetrical kernel to use
{
int
conv_size
=
asym_size
+
2
*
sym_radius
-
2
;
int
sym_rad_m1
=
sym_radius
-
1
;
// 7
// find center of the target kernel squared value
double
s0
=
0.0
,
sx
=
0.0
,
sy
=
0.0
;
double
scx
=
0.0
,
scy
=
0.0
;
if
(
asym_mask
==
null
)
{
asym_mask
=
new
boolean
[
asym_size
*
asym_size
];
for
(
int
i
=
0
;
i
<
asym_mask
.
length
;
i
++
)
asym_mask
[
i
]
=
true
;
}
for
(
int
i
=
0
;
i
<
conv_size
;
i
++){
for
(
int
j
=
0
;
j
<
conv_size
;
j
++){
double
d
=
target_kernel
[
conv_size
*
i
+
j
];
...
...
@@ -208,8 +468,9 @@ public class FactorConvKernel {
if
(
i0
>=
asym_size
)
i0
=
asym_size
-
1
;
if
(
j0
>=
asym_size
)
j0
=
asym_size
-
1
;
}
Random
rand
=
new
Random
();
double
[]
asym_kernel
=
new
double
[
asym_size
*
asym_size
];
for
(
int
i
=
0
;
i
<
asym_kernel
.
length
;
i
++)
asym_kernel
[
i
]
=
0
.0
;
for
(
int
i
=
0
;
i
<
asym_kernel
.
length
;
i
++)
asym_kernel
[
i
]
=
0
;
// 0.001*(rand.nextDouble()-0.5)/(asym_size*asym_size)
;
asym_kernel
[
asym_size
*
i0
+
j0
]
=
1.0
;
center_i0
=
i0
;
// center to calcualte compatess odf asymmetrical kernel
...
...
@@ -220,6 +481,10 @@ public class FactorConvKernel {
System
.
out
.
println
(
"asym_kernel["
+
i
+
"] = "
+
asym_kernel
[
i
]);
}
}
for
(
int
i
=
0
;
i
<
asym_kernel
.
length
;
i
++)
{
if
(!
asym_mask
[
i
])
asym_kernel
[
i
]
=
Double
.
NaN
;
}
double
[]
sym_kernel
=
new
double
[
sym_radius
*
sym_radius
];
int
[]
sym_kernel_count
=
new
int
[
sym_radius
*
sym_radius
];
...
...
@@ -260,19 +525,79 @@ public class FactorConvKernel {
System
.
out
.
println
(
"kvect["
+
i
+
"] = "
+
kvect
[
i
]);
}
}
return
kvect
;
}
/*
// Remove masked out elements of the parameters vector
private double [] compressVector(
double [] kvect){
int comp_len = kvect.length;
for (int i = 0; i<kvect.length; i++) if (Double.isNaN(kvect[i])) comp_len--;
double [] cvect = new double[comp_len];
this.vector_mask = new boolean[kvect.length];
int indx = 0;
for (int i = 0; i<kvect.length; i++){
this.vector_mask[i] = !Double.isNaN(kvect[i]);
if (this.vector_mask[i]) cvect[indx++] = kvect[i];
}
return cvect;
}
private double [] expandVector(
double [] cvect,
double [] mvect){ // 'old' parameter vectors where Double.NaN means disabled
double [] kvect = new double [mvect.length];
int indx = 0;
for (int i = 0; i < mvect.length; i++){
if (!Double.isNaN(mvect[i])) kvect[i] = cvect[indx++];
else kvect[i] = Double.NaN;
}
return kvect;
}
*/
private
void
maskAsymPoint
(
double
[]
kvect
,
int
indx
)
{
kvect
[
indx
+
sym_radius
*
sym_radius
-
1
]
=
Double
.
NaN
;
}
private
void
unMaskAsymPoint
(
double
[]
kvect
,
int
indx
)
{
kvect
[
indx
+
sym_radius
*
sym_radius
-
1
]
=
0.0
;
}
private
int
[]
getVectorLengths
(
double
[]
kvect
){
// full lengths, some elements may be Double.NaN (disabled)
int
[]
lengths
=
{
0
,
0
,
0
};
// [0] - full length; [1] - asym start, [2] - asym length;
for
(
int
i
=
0
;
i
<
sym_radius
*
sym_radius
-
1
;
i
++){
if
(!
Double
.
isNaN
(
kvect
[
i
]))
lengths
[
1
]
++;
}
for
(
int
i
=
sym_radius
*
sym_radius
-
1
;
i
<
kvect
.
length
;
i
++){
if
(!
Double
.
isNaN
(
kvect
[
i
]))
lengths
[
2
]
++;
}
lengths
[
0
]
=
lengths
[
1
]
+
lengths
[
2
];
return
lengths
;
}
private
double
[]
getDerivDelta
(
// calcualte approximate partial derivative as delta
double
[]
kvect
,
// parameters vector
int
indx
,
// index of parameter to calculate approximate derivative
int
c
indx
,
// index of parameter to calculate approximate derivative
double
delta
){
int
indx
=
0
;
int
j
=
0
;
for
(
indx
=
0
;
indx
<
kvect
.
length
;
indx
++)
if
(!
Double
.
isNaN
(
kvect
[
indx
])){
if
(
j
==
cindx
)
break
;
j
++;
}
double
[]
kvect_inc
=
kvect
.
clone
();
double
[]
fx
=
getFX
(
kvect
);
kvect_inc
[
indx
]
+=
delta
;
double
[]
fx1
=
getFX
(
kvect_inc
);
// if (indx == 63) {
// System.out.println("----- getDerivDelta(): indx="+indx+" delta="+delta+" kvect["+indx+"]="+kvect[indx]+" kvect_inc["+indx+"]="+kvect_inc[indx]);
// }
for
(
int
i
=
0
;
i
<
fx
.
length
;
i
++){
fx
[
i
]
=
(
fx1
[
i
]-
fx
[
i
])/
delta
;
}
...
...
@@ -297,11 +622,103 @@ public class FactorConvKernel {
}
rslt
[
0
]
=
Math
.
sqrt
(
rslt
[
0
]/
fx
.
length
);
rslt
[
1
]
=
Math
.
sqrt
(
rslt
[
1
]/
fx
.
length
);
if
(
debugLevel
>
3
)
{
System
.
out
.
println
(
"rms(jacob["
+
indx
+
"][]) = "
+
rslt
[
1
]+
", rms(diff) = "
+
rslt
[
0
]);
}
return
rslt
;
}
private
double
[]
getFX
(
double
[]
kvect
)
// first - all elements of sym kernel but [0] (replaced by 1.0), then - asym ones. May have Double NaN
{
int
conv_size
=
asym_size
+
2
*
sym_radius
-
2
;
int
asym_start
=
sym_radius
*
sym_radius
-
1
;
int
sym_radius_m1
=
sym_radius
-
1
;
int
asym_terms_start
=
conv_size
*
conv_size
;
double
cw
=
getCompactWeight
();
int
num_pars
=
0
;
int
[]
cind
=
new
int
[
kvect
.
length
];
for
(
int
i
=
0
;
i
<
asym_start
;
i
++){
if
(
Double
.
isNaN
(
kvect
[
i
]))
cind
[
i
]
=
-
1
;
else
cind
[
i
]
=
num_pars
++;
}
int
num_asym
=
-
num_pars
;
for
(
int
i
=
asym_start
;
i
<
kvect
.
length
;
i
++){
if
(
Double
.
isNaN
(
kvect
[
i
]))
cind
[
i
]
=
-
1
;
else
cind
[
i
]
=
num_pars
++;
}
num_asym
+=
num_pars
;
// double [][] jacob = new double [num_pars][asym_terms_start + num_asym];
// double [] fx = new double [conv_size*conv_size+asym_size*asym_size];
double
[]
fx
=
new
double
[
asym_terms_start
+
num_asym
];
if
(
this
.
debugLevel
>
3
){
System
.
out
.
println
(
"fx(): vector_length= "
+
kvect
.
length
);
System
.
out
.
println
(
"fx(): sym_radius= "
+
sym_radius
);
System
.
out
.
println
(
"fx(): asym_size= "
+
asym_size
);
System
.
out
.
println
(
"fx(): conv_size= "
+
conv_size
);
System
.
out
.
println
(
"fx(): fx.length= "
+
fx
.
length
);
System
.
out
.
println
(
"fx(): asym_start= "
+
asym_start
);
}
for
(
int
i
=
0
;
i
<
fx
.
length
;
i
++)
fx
[
i
]
=
0.0
;
for
(
int
i
=
-
sym_radius_m1
;
i
<=
sym_radius_m1
;
i
++)
{
for
(
int
j
=
-
sym_radius_m1
;
j
<=
sym_radius_m1
;
j
++)
{
double
sd
=
1
;
int
indx
=
(((
i
<
0
)?
-
i
:
i
)
*
sym_radius
+
((
j
<
0
)?
-
j
:
j
))
-
1
;
if
((
indx
<
0
)
||
(
cind
[
indx
]
>=
0
))
{
// <0 - only one, center of symmetrical == 1
if
(
indx
>=
0
)
{
// so cind[indx]>=0
sd
=
kvect
[
indx
];
indx
=
cind
[
indx
];
// it can be used only as jacobian first index
if
(
indx
<
0
)
{
System
.
out
.
println
(
"getJacobian() BUG "
);
continue
;
// should never happen?
}
// now sd - value of the parameter vector, indx - index of the compacted (for only enabled parameters) jacobian
}
int
base_indx
=
conv_size
*
(
i
+
sym_radius_m1
)
+
(
j
+
sym_radius_m1
);
for
(
int
ia
=
0
;
ia
<
asym_size
;
ia
++)
{
for
(
int
ja
=
0
;
ja
<
asym_size
;
ja
++)
{
int
asym_index
=
asym_size
*
ia
+
ja
+
asym_start
;
// index of the parameter space, full, not compacted
if
(
cind
[
asym_index
]
>=
0
)
{
int
conv_index
=
base_indx
+
conv_size
*
ia
+
ja
;
fx
[
conv_index
]
+=
sd
*
kvect
[
asym_index
];
// if ((cind[asym_index]==63) && (conv_index==74)) {
// System.out.println("cind["+asym_index+"]="+cind[asym_index]+
// " conv_index ="+conv_index+" kvect["+asym_index+"]=" +kvect[asym_index]+
// " fx["+conv_index+"]="+fx[conv_index]);
//
// }
}
}
}
}
}
}
int
asym_term
=
asym_terms_start
;
for
(
int
ia
=
0
;
ia
<
asym_size
;
ia
++){
for
(
int
ja
=
0
;
ja
<
asym_size
;
ja
++){
int
asym_index
=
asym_size
*
ia
+
ja
;
int
casym_index
=
cind
[
asym_index
+
asym_start
];
if
(
casym_index
>=
0
)
{
int
ir2
=
(
ia
-
center_i0
)*(
ia
-
center_i0
)+(
ja
-
center_j0
)*(
ja
-
center_j0
);
if
((
ia
-
center_i0
<=
asym_tax_free
)
&&
(
center_i0
-
ia
<=
asym_tax_free
)
&&
(
ja
-
center_j0
<=
asym_tax_free
)
&&
(
center_j0
-
ja
<=
asym_tax_free
))
ir2
=
0
;
fx
[
asym_term
++]
=
ir2
*
cw
*
kvect
[
asym_start
+
asym_index
];
}
}
}
return
fx
;
}
private
double
[]
getFXOld
(
double
[]
kvect
)
// first - all elements of sym kernel but [0] (replaced by 1.0), then - asym ones
{
int
conv_size
=
asym_size
+
2
*
sym_radius
-
2
;
...
...
@@ -328,33 +745,113 @@ public class FactorConvKernel {
int
base_indx
=
conv_size
*
(
i
+
sym_radius_m1
)
+
(
j
+
sym_radius_m1
);
for
(
int
ia
=
0
;
ia
<
asym_size
;
ia
++)
{
for
(
int
ja
=
0
;
ja
<
asym_size
;
ja
++)
{
int
async
_index
=
asym_size
*
ia
+
ja
+
asym_start
;
fx
[
base_indx
+
conv_size
*
ia
+
ja
]
+=
sd
*
kvect
[
async
_index
];
int
asym
_index
=
asym_size
*
ia
+
ja
+
asym_start
;
fx
[
base_indx
+
conv_size
*
ia
+
ja
]
+=
sd
*
kvect
[
asym
_index
];
}
}
}
}
for
(
int
ia
=
0
;
ia
<
asym_size
;
ia
++){
for
(
int
ja
=
0
;
ja
<
asym_size
;
ja
++){
int
async
_index
=
asym_size
*
ia
+
ja
;
int
asym
_index
=
asym_size
*
ia
+
ja
;
int
ir2
=
(
ia
-
center_i0
)*(
ia
-
center_i0
)+(
ja
-
center_j0
)*(
ja
-
center_j0
);
if
((
ia
-
center_i0
<=
asym_tax_free
)
&&
(
center_i0
-
ia
<=
asym_tax_free
)
&&
(
ja
-
center_j0
<=
asym_tax_free
)
&&
(
center_j0
-
ja
<=
asym_tax_free
))
ir2
=
0
;
fx
[
async_index
+
asym_terms_start
]
=
ir2
*
cw
*
kvect
[
asym_start
+
async
_index
];
fx
[
asym_index
+
asym_terms_start
]
=
ir2
*
cw
*
kvect
[
asym_start
+
asym
_index
];
}
}
return
fx
;
}
private
double
getCompactWeight
(){
return
compactness_weight
*
sym_kernel_scale
;
// (asym_size*asym_size*asym_size*asym_size); // use
}
private
double
[][]
getJacobian
(
double
[]
kvect
)
double
[]
kvect
)
// some entries may be Double.NaN - skip them as well as asym_kernel entries in the end
{
int
conv_size
=
asym_size
+
2
*
sym_radius
-
2
;
int
asym_start
=
sym_radius
*
sym_radius
-
1
;
int
sym_radius_m1
=
sym_radius
-
1
;
double
cw
=
getCompactWeight
();
int
num_pars
=
0
;
int
[]
cind
=
new
int
[
kvect
.
length
];
for
(
int
i
=
0
;
i
<
asym_start
;
i
++){
if
(
Double
.
isNaN
(
kvect
[
i
]))
cind
[
i
]
=
-
1
;
else
cind
[
i
]
=
num_pars
++;
}
int
num_asym
=
-
num_pars
;
for
(
int
i
=
asym_start
;
i
<
kvect
.
length
;
i
++){
if
(
Double
.
isNaN
(
kvect
[
i
]))
cind
[
i
]
=
-
1
;
else
cind
[
i
]
=
num_pars
++;
}
num_asym
+=
num_pars
;
int
asym_terms_start
=
conv_size
*
conv_size
;
double
[][]
jacob
=
new
double
[
num_pars
][
asym_terms_start
+
num_asym
];
if
(
debugLevel
>
3
)
{
System
.
out
.
println
(
"getJacobian(): asym_terms_start="
+
asym_terms_start
+
" num_asym="
+
num_asym
);
for
(
int
i
=
asym_start
;
i
<
kvect
.
length
;
i
++){
System
.
out
.
println
(
"getJacobian(): cind["
+
i
+
"]="
+
cind
[
i
]+
", kvect["
+
i
+
"]="
+
kvect
[
i
]);
}
}
for
(
int
i
=
-
sym_radius_m1
;
i
<=
sym_radius_m1
;
i
++)
{
for
(
int
j
=
-
sym_radius_m1
;
j
<=
sym_radius_m1
;
j
++)
{
double
sd
=
1
;
int
indx
=
(((
i
<
0
)?
-
i
:
i
)
*
sym_radius
+
((
j
<
0
)?
-
j
:
j
))
-
1
;
if
((
indx
<
0
)
||
(
cind
[
indx
]
>=
0
))
{
// <0 - only one, center of symmetrical == 1
if
(
indx
>=
0
)
{
// so cind[indx]>=0
sd
=
kvect
[
indx
];
indx
=
cind
[
indx
];
// it can be used only as jacobian first index
if
(
indx
<
0
)
{
System
.
out
.
println
(
"getJacobian() BUG "
);
continue
;
// should never happen?
}
// now sd - value of the parameter vector, indx - index of the compacted (for only enabled parameters) jacobian
}
int
base_indx
=
conv_size
*
(
i
+
sym_radius_m1
)
+
(
j
+
sym_radius_m1
);
// base index in the convolved space
for
(
int
ia
=
0
;
ia
<
asym_size
;
ia
++)
{
for
(
int
ja
=
0
;
ja
<
asym_size
;
ja
++)
{
int
asym_index
=
asym_size
*
ia
+
ja
+
asym_start
;
// index of the parameter space, full, not compacted
if
(
cind
[
asym_index
]
>=
0
)
{
int
conv_index
=
base_indx
+
conv_size
*
ia
+
ja
;
if
(
indx
>=
0
)
jacob
[
indx
][
conv_index
]
+=
kvect
[
asym_index
];
jacob
[
cind
[
asym_index
]][
conv_index
]
+=
sd
;
if
(
debugLevel
>
3
)
{
System
.
out
.
println
(
"getJacobian: indx="
+
indx
+
" asym_index="
+
asym_index
+
" cind[asym_index]="
+
cind
[
asym_index
]+
" conv_index="
+
conv_index
+
" kvect["
+
asym_index
+
"], sd="
+
sd
);
}
}
}
}
}
}
}
for
(
int
i
=
0
;
i
<
jacob
.
length
;
i
++)
for
(
int
j
=
asym_terms_start
;
j
<
jacob
[
i
].
length
;
j
++)
jacob
[
i
][
j
]
=
0.0
;
int
asym_term
=
asym_terms_start
;
for
(
int
ia
=
0
;
ia
<
asym_size
;
ia
++){
for
(
int
ja
=
0
;
ja
<
asym_size
;
ja
++){
int
asym_index
=
asym_size
*
ia
+
ja
;
int
casym_index
=
cind
[
asym_index
+
asym_start
];
if
(
casym_index
>=
0
)
{
int
ir2
=
(
ia
-
center_i0
)*(
ia
-
center_i0
)+(
ja
-
center_j0
)*(
ja
-
center_j0
);
if
((
ia
-
center_i0
<=
asym_tax_free
)
&&
(
center_i0
-
ia
<=
asym_tax_free
)
&&
(
ja
-
center_j0
<=
asym_tax_free
)
&&
(
center_j0
-
ja
<=
asym_tax_free
))
ir2
=
0
;
jacob
[
casym_index
][
asym_term
++]
=
ir2
*
cw
;
}
}
}
return
jacob
;
}
private
double
[][]
getJacobianOld
(
double
[]
kvect
){
// some entries may be Double.NaN - skip them
int
conv_size
=
asym_size
+
2
*
sym_radius
-
2
;
int
asym_start
=
sym_radius
*
sym_radius
-
1
;
int
sym_radius_m1
=
sym_radius
-
1
;
...
...
@@ -368,10 +865,10 @@ public class FactorConvKernel {
int
base_indx
=
conv_size
*
(
i
+
sym_radius
-
1
)
+
(
j
+
sym_radius
-
1
);
for
(
int
ia
=
0
;
ia
<
asym_size
;
ia
++)
{
for
(
int
ja
=
0
;
ja
<
asym_size
;
ja
++)
{
int
async
_index
=
asym_size
*
ia
+
ja
+
asym_start
;
int
asym
_index
=
asym_size
*
ia
+
ja
+
asym_start
;
int
conv_index
=
base_indx
+
conv_size
*
ia
+
ja
;
if
(
indx
>
0
)
jacob
[
indx
-
1
][
conv_index
]
+=
kvect
[
async
_index
];
jacob
[
async
_index
][
conv_index
]
+=
sd
;
if
(
indx
>
0
)
jacob
[
indx
-
1
][
conv_index
]
+=
kvect
[
asym
_index
];
jacob
[
asym
_index
][
conv_index
]
+=
sd
;
}
}
}
...
...
@@ -379,20 +876,20 @@ public class FactorConvKernel {
for
(
int
i
=
0
;
i
<
jacob
.
length
;
i
++)
for
(
int
j
=
asym_terms_start
;
j
<
jacob
[
i
].
length
;
j
++)
jacob
[
i
][
j
]
=
0.0
;
for
(
int
ia
=
0
;
ia
<
asym_size
;
ia
++){
for
(
int
ja
=
0
;
ja
<
asym_size
;
ja
++){
int
async
_index
=
asym_size
*
ia
+
ja
;
int
asym
_index
=
asym_size
*
ia
+
ja
;
int
ir2
=
(
ia
-
center_i0
)*(
ia
-
center_i0
)+(
ja
-
center_j0
)*(
ja
-
center_j0
);
if
((
ia
-
center_i0
<=
asym_tax_free
)
&&
(
center_i0
-
ia
<=
asym_tax_free
)
&&
(
ja
-
center_j0
<=
asym_tax_free
)
&&
(
center_j0
-
ja
<=
asym_tax_free
))
ir2
=
0
;
jacob
[
async_index
+
asym_start
][
async
_index
+
asym_terms_start
]
=
ir2
*
cw
;
jacob
[
asym_index
+
asym_start
][
asym
_index
+
asym_terms_start
]
=
ir2
*
cw
;
}
}
return
jacob
;
}
}
private
double
[][]
getJTByJ
(
double
[][]
jacob
){
private
double
[][]
getJTByJ
(
double
[][]
jacob
){
double
[][]
jTByJ
=
new
double
[
jacob
.
length
][
jacob
.
length
];
for
(
int
i
=
0
;
i
<
jacob
.
length
;
i
++
){
for
(
int
j
=
0
;
j
<
jacob
.
length
;
j
++
){
...
...
@@ -412,9 +909,8 @@ public class FactorConvKernel {
private
double
[]
getJTByDiff
(
double
[][]
jacob
,
// jacobian
double
[]
target_kernel
,
// target kernel
double
[]
fx
,
// current convolution result of async_kernel (*) sync_kernel, extended by asym_kernel components
double
[]
kvect
// parameter vector - used asym values
){
double
[]
fx
)
// current convolution result of async_kernel (*) sync_kernel, extended by asym_kernel components
{
double
[]
jTByDiff
=
new
double
[
jacob
.
length
];
for
(
int
i
=
0
;
i
<
jTByDiff
.
length
;
i
++){
jTByDiff
[
i
]
=
0
;
...
...
@@ -431,9 +927,8 @@ public class FactorConvKernel {
}
private
double
[]
getDiffByDiff
(
double
[]
target_kernel
,
// target kernel
double
[]
fx
,
// current convolution result of async_kernel (*) sync_kernel, extended async kernel components
double
[]
kvect
// parameter vector - used asym values
){
double
[]
fx
)
// current convolution result of async_kernel (*) sync_kernel, extended async kernel components
{
double
[]
diffByDiff
=
{
0.0
,
0.0
};
for
(
int
k
=
0
;
k
<
target_kernel
.
length
;
k
++){
double
d
=
target_kernel
[
k
]-
fx
[
k
];
...
...
@@ -489,22 +984,42 @@ public class FactorConvKernel {
return
Ma
.
getColumnPackedCopy
();
}
private
boolean
levenbergMarquardt
(
double
fact_precision
){
double
goal_rms_pure
;
// ext if pure error rms is smaller (or stoped/failed to improve)
private
void
initLevenbergMarquardt
(
double
fact_precision
){
double
s
=
0.0
;
for
(
int
i
=
0
;
i
<
target_kernel
.
length
;
i
++){
s
+=
target_kernel
[
i
]*
target_kernel
[
i
];
}
goal_rms_pure
=
Math
.
sqrt
(
s
/
target_kernel
.
length
)*
fact_precision
;
this
.
goal_rms_pure
=
Math
.
sqrt
(
s
/
target_kernel
.
length
)*
fact_precision
;
this
.
currentVector
=
setInitialVector
(
target_kernel
,
null
);
// should be (asym_size + 2*sym_radius-1)**2
}
this
.
startTime
=
System
.
nanoTime
();
private
boolean
levenbergMarquardt
(){
long
startTime
=
System
.
nanoTime
();
this
.
firstRMS
=-
1
;
//undefined
this
.
currentVector
=
setInitialVector
(
target_kernel
);
// should be (asym_size + 2*sym_radius-1)**2
this
.
iterationStepNumber
=
0
;
this
.
lambda
=
this
.
init_lambda
;
// New
this
.
currentfX
=
null
;
this
.
lMAArrays
=
null
;
this
.
currentRMS
=-
1
;
this
.
currentRMSPure
=-
1
;
this
.
jacobian
=
null
;
// invalidate
//System.out.println("Setting both lastImprovements(); to -1");
lastImprovements
[
0
]=-
1.0
;
lastImprovements
[
1
]=-
1.0
;
if
(
this
.
numIterations
<
0
){
this
.
currentfX
=
getFX
(
this
.
currentVector
);
return
true
;
}
if
(
this
.
debugLevel
>
2
)
{
System
.
out
.
println
(
"this.currentVector 0"
);
for
(
int
i
=
63
;
i
<
this
.
currentVector
.
length
;
i
++){
System
.
out
.
println
(
i
+
": "
+
this
.
currentVector
[
i
]);
}
}
while
(
true
)
{
// loop for the same series
boolean
[]
state
=
stepLevenbergMarquardtFirst
(
goal_rms_pure
);
...
...
@@ -520,24 +1035,25 @@ public class FactorConvKernel {
System
.
out
.
println
(
"LevenbergMarquardt(): step ="
+
this
.
iterationStepNumber
+
", RMS="
+
IJ
.
d2s
(
this
.
currentRMS
,
8
)+
" ("
+
IJ
.
d2s
(
this
.
firstRMS
,
8
)+
") "
+
") at "
+
IJ
.
d2s
(
0.000000001
*(
System
.
nanoTime
()-
this
.
startTime
),
3
));
") at "
+
IJ
.
d2s
(
0.000000001
*(
System
.
nanoTime
()-
startTime
),
3
));
}
long
startDialogTime
=
System
.
nanoTime
();
this
.
startTime
+=(
System
.
nanoTime
()-
startDialogTime
);
// do not count time used by the User.
startTime
+=(
System
.
nanoTime
()-
startDialogTime
);
// do not count time used by the User.
// if (this.showThisImages) showDiff (this.currentfX, "fit-"+this.iterationStepNumber);
// if (this.showNextImages) showDiff (this.nextfX, "fit-"+(this.iterationStepNumber+1));
}
else
if
(
this
.
debugLevel
>
1
){
System
.
out
.
println
(
"==> LevenbergMarquardt(): before action step ="
+
this
.
iterationStepNumber
+
", RMS="
+
IJ
.
d2s
(
this
.
currentRMS
,
8
)+
" ("
+
IJ
.
d2s
(
this
.
firstRMS
,
8
)+
") "
+
") at "
+
IJ
.
d2s
(
0.000000001
*(
System
.
nanoTime
()-
this
.
startTime
),
3
));
") at "
+
IJ
.
d2s
(
0.000000001
*(
System
.
nanoTime
()-
startTime
),
3
));
}
stepLevenbergMarquardtAction
();
// apply step - in any case?
if
((
this
.
debugLevel
>
0
)
&&
((
this
.
debugLevel
>
1
)
||
((
System
.
nanoTime
()-
this
.
startTime
)>
10000000000.0
))){
// > 10 sec
System
.
out
.
println
(
"--> LevenbergMarquardt(): series:step = "
+
this
.
iterationStepNumber
+
stepLevenbergMarquardtAction
(
startTime
);
// apply step - in any case?
// if ((this.debugLevel>0) && ((this.debugLevel>1) || ((System.nanoTime()-this.startTime)>10000000000.0))){ // > 10 sec
if
((
this
.
debugLevel
>
0
)
&&
((
this
.
debugLevel
>
0
)
||
((
System
.
nanoTime
()-
this
.
startTime
)>
10000000000.0
))){
// > 10 sec
System
.
out
.
println
(
"--> LevenbergMarquardt(): step = "
+
this
.
iterationStepNumber
+
", RMS="
+
IJ
.
d2s
(
this
.
currentRMS
,
8
)+
" ("
+
IJ
.
d2s
(
this
.
firstRMS
,
8
)+
") "
+
") at "
+
IJ
.
d2s
(
0.000000001
*(
System
.
nanoTime
()-
this
.
startTime
),
3
));
") at "
+
IJ
.
d2s
(
0.000000001
*(
System
.
nanoTime
()-
startTime
),
3
));
}
//stepLevenbergMarquardtAction();
if
(
state
[
1
])
{
...
...
@@ -548,15 +1064,17 @@ public class FactorConvKernel {
// if (this.fittingStrategy.isLastSeries(this.seriesNumber)) break;
if
(
this
.
debugLevel
>
0
)
System
.
out
.
println
(
"LevenbergMarquardt(): RMS="
+
this
.
currentRMS
+
" ("
+
this
.
firstRMS
+
") "
+
") at "
+
IJ
.
d2s
(
0.000000001
*(
System
.
nanoTime
()-
this
.
startTime
),
3
));
") at "
+
IJ
.
d2s
(
0.000000001
*(
System
.
nanoTime
()-
startTime
),
3
));
if
(
this
.
debugLevel
>
2
)
{
double
worstRatio
=
0
;
int
worstIndex
=
-
1
;
int
param_index
=
0
;
for
(
int
i
=
0
;
i
<
currentVector
.
length
;
i
++)
{
if
(!
Double
.
isNaN
(
currentVector
[
i
])){
double
[]
r
=
compareDerivative
(
i
,
param_index
++
,
0.0000001
,
// delta, // value to increment parameter by for derivative calculation
false
);
// verbose)
false
);
// param_index>61); //
false); // verbose)
if
(
r
[
1
]
>
0
){
if
(
r
[
0
]/
r
[
1
]
>
worstRatio
){
worstRatio
=
r
[
0
]/
r
[
1
];
...
...
@@ -565,54 +1083,90 @@ public class FactorConvKernel {
}
}
System
.
out
.
println
(
"rms(relative diff["
+
worstIndex
+
"]) = "
+
worstRatio
);
}
System
.
out
.
println
(
" rms(relative diff["
+
worstIndex
+
"]) = >>>>> "
+
worstRatio
+
" <<<<<"
);
}
return
true
;
// all series done
}
private
boolean
[]
stepLevenbergMarquardtFirst
(
double
goal_rms_pure
){
int
deltas_indx
;
double
[]
deltas
=
null
;
double
[]
rmses
;
// [0]: full rms, [1]:pure rms
// moved to caller
/*
if (this.currentVector==null) {
this.currentRMS=-1;
this.currentRMSPure=-1;
this.currentfX=null; // invalidate
this.jacobian=null; // invalidate
this.lMAArrays=null;
System.out.println("Setting both lastImprovements(); to -1");
lastImprovements[0]=-1.0;
lastImprovements[1]=-1.0;
}
*/
// calculate this.currentfX, this.jacobian if needed
if
(
this
.
debugLevel
>
2
)
{
System
.
out
.
println
(
"this.currentVector"
);
if
(
this
.
debugLevel
>
3
)
{
System
.
out
.
println
(
"this.currentVector
1
"
);
for
(
int
i
=
0
;
i
<
this
.
currentVector
.
length
;
i
++){
System
.
out
.
println
(
i
+
": "
+
this
.
currentVector
[
i
]);
}
}
if
(
this
.
debugLevel
>
2
)
{
System
.
out
.
println
(
"this.currentVector 2"
);
for
(
int
i
=
63
;
i
<
this
.
currentVector
.
length
;
i
++){
System
.
out
.
println
(
i
+
": "
+
this
.
currentVector
[
i
]);
}
}
if
((
this
.
currentfX
==
null
)||
(
this
.
lMAArrays
==
null
))
{
this
.
currentfX
=
getFX
(
this
.
currentVector
);
this
.
currentfX
=
getFX
(
this
.
currentVector
);
this
.
jacobian
=
getJacobian
(
this
.
currentVector
);
//System.out.println("stepLevenbergMarquardtFirst(): this.jacobian.length="+this.jacobian.length);
//for (int i = 0;i<this.currentVector.length;i++){
// System.out.println(i+": "+this.currentVector[i]);
//}
if
(
debugLevel
>
2
){
int
conv_size
=
asym_size
+
2
*
sym_radius
-
2
;
int
asym_terms_start
=
conv_size
*
conv_size
;
for
(
int
i
=
asym_terms_start
;
i
<
currentfX
.
length
;
i
++){
System
.
out
.
println
(
"this.currentfX["
+
i
+
"]="
+
this
.
currentfX
[
i
]);
}
for
(
int
n
=
63
;
n
<
this
.
jacobian
.
length
;
n
++){
// for (int i=asym_terms_start; i<currentfX.length; i++){
for
(
int
i
=
0
;
i
<
currentfX
.
length
;
i
++){
System
.
out
.
println
(
"this.jacobian["
+
n
+
"]["
+
i
+
"]="
+
this
.
jacobian
[
n
][
i
]+
" this.currentfX["
+
i
+
"]="
+
this
.
currentfX
[
i
]);
}
}
}
this
.
lMAArrays
=
new
LMAArrays
();
lMAArrays
.
jTByJ
=
getJTByJ
(
this
.
jacobian
);
lMAArrays
.
jTByDiff
=
getJTByDiff
(
this
.
jacobian
,
this
.
target_kernel
,
// target kernel to factor
this
.
currentfX
,
// current convolution result of async_kernel (*) sync_kernel
this
.
currentVector
);
// used to control compactness of asym_kernel
this
.
currentfX
);
// used to control compactness of asym_kernel
if
(
debugLevel
>
2
)
{
for
(
int
n
=
63
;
n
<
this
.
lMAArrays
.
jTByJ
.
length
;
n
++){
for
(
int
i
=
0
;
i
<
this
.
lMAArrays
.
jTByJ
.
length
;
i
++){
System
.
out
.
println
(
"this.lMAArrays.jTByJ["
+
n
+
"]["
+
i
+
"]="
+
this
.
lMAArrays
.
jTByJ
[
n
][
i
]);
}
System
.
out
.
println
(
"this.lMAArrays.jTByDiff["
+
n
+
"]="
+
this
.
lMAArrays
.
jTByDiff
[
n
]);
}
}
rmses
=
getDiffByDiff
(
this
.
target_kernel
,
// target kernel
this
.
currentfX
,
// current convolution result of async_kernel (*) sync_kernel
this
.
currentVector
);
this
.
currentfX
);
this
.
currentRMSPure
=
Math
.
sqrt
(
rmses
[
1
]
/
target_kernel
.
length
);
this
.
currentRMS
=
Math
.
sqrt
(
rmses
[
0
]
/
(
asym_size
*
asym_size
+
target_kernel
.
length
));
if
(
debugLevel
>
1
){
System
.
out
.
println
(
"currentRMSPure= "
+
currentRMSPure
+
" getDiffByDiff[1] = "
+
Math
.
sqrt
(
getDiffByDiff
(
this
.
target_kernel
,
// target kernel
this
.
currentfX
,
// current convolution result of async_kernel (*) sync_kernel
this
.
currentVector
)[
1
]
/
target_kernel
.
length
));
this
.
currentfX
)[
1
]
/
target_kernel
.
length
));
}
if
(
this
.
debugLevel
>
1
)
{
...
...
@@ -623,16 +1177,14 @@ public class FactorConvKernel {
}
else
{
rmses
=
getDiffByDiff
(
this
.
target_kernel
,
// target kernel
this
.
currentfX
,
// current convolution result of async_kernel (*) sync_kernel
this
.
currentVector
);
this
.
currentfX
);
this
.
currentRMSPure
=
Math
.
sqrt
(
rmses
[
1
]
/
target_kernel
.
length
);
this
.
currentRMS
=
Math
.
sqrt
(
rmses
[
0
]
/
(
asym_size
*
asym_size
+
target_kernel
.
length
));
if
(
debugLevel
>
2
){
System
.
out
.
println
(
"this.currentRMS="
+
this
.
currentRMS
+
" getDiffByDiff[1] = "
+
Math
.
sqrt
(
getDiffByDiff
(
this
.
target_kernel
,
// target kernel
this
.
currentfX
,
// current convolution result of async_kernel (*) sync_kernel
this
.
currentVector
)[
1
]
/
target_kernel
.
length
));
this
.
currentfX
)[
1
]
/
target_kernel
.
length
));
}
...
...
@@ -651,15 +1203,39 @@ public class FactorConvKernel {
for
(
int
i
=
0
;
i
<
deltas
.
length
;
i
++)
deltas
[
i
]=
0.0
;
matrixNonSingular
=
false
;
}
if
(
this
.
debugLevel
>
2
)
{
System
.
out
.
println
(
"--- deltas ---"
);
for
(
int
i
=
63
;
i
<
deltas
.
length
;
i
++){
System
.
out
.
println
(
"deltas["
+
i
+
"]="
+
deltas
[
i
]+
" this.currentRMS="
+
this
.
currentRMS
);
}
}
if
(
this
.
debugLevel
>
2
)
{
System
.
out
.
println
(
"deltas"
);
for
(
int
i
=
0
;
i
<
deltas
.
length
;
i
++){
System
.
out
.
println
(
i
+
": "
+
deltas
[
i
]);
}
}
// apply deltas
this
.
nextVector
=
this
.
currentVector
.
clone
();
for
(
int
i
=
0
;
i
<
this
.
nextVector
.
length
;
i
++)
this
.
nextVector
[
i
]+=
deltas
[
i
];
// System.out.println("this.nextVector.length="+this.nextVector.length+" deltas.length="+deltas.length);
// for (int i=0;i<this.nextVector.length;i++) {
// System.out.println(i+": "+this.nextVector[i]);
// }
deltas_indx
=
0
;
for
(
int
i
=
0
;
i
<
this
.
nextVector
.
length
;
i
++)
{
if
(!
Double
.
isNaN
(
this
.
nextVector
[
i
])){
if
(
this
.
debugLevel
>
2
)
{
if
(
i
>=
63
)
System
.
out
.
println
(
i
+
": "
+
this
.
nextVector
[
i
]+
" deltas["
+
deltas_indx
+
"]="
+
deltas
[
deltas_indx
]+
" this.currentRMS="
+
this
.
currentRMS
+
" this.currentRMSPure="
+
this
.
currentRMSPure
);
}
// System.out.println(deltas[deltas_indx]);
this
.
nextVector
[
i
]+=
deltas
[
deltas_indx
++];
}
}
// another option - do not calculate J now, just fX. and late - calculate both if it was improvement
// save current Jacobian
if
(
this
.
debugLevel
>
2
)
{
...
...
@@ -681,25 +1257,22 @@ public class FactorConvKernel {
lMAArrays
.
jTByDiff
=
getJTByDiff
(
this
.
jacobian
,
this
.
target_kernel
,
// target kernel to factor
this
.
nextfX
,
// next convolution result of async_kernel (*) sync_kernel
this
.
nextVector
);
// used to control compactness of asym_kernel
this
.
nextfX
);
// next convolution result of async_kernel (*) sync_kernel
rmses
=
getDiffByDiff
(
this
.
target_kernel
,
// target kernel
this
.
nextfX
,
// current convolution result of async_kernel (*) sync_kernel
this
.
nextVector
);
this
.
nextfX
);
// current convolution result of async_kernel (*) sync_kernel
this
.
nextRMSPure
=
Math
.
sqrt
(
rmses
[
1
]
/
target_kernel
.
length
);
this
.
nextRMS
=
Math
.
sqrt
(
rmses
[
0
]
/
(
asym_size
*
asym_size
+
target_kernel
.
length
));
if
(
debugLevel
>
2
){
System
.
out
.
println
(
"nextRMSPure= "
+
nextRMSPure
+
" target_kernel.length = "
+
target_kernel
.
length
+
" getDiffByDiff[1] = "
+
Math
.
sqrt
(
getDiffByDiff
(
this
.
target_kernel
,
// target kernel
this
.
nextfX
,
// current convolution result of async_kernel (*) sync_kernel
this
.
nextVector
)[
1
]
/
target_kernel
.
length
));
this
.
nextfX
)[
1
]
/
target_kernel
.
length
));
// current convolution result of async_kernel (*) sync_kernel
}
this
.
lastImprovements
[
1
]=
this
.
lastImprovements
[
0
];
this
.
lastImprovements
[
0
]=
this
.
currentRMS
-
this
.
nextRMS
;
// System.out.println("Setting this.lastImprovements[1]="+this.lastImprovements[1]+" new this.lastImprovements[0]="+this.lastImprovements[0]);
if
(
this
.
debugLevel
>
2
)
{
System
.
out
.
println
(
"stepLMA this.currentRMS="
+
this
.
currentRMS
+
", this.nextRMS="
+
this
.
nextRMS
+
...
...
@@ -728,6 +1301,9 @@ public class FactorConvKernel {
}
}
if
(
status
[
0
]
&&
matrixNonSingular
)
{
//improved
// System.out.println("this.lastImprovements[0]="+this.lastImprovements[0]+" this.lastImprovements[1]="+this.lastImprovements[1]);
// System.out.println("this.thresholdFinish="+this.thresholdFinish+
// " this.thresholdFinish*this.currentRMS="+(this.thresholdFinish*this.currentRMS));
status
[
1
]=(
this
.
iterationStepNumber
>
this
.
numIterations
)
||
(
// done
(
this
.
lastImprovements
[
0
]>=
0.0
)
&&
(
this
.
lastImprovements
[
0
]<
this
.
thresholdFinish
*
this
.
currentRMS
)
&&
...
...
@@ -764,7 +1340,7 @@ public class FactorConvKernel {
/**
* Apply fitting step
*/
private
void
stepLevenbergMarquardtAction
(){
//
private
void
stepLevenbergMarquardtAction
(
long
startTime
){
//
this
.
iterationStepNumber
++;
// apply/revert,modify lambda
if
(
this
.
debugLevel
>
1
)
{
...
...
@@ -774,7 +1350,7 @@ public class FactorConvKernel {
", this.currentRMSPure="
+
this
.
currentRMSPure
+
", this.nextRMS="
+
this
.
nextRMS
+
", this.nextRMSPure="
+
this
.
nextRMSPure
+
" lambda="
+
this
.
lambda
+
" at "
+
IJ
.
d2s
(
0.000000001
*(
System
.
nanoTime
()-
this
.
startTime
),
3
)+
" sec"
);
" lambda="
+
this
.
lambda
+
" at "
+
IJ
.
d2s
(
0.000000001
*(
System
.
nanoTime
()-
startTime
),
3
)+
" sec"
);
}
if
(
this
.
nextRMS
<
this
.
currentRMS
)
{
//improved
this
.
lambda
*=
this
.
lambdaStepDown
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment