Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
I
imagej-elphel
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
3
Issues
3
List
Board
Labels
Milestones
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Commits
Issue Boards
Open sidebar
Elphel
imagej-elphel
Commits
4e7653fe
Commit
4e7653fe
authored
Sep 15, 2014
by
Andrey Filippov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
fixed goodSamples variations
parent
0c488df6
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
80 additions
and
16 deletions
+80
-16
FocusingField.java
src/main/java/FocusingField.java
+80
-16
No files found.
src/main/java/FocusingField.java
View file @
4e7653fe
...
@@ -220,6 +220,9 @@ public class FocusingField {
...
@@ -220,6 +220,9 @@ public class FocusingField {
double
[]
nextVector
=
null
;
double
[]
nextVector
=
null
;
double
[]
savedVector
=
null
;
double
[]
savedVector
=
null
;
boolean
[][]
goodCalibratedSamples
=
null
;
private
LMAArrays
lMAArrays
=
null
;
private
LMAArrays
lMAArrays
=
null
;
private
LMAArrays
savedLMAArrays
=
null
;
private
LMAArrays
savedLMAArrays
=
null
;
// temporarily changing visibility of currentfX
// temporarily changing visibility of currentfX
...
@@ -235,6 +238,7 @@ public class FocusingField {
...
@@ -235,6 +238,7 @@ public class FocusingField {
public
void
setDefaults
(){
public
void
setDefaults
(){
goodCalibratedSamples
=
null
;
sensorWidth
=
2592
;
sensorWidth
=
2592
;
sensorHeight
=
1936
;
sensorHeight
=
1936
;
PIXEL_SIZE
=
0.0022
;
// mm
PIXEL_SIZE
=
0.0022
;
// mm
...
@@ -482,6 +486,15 @@ public class FocusingField {
...
@@ -482,6 +486,15 @@ public class FocusingField {
}
}
}
}
}
}
if
(
goodCalibratedSamples
!=
null
){
properties
.
setProperty
(
prefix
+
"goodCalibratedSamples_length"
,
goodCalibratedSamples
.
length
+
""
);
for
(
int
chn
=
0
;
chn
<
goodCalibratedSamples
.
length
;
chn
++){
String
s
=
""
;
if
(
goodCalibratedSamples
[
chn
]!=
null
)
for
(
int
j
=
0
;
j
<
goodCalibratedSamples
[
chn
].
length
;
j
++)
s
+=
goodCalibratedSamples
[
chn
][
j
]?
"+"
:
"-"
;
properties
.
setProperty
(
prefix
+
"goodCalibratedSamples_"
+
chn
,
s
);
}
}
}
}
}
}
...
@@ -682,6 +695,20 @@ public class FocusingField {
...
@@ -682,6 +695,20 @@ public class FocusingField {
}
}
}
}
}
}
if
(
properties
.
getProperty
(
prefix
+
"goodCalibratedSamples_length"
)!=
null
){
goodCalibratedSamples
=
new
boolean
[
Integer
.
parseInt
(
properties
.
getProperty
(
prefix
+
"goodCalibratedSamples_length"
))][];
for
(
int
chn
=
0
;
chn
<
goodCalibratedSamples
.
length
;
chn
++){
String
s
=
properties
.
getProperty
(
prefix
+
"goodCalibratedSamples_"
+
chn
);
if
((
s
==
null
)
||
(
s
.
length
()==
0
)){
goodCalibratedSamples
[
chn
]=
null
;
}
else
{
goodCalibratedSamples
[
chn
]=
new
boolean
[
s
.
length
()];
for
(
int
i
=
0
;
i
<
goodCalibratedSamples
[
chn
].
length
;
i
++){
goodCalibratedSamples
[
chn
][
i
]=
s
.
charAt
(
i
)==
'+'
;
}
}
}
}
}
}
public
void
setDebugLevel
(
int
debugLevel
){
public
void
setDebugLevel
(
int
debugLevel
){
this
.
debugLevel
=
debugLevel
;
this
.
debugLevel
=
debugLevel
;
...
@@ -3950,6 +3977,19 @@ public double [] findAdjustZ(
...
@@ -3950,6 +3977,19 @@ public double [] findAdjustZ(
return
result
;
return
result
;
}
}
public
void
calculateGoodSamples
(){
this
.
goodCalibratedSamples
=
new
boolean
[
getNumChannels
()][
getNumSamples
()];
for
(
int
chn
=
0
;
chn
<
this
.
goodCalibratedSamples
.
length
;
chn
++)
for
(
int
sample
=
0
;
sample
<
this
.
goodCalibratedSamples
[
0
].
length
;
sample
++)
this
.
goodCalibratedSamples
[
chn
][
sample
]=
false
;
for
(
int
n
=
0
;
n
<
dataVector
.
length
;
n
++)
if
(
dataWeights
[
n
]>
0.0
){
this
.
goodCalibratedSamples
[
dataVector
[
n
].
channel
][
dataVector
[
n
].
sampleIndex
]=
true
;
}
if
(
debugLevel
>
0
)
{
System
.
out
.
println
(
"Calculated good samples:"
);
System
.
out
.
println
(
showSamples
(
this
.
goodCalibratedSamples
));
}
}
public
boolean
LevenbergMarquardt
(
public
boolean
LevenbergMarquardt
(
...
@@ -4201,9 +4241,12 @@ public boolean LevenbergMarquardt(
...
@@ -4201,9 +4241,12 @@ public boolean LevenbergMarquardt(
}
}
this
.
savedVector
=
this
.
currentVector
.
clone
();
this
.
savedVector
=
this
.
currentVector
.
clone
();
commitParameterVector
(
this
.
savedVector
);
commitParameterVector
(
this
.
savedVector
);
if
(
calibrate
)
zRanges
=
calcZRanges
(
if
(
calibrate
){
zRanges
=
calcZRanges
(
true
,
// boolean scanOnly, // do not use non-scan samples
true
,
// boolean scanOnly, // do not use non-scan samples
dataWeightsToBoolean
());
dataWeightsToBoolean
());
calculateGoodSamples
();
}
return
true
;
// all series done
return
true
;
// all series done
}
}
...
@@ -4766,6 +4809,10 @@ public boolean LevenbergMarquardt(
...
@@ -4766,6 +4809,10 @@ public boolean LevenbergMarquardt(
for
(
int
i
=
0
;
i
<
dataVector
.
length
;
i
++)
if
(
dataWeights
[
i
]>
0.0
){
for
(
int
i
=
0
;
i
<
dataVector
.
length
;
i
++)
if
(
dataWeights
[
i
]>
0.0
){
usedSamples
[
dataVector
[
i
].
channel
][
dataVector
[
i
].
sampleIndex
]=
true
;
usedSamples
[
dataVector
[
i
].
channel
][
dataVector
[
i
].
sampleIndex
]=
true
;
}
}
return
showSamples
(
usedSamples
);
}
public
String
showSamples
(
boolean
[][]
usedSamples
){
int
height
=
sampleCoord
.
length
;
int
height
=
sampleCoord
.
length
;
int
width
=
sampleCoord
[
0
].
length
;
int
width
=
sampleCoord
[
0
].
length
;
String
s
=
""
;
String
s
=
""
;
...
@@ -5465,17 +5512,18 @@ public boolean LevenbergMarquardt(
...
@@ -5465,17 +5512,18 @@ public boolean LevenbergMarquardt(
){
){
double
[]
sampleCorrRadius
=
getSampleRadiuses
();
double
[]
sampleCorrRadius
=
getSampleRadiuses
();
int
numSamples
=
sampleCorrRadius
.
length
;
int
numSamples
=
sampleCorrRadius
.
length
;
boolean
[][]
goodSamples
=
new
boolean
[
getNumChannels
()][
getNumSamples
()];
//
boolean [][] goodSamples=new boolean[getNumChannels()][getNumSamples()];
for
(
int
i
=
0
;
i
<
goodSamples
.
length
;
i
++)
for
(
int
j
=
0
;
j
<
goodSamples
[
0
].
length
;
j
++)
goodSamples
[
i
][
j
]=
false
;
//
for (int i=0;i<goodSamples.length;i++) for (int j=0;j<goodSamples[0].length;j++) goodSamples[i][j]=false;
for
(
int
n
=
0
;
n
<
dataVector
.
length
;
n
++)
if
(
dataWeights
[
n
]>
0.0
){
//
for (int n=0;n<dataVector.length;n++) if (dataWeights[n]>0.0){
goodSamples
[
dataVector
[
n
].
channel
][
dataVector
[
n
].
sampleIndex
]=
true
;
//
goodSamples[dataVector[n].channel][dataVector[n].sampleIndex]=true;
}
//
}
double
[][]
result
=
new
double
[
6
][];
double
[][]
result
=
new
double
[
6
][];
for
(
int
chn
=
0
;
chn
<
result
.
length
;
chn
++)
{
for
(
int
chn
=
0
;
chn
<
result
.
length
;
chn
++)
{
if
((
curvatureModel
[
chn
]!=
null
)
&&
(
allChannels
||
channelSelect
[
chn
])){
if
((
curvatureModel
[
chn
]!=
null
)
&&
(
allChannels
||
channelSelect
[
chn
])){
result
[
chn
]=
new
double
[
numSamples
];
result
[
chn
]=
new
double
[
numSamples
];
for
(
int
sampleIndex
=
0
;
sampleIndex
<
numSamples
;
sampleIndex
++)
{
for
(
int
sampleIndex
=
0
;
sampleIndex
<
numSamples
;
sampleIndex
++)
{
if
(
goodSamples
[
chn
][
sampleIndex
])
{
if
((
goodCalibratedSamples
==
null
)
||
((
goodCalibratedSamples
[
chn
]!=
null
)
&&
goodCalibratedSamples
[
chn
][
sampleIndex
]))
{
// if (goodSamples[chn][sampleIndex]) {
/*
/*
result[chn][sampleIndex]=curvatureModel[chn].getAr(
result[chn][sampleIndex]=curvatureModel[chn].getAr(
sampleCorrRadius[sampleIndex],
sampleCorrRadius[sampleIndex],
...
@@ -5512,17 +5560,20 @@ public boolean LevenbergMarquardt(
...
@@ -5512,17 +5560,20 @@ public boolean LevenbergMarquardt(
){
){
double
[]
sampleCorrRadius
=
getSampleRadiuses
();
double
[]
sampleCorrRadius
=
getSampleRadiuses
();
int
numSamples
=
sampleCorrRadius
.
length
;
int
numSamples
=
sampleCorrRadius
.
length
;
/*
boolean [][] goodSamples=new boolean[getNumChannels()][getNumSamples()];
boolean [][] goodSamples=new boolean[getNumChannels()][getNumSamples()];
for (int i=0;i<goodSamples.length;i++) for (int j=0;j<goodSamples[0].length;j++) goodSamples[i][j]=false;
for (int i=0;i<goodSamples.length;i++) for (int j=0;j<goodSamples[0].length;j++) goodSamples[i][j]=false;
for (int n=0;n<dataVector.length;n++) if (dataWeights[n]>0.0){
for (int n=0;n<dataVector.length;n++) if (dataWeights[n]>0.0){
goodSamples[dataVector[n].channel][dataVector[n].sampleIndex]=true;
goodSamples[dataVector[n].channel][dataVector[n].sampleIndex]=true;
}
}
*/
double
[][]
result
=
new
double
[
6
][];
double
[][]
result
=
new
double
[
6
][];
for
(
int
chn
=
0
;
chn
<
result
.
length
;
chn
++)
{
for
(
int
chn
=
0
;
chn
<
result
.
length
;
chn
++)
{
if
((
curvatureModel
[
chn
]!=
null
)
&&
(
allChannels
||
channelSelect
[
chn
])){
if
((
curvatureModel
[
chn
]!=
null
)
&&
(
allChannels
||
channelSelect
[
chn
])){
result
[
chn
]=
new
double
[
numSamples
];
result
[
chn
]=
new
double
[
numSamples
];
for
(
int
sampleIndex
=
0
;
sampleIndex
<
numSamples
;
sampleIndex
++)
{
for
(
int
sampleIndex
=
0
;
sampleIndex
<
numSamples
;
sampleIndex
++)
{
if
(
goodSamples
[
chn
][
sampleIndex
])
{
if
((
goodCalibratedSamples
==
null
)
||
((
goodCalibratedSamples
[
chn
]!=
null
)
&&
goodCalibratedSamples
[
chn
][
sampleIndex
]))
{
// if (goodSamples[chn][sampleIndex]) {
result
[
chn
][
sampleIndex
]=
getChannelBestFWHM
(
result
[
chn
][
sampleIndex
]=
getChannelBestFWHM
(
chn
,
// int channel,
chn
,
// int channel,
sampleIndex
,
// int sampleIndex,
sampleIndex
,
// int sampleIndex,
...
@@ -5563,18 +5614,23 @@ public boolean LevenbergMarquardt(
...
@@ -5563,18 +5614,23 @@ public boolean LevenbergMarquardt(
double
[]
qualB
=
{
0.0
,
0.0
,
0.0
};
double
[]
qualB
=
{
0.0
,
0.0
,
0.0
};
double
[]
sampleCorrRadius
=
getSampleRadiuses
();
double
[]
sampleCorrRadius
=
getSampleRadiuses
();
int
numSamples
=
sampleCorrRadius
.
length
;
int
numSamples
=
sampleCorrRadius
.
length
;
if
(
goodCalibratedSamples
==
null
)
calculateGoodSamples
();
/*
boolean [][] goodSamples=new boolean[getNumChannels()][getNumSamples()];
boolean [][] goodSamples=new boolean[getNumChannels()][getNumSamples()];
for (int i=0;i<goodSamples.length;i++) for (int j=0;j<goodSamples[0].length;j++) goodSamples[i][j]=false;
for (int i=0;i<goodSamples.length;i++) for (int j=0;j<goodSamples[0].length;j++) goodSamples[i][j]=false;
for (int n=0;n<dataVector.length;n++) if (dataWeights[n]>0.0){
for (int n=0;n<dataVector.length;n++) if (dataWeights[n]>0.0){
goodSamples[dataVector[n].channel][dataVector[n].sampleIndex]=true;
goodSamples[dataVector[n].channel][dataVector[n].sampleIndex]=true;
}
}
*/
for
(
int
c
=
0
;
c
<
3
;
c
++)
{
for
(
int
c
=
0
;
c
<
3
;
c
++)
{
if
((
data
[
2
*
c
]!=
null
)
&&
(
data
[
2
*
c
+
1
]!=
null
)){
if
((
data
[
2
*
c
]!=
null
)
&&
(
data
[
2
*
c
+
1
]!=
null
)){
int
nSamp
=
0
;
int
nSamp
=
0
;
qualB
[
c
]=
0.0
;
qualB
[
c
]=
0.0
;
for
(
int
i
=
0
;
i
<
numSamples
;
i
++){
for
(
int
i
=
0
;
i
<
numSamples
;
i
++){
for
(
int
dir
=
0
;
dir
<
2
;
dir
++)
{
for
(
int
dir
=
0
;
dir
<
2
;
dir
++)
{
if
(
goodSamples
[
2
*
c
+
dir
][
i
]){
// if (goodSamples[2*c+dir][i]){
int
chn
=
2
*
c
+
dir
;
if
((
goodCalibratedSamples
[
chn
]!=
null
)
&&
goodCalibratedSamples
[
chn
][
i
])
{
qualB
[
c
]+=
data
[
2
*
c
+
dir
][
i
]*
data
[
2
*
c
+
dir
][
i
]*
data
[
2
*
c
+
dir
][
i
]*
data
[
2
*
c
+
dir
][
i
];
qualB
[
c
]+=
data
[
2
*
c
+
dir
][
i
]*
data
[
2
*
c
+
dir
][
i
]*
data
[
2
*
c
+
dir
][
i
]*
data
[
2
*
c
+
dir
][
i
];
nSamp
++;
nSamp
++;
}
}
...
@@ -5591,10 +5647,18 @@ public boolean LevenbergMarquardt(
...
@@ -5591,10 +5647,18 @@ public boolean LevenbergMarquardt(
//TODO: Move to a separate function
//TODO: Move to a separate function
int
[]
numBad
={
0
,
0
,
0
,
0
,
0
,
0
};
int
[]
numBad
={
0
,
0
,
0
,
0
,
0
,
0
};
boolean
hasBad
=
false
;
boolean
hasBad
=
false
;
for
(
int
i
=
0
;
i
<
goodSamples
.
length
;
i
++)
for
(
int
j
=
0
;
j
<
goodSamples
[
0
].
length
;
j
++)
if
(!
goodSamples
[
i
][
j
]){
// for (int i=0;i<goodSamples.length;i++) for (int j=0;j<goodSamples[0].length;j++) if (!goodSamples[i][j]){
for
(
int
i
=
0
;
i
<
goodCalibratedSamples
.
length
;
i
++){
if
(
goodCalibratedSamples
[
i
]==
null
)
{
numBad
[
i
]+=
getNumSamples
();
hasBad
=
true
;
}
else
{
for
(
int
j
=
0
;
j
<
goodCalibratedSamples
[
i
].
length
;
j
++)
if
(!
goodCalibratedSamples
[
i
][
j
]){
numBad
[
i
]++;
numBad
[
i
]++;
hasBad
=
true
;
hasBad
=
true
;
}
}
}
}
if
((
debugLevel
>
1
)
&&
hasBad
){
// was 0
if
((
debugLevel
>
1
)
&&
hasBad
){
// was 0
for
(
int
i
=
0
;
i
<
numBad
.
length
;
i
++)
if
(
numBad
[
i
]>
0
){
for
(
int
i
=
0
;
i
<
numBad
.
length
;
i
++)
if
(
numBad
[
i
]>
0
){
System
.
out
.
println
(
numBad
[
i
]+
" sample locations are missing data for "
+
fieldFitting
.
getDescription
(
i
));
System
.
out
.
println
(
numBad
[
i
]+
" sample locations are missing data for "
+
fieldFitting
.
getDescription
(
i
));
...
@@ -8577,7 +8641,7 @@ f_corr: d_fcorr/d_zcorr=0, other: a, reff, kx -> ar[1], ar[2], ar[3], ar[4]
...
@@ -8577,7 +8641,7 @@ f_corr: d_fcorr/d_zcorr=0, other: a, reff, kx -> ar[1], ar[2], ar[3], ar[4]
this
.
k_blue
,
this
.
k_blue
,
this
.
k_sag
,
this
.
k_sag
,
this
.
k_tan
,
this
.
k_tan
,
goodSamples
,
this
.
qualBRemoveBadSamples
?
this
.
goodCalibratedSamples
:
null
,
//
goodSamples,
sampleWeights
);
sampleWeights
);
qualBOptimize
.
initQPars
(
qualBOptimize
.
initQPars
(
zTxTy
,
zTxTy
,
...
@@ -8678,7 +8742,7 @@ f_corr: d_fcorr/d_zcorr=0, other: a, reff, kx -> ar[1], ar[2], ar[3], ar[4]
...
@@ -8678,7 +8742,7 @@ f_corr: d_fcorr/d_zcorr=0, other: a, reff, kx -> ar[1], ar[2], ar[3], ar[4]
int
chn
=
c
*
dirWeights
.
length
+
d
;
int
chn
=
c
*
dirWeights
.
length
+
d
;
for
(
int
sample
=
0
;
sample
<
numSamples
;
sample
++){
for
(
int
sample
=
0
;
sample
<
numSamples
;
sample
++){
double
w
=
0.0
;
double
w
=
0.0
;
if
((
goodSamples
==
null
)
||
goodSamples
[
chn
][
sample
]
)
{
if
((
goodSamples
==
null
)
||
((
goodSamples
[
chn
]!=
null
)
&&
goodSamples
[
chn
][
sample
])
)
{
w
=
colorWeights
[
c
]*
dirWeights
[
d
];
w
=
colorWeights
[
c
]*
dirWeights
[
d
];
}
}
if
(
sampleWeights
!=
null
){
if
(
sampleWeights
!=
null
){
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment