prediction_MSE_Scout-checkpoint.ipynb 20.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "dbef8759",
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "from matplotlib import pyplot as plt\n",
    "from itertools import product\n",
    "import os\n",
    "import sys\n",
    "from PIL import Image\n",
    "from scipy.optimize import minimize\n",
    "from time import time\n",
    "from numpy import linalg as la"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "b7a550e0",
   "metadata": {},
   "outputs": [],
   "source": [
    "def file_extractor(dirname=\"images\"):\n",
    "    files = os.listdir(dirname)\n",
    "    scenes = []\n",
    "    for file in files:\n",
    "        scenes.append(os.path.join(dirname, file))\n",
    "    return scenes\n",
    "\n",
    "def image_extractor(scenes):\n",
    "    image_folder = []\n",
    "    for scene in scenes:\n",
    "        files = os.listdir(scene)\n",
    "        for file in files:\n",
    "            image_folder.append(os.path.join(scene, file))\n",
    "    images = []\n",
    "    for folder in image_folder:\n",
    "        ims = os.listdir(folder)\n",
    "        for im in ims:\n",
    "            if im[-4:] == \".jp4\" or im[-7:] == \"_6.tiff\":\n",
    "                continue\n",
    "            else:\n",
    "                images.append(os.path.join(folder, im))\n",
    "    return images #returns a list of file paths to .tiff files in the specified directory given in file_extractor\n",
    "\n",
    "def im_distribution(images, num):\n",
    "    \"\"\"\n",
    "    Function that extracts tiff files from specific cameras and returns a list of all\n",
    "    the tiff files corresponding to that camera. i.e. all pictures labeled \"_7.tiff\" or otherwise\n",
    "    specified camera numbers.\n",
    "    \n",
    "    Parameters:\n",
    "        images (list): list of all tiff files, regardless of classification. This is NOT a list of directories but\n",
    "        of specific tiff files that can be opened right away. This is the list that we iterate through and \n",
    "        divide.\n",
    "        \n",
    "        num (str): a string designation for the camera number that we want to extract i.e. \"14\" for double digits\n",
    "        of \"_1\" for single digits.\n",
    "        \n",
    "    Returns:\n",
    "        tiff (list): A list of tiff files that have the specified designation from num. They are the files extracted\n",
    "        from the 'images' list that correspond to the given num.\n",
    "    \"\"\"\n",
    "    tiff = []\n",
    "    for im in images:\n",
    "        if im[-7:-5] == num:\n",
    "            tiff.append(im)\n",
    "    return tiff"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "9ed20f84",
   "metadata": {},
   "outputs": [],
   "source": [
    "def plot_hist(tiff_list, i):\n",
    "    \"\"\"\n",
    "    This function is the leftovers from the first attempt to plot histograms.\n",
    "    As it stands it needs some work in order to function again. We will\n",
    "    fix this later. 1/25/22\n",
    "    \"\"\"\n",
    "    \n",
    "\n",
    "    image = tiff_list[i]\n",
    "    image = Image.open(image)    #Open the image and read it as an Image object\n",
    "    image = np.array(image)[1:,:]    #Convert to an array, leaving out the first row because the first row is just housekeeping data\n",
    "    image = image.astype(int)\n",
    "    row, col = image.shape\n",
    "    \"\"\"predict = np.empty([row,col])     # create a empty matrix to update prediction\n",
    "    predict[0,:] = np.copy(image[0,:])       # keep the first row from the image\n",
    "    predict[:,0] = np.copy(image[:,0])      # keep the first columen from the image\n",
    "    predict[-1,:] = np.copy(image[-1,:])       # keep the first row from the image\n",
    "    predict[:,-1] = np.copy(image[:,-1])      # keep the first columen from the image\n",
    "    diff = np.empty([row,col])\n",
    "    diff[0,:] = np.zeros(col)       # keep the first row from the image\n",
    "    diff[:,0] = np.zeros(row)\n",
    "    diff[-1,:] = np.zeros(col)       # keep the first row from the image\n",
    "    diff[:,-1] = np.zeros(row)\"\"\"\n",
    "    A = np.array([[3,0,-1],[0,3,3],[1,-3,-4]])\n",
    "    z0 = image[0:-2,0:-2]\n",
    "    z1 = image[0:-2,1:-1]\n",
    "    z2 = image[0:-2,2::]\n",
    "    z3 = image[1:-1,0:-2]\n",
    "    y0 = np.ravel(-z0+z2-z3)\n",
    "    y1 = np.ravel(z0+z1+z2)\n",
    "    y2 = np.ravel(-z0-z1-z2-z3)\n",
    "    y = np.vstack((y0,y1,y2))\n",
    "    predict = la.solve(A,y)[-1]\n",
    "    #diff = [(np.max([z0[r,c],z1[r,c],z2[r,c],z3[r,c]])-np.min([z0[r,c],z1[r,c],z2[r,c],z3[r,c]])) for r in range(0,row-2) for c in range(0,col-2)]\n",
    "    '''\n",
    "    for r in range(1,row-1):                  # loop through the rth row\n",
    "        for c in range(1,col-1):              # loop through the cth column\n",
    "            actual_surrounding = np.array([image[r-1,c-1], image[r-1,c], image[r-1,c+1], image[r,c-1]])\n",
    "            #z = np.array([int(image[r-1,c-1]), int(image[r-1,c]), int(image[r-1,c+1]), int(image[r,c-1])])\n",
    "            z = np.array([image[r-1,c-1], image[r-1,c], image[r-1,c+1], image[r,c-1]])\n",
    "            y = np.array([-z[0]+z[2]-z[3], z[0]+z[1]+z[2], -z[0]-z[1]-z[2]-z[3]])\n",
    "            predict[r,c] = np.linalg.solve(A,y)[-1]\n",
    "            diff[r,c] = (np.max(actual_surrounding)-np.min(actual_surrounding))\n",
    "    predict = np.ravel(predict[1:-1,1:-1])\n",
    "    diff = np.ravel(diff[1:-1,1:-1])'''\n",
    "    image = np.ravel(image[1:-1,1:-1])\n",
    "    return image, predict#, diff"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "8e3ef654",
   "metadata": {},
   "outputs": [],
   "source": [
    "scenes = file_extractor()\n",
    "images = image_extractor(scenes)\n",
    "num_images = im_distribution(images, \"_9\")\n",
    "error_mean = []\n",
    "error_mean1 = []\n",
    "diff_mean = []\n",
    "times = []\n",
    "times1 = []\n",
    "all_error = []\n",
    "for i in range(len(num_images)):\n",
    "    \"\"\"start1 = time()\n",
    "    image_1, predict_1, difference_1, x_s_1 = plot_hist(num_images, i, \"second\")\n",
    "    stop1 = time()\n",
    "    times1.append(stop1-start1)\n",
    "    error1 = np.abs(image_1-predict_1)\n",
    "    error_mean1.append(np.mean(np.ravel(error1)))\"\"\"\n",
    "    start = time()\n",
    "    image, predict = plot_hist(num_images, i)\n",
    "    stop = time()\n",
    "    times.append(stop-start)\n",
    "    error = np.abs(image-predict)\n",
    "    all_error.append(np.ravel(error))\n",
    "    error_mean.append(np.mean(np.ravel(error)))\n",
    "    #diff_mean.append(np.mean(np.ravel(difference)))\n",
    "    \n",
    "#image, predict, difference = plot_hist(images, 0)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "fa65dcd6",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Average Error First and Second Added: 20.017164930235474\n",
      "233.22663391021266\n",
      "Standard Deviaiton of Mean Errors: 0.16101183692475135\n",
      "Average Time per Image for First: 0.023412495851516724\n"
     ]
    }
   ],
   "source": [
    "print(f\"Average Error First and Second Added: {np.mean(error_mean)}\")\n",
    "print(np.std(image))\n",
    "print(f\"Standard Deviaiton of Mean Errors: {np.sqrt(np.var(error_mean))}\")\n",
    "#print(f\"Average Difference: {np.mean(diff_mean)}\")\n",
    "print(f\"Average Time per Image for First: {np.mean(times)}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "f592fa32",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[[0 1 2]\n",
      " [3 4 5]\n",
      " [6 7 8]]\n",
      "[4 5]\n",
      "[4 5]\n"
     ]
    }
   ],
   "source": [
    "b = np.arange(9).reshape((3,3))\n",
    "print(b)\n",
    "print(b[1,1::])\n",
    "print(b[1,1:])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "dda442ae",
   "metadata": {},
   "outputs": [
    {
     "ename": "NameError",
     "evalue": "name 'difference' is not defined",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mNameError\u001b[0m                                 Traceback (most recent call last)",
      "\u001b[1;32m~\\AppData\\Local\\Temp/ipykernel_10808/722042198.py\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m      2\u001b[0m \u001b[0max\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mfig\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0madd_subplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m      3\u001b[0m \u001b[0mx\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mabs\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpredict\u001b[0m\u001b[1;33m-\u001b[0m\u001b[0mimage\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 4\u001b[1;33m \u001b[0my\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mdifference\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m      5\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;34m'o'\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0malpha\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;36m0.2\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m      6\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrcParams\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m{\u001b[0m\u001b[1;34m'font.size'\u001b[0m\u001b[1;33m:\u001b[0m \u001b[1;36m20\u001b[0m\u001b[1;33m}\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;31mNameError\u001b[0m: name 'difference' is not defined"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlsAAAJDCAYAAAA8QNGHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUe0lEQVR4nO3dX4jld3nH8c/TXQP+qxGzik2ymJZo3AtTdIxStI2V1iQ3QfAiUQwNwhJqxMuEXuiFN/WiIGJ0WUII3piLGjSWaCgUTSGmzQZikjVEtpEm2whJVCwoNGzy9GKmMh1nM2cn59ndE18vODC/3/nOmQe+zPLe3zlzTnV3AACY8QdnegAAgFcysQUAMEhsAQAMElsAAIPEFgDAILEFADBox9iqqtuq6pmqevQk91dVfbmqjlXVw1X17uWPCQCwmha5snV7kite4v4rk1y8cTuY5GsvfywAgFeGHWOru+9N8ouXWHJ1kq/3uvuTnFtVb13WgAAAq2wZr9k6P8lTm46Pb5wDAPi9t3cJj1HbnNv2M4Cq6mDWn2rMa1/72vdccsklS/jxAACzHnzwwee6e99uvncZsXU8yYWbji9I8vR2C7v7cJLDSbK2ttZHjhxZwo8HAJhVVf+52+9dxtOIdyW5buOvEt+f5Ffd/bMlPC4AwMrb8cpWVX0jyeVJzquq40k+n+RVSdLdh5LcneSqJMeS/CbJ9VPDAgCsmh1jq7uv3eH+TvLppU0EAPAK4h3kAQAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAYJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAYJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAYJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAYJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAYJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAYJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAYJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAYJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABi0UGxV1RVV9XhVHauqm7e5/w1V9Z2q+lFVHa2q65c/KgDA6tkxtqpqT5JbklyZ5ECSa6vqwJZln07y4+6+NMnlSf6hqs5Z8qwAACtnkStblyU51t1PdPfzSe5IcvWWNZ3k9VVVSV6X5BdJTix1UgCAFbRIbJ2f5KlNx8c3zm32lSTvTPJ0kkeSfLa7X1zKhAAAK2yR2KptzvWW448keSjJHyX50yRfqao//J0HqjpYVUeq6sizzz57iqMCAKyeRWLreJILNx1fkPUrWJtdn+TOXncsyU+TXLL1gbr7cHevdffavn37djszAMDKWCS2HkhycVVdtPGi92uS3LVlzZNJPpwkVfWWJO9I8sQyBwUAWEV7d1rQ3Seq6sYk9yTZk+S27j5aVTds3H8oyReS3F5Vj2T9acebuvu5wbkBAFbCjrGVJN19d5K7t5w7tOnrp5P89XJHAwBYfd5BHgBgkNgCABgktgAABoktAIBBYgsAYJDYAgAYJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAYJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAYJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAYJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAYJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAYJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAYJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAYJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBC8VWVV1RVY9X1bGquvkkay6vqoeq6mhV/WC5YwIArKa9Oy2oqj1JbknyV0mOJ3mgqu7q7h9vWnNukq8muaK7n6yqNw/NCwCwUha5snVZkmPd/UR3P5/kjiRXb1nz8SR3dveTSdLdzyx3TACA1bRIbJ2f5KlNx8c3zm329iRvrKrvV9WDVXXdsgYEAFhlOz6NmKS2OdfbPM57knw4yauT/LCq7u/un/y/B6o6mORgkuzfv//UpwUAWDGLXNk6nuTCTccXJHl6mzXf6+5fd/dzSe5NcunWB+ruw9291t1r+/bt2+3MAAArY5HYeiDJxVV1UVWdk+SaJHdtWfPtJB+sqr1V9Zok70vy2HJHBQBYPTs+jdjdJ6rqxiT3JNmT5LbuPlpVN2zcf6i7H6uq7yV5OMmLSW7t7kcnBwcAWAXVvfXlV6fH2tpaHzly5Iz8bACAU1FVD3b32m6+1zvIAwAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAoIViq6quqKrHq+pYVd38EuveW1UvVNXHljciAMDq2jG2qmpPkluSXJnkQJJrq+rASdZ9Mck9yx4SAGBVLXJl67Ikx7r7ie5+PskdSa7eZt1nknwzyTNLnA8AYKUtElvnJ3lq0/HxjXO/VVXnJ/lokkPLGw0AYPUtElu1zbnecvylJDd19wsv+UBVB6vqSFUdefbZZxccEQBgde1dYM3xJBduOr4gydNb1qwluaOqkuS8JFdV1Ynu/tbmRd19OMnhJFlbW9sabAAArziLxNYDSS6uqouS/FeSa5J8fPOC7r7o/76uqtuT/NPW0AIA+H20Y2x194mqujHrf2W4J8lt3X20qm7YuN/rtAAATmKRK1vp7ruT3L3l3LaR1d1/8/LHAgB4ZfAO8gAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCxBQAwSGwBAAwSWwAAg8QWAMAgsQUAMEhsAQAMWii2quqKqnq8qo5V1c3b3P+Jqnp443ZfVV26/FEBAFbPjrFVVXuS3JLkyiQHklxbVQe2LPtpkr/o7ncl+UKSw8seFABgFS1yZeuyJMe6+4nufj7JHUmu3rygu+/r7l9uHN6f5ILljgkAsJoWia3zkzy16fj4xrmT+VSS776coQAAXin2LrCmtjnX2y6s+lDWY+sDJ7n/YJKDSbJ///4FRwQAWF2LXNk6nuTCTccXJHl666KqeleSW5Nc3d0/3+6Buvtwd69199q+fft2My8AwEpZJLYeSHJxVV1UVeckuSbJXZsXVNX+JHcm+WR3/2T5YwIArKYdn0bs7hNVdWOSe5LsSXJbdx+tqhs27j+U5HNJ3pTkq1WVJCe6e21ubACA1VDd2778atza2lofOXLkjPxsAIBTUVUP7vZCkneQBwAYJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAYJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAYJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAYJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAYJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAYJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAYJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAYJLYAAAaJLQCAQWILAGCQ2AIAGCS2AAAGiS0AgEFiCwBgkNgCABgktgAABoktAIBBYgsAYJDYAgAYJLYAAAaJLQCAQWILAGDQQrFVVVdU1eNVdayqbt7m/qqqL2/c/3BVvXv5owIArJ4dY6uq9iS5JcmVSQ4kubaqDmxZdmWSizduB5N8bclzAgCspEWubF2W5Fh3P9Hdzye5I8nVW9ZcneTrve7+JOdW1VuXPCsAwMpZJLbOT/LUpuPjG+dOdQ0AwO+dvQusqW3O9S7WpKoOZv1pxiT5n6p6dIGfz9npvCTPnekh2BV7t9rs32qzf6vrHbv9xkVi63iSCzcdX5Dk6V2sSXcfTnI4SarqSHevndK0nDXs3+qyd6vN/q02+7e6qurIbr93kacRH0hycVVdVFXnJLkmyV1b1tyV5LqNv0p8f5JfdffPdjsUAMArxY5Xtrr7RFXdmOSeJHuS3NbdR6vqho37DyW5O8lVSY4l+U2S6+dGBgBYHYs8jZjuvjvrQbX53KFNX3eST5/izz58ius5u9i/1WXvVpv9W232b3Xteu9qvZMAAJjg43oAAAaNx5aP+lldC+zdJzb27OGquq+qLj0Tc7K9nfZv07r3VtULVfWx0zkfL22R/auqy6vqoao6WlU/ON0zsr0F/u18Q1V9p6p+tLF3Xud8lqiq26rqmZO9NdWum6W7x25Zf0H9fyT54yTnJPlRkgNb1lyV5LtZf6+u9yf5t8mZ3Ja6d3+W5I0bX19p786e2yL7t2ndv2T9NZkfO9Nzuy2+f0nOTfLjJPs3jt98pud2W3jv/i7JFze+3pfkF0nOOdOzu3WS/HmSdyd59CT376pZpq9s+aif1bXj3nX3fd39y43D+7P+/mqcHRb53UuSzyT5ZpJnTudw7GiR/ft4kju7+8kk6W57eHZYZO86yeurqpK8LuuxdeL0jsl2uvverO/HyeyqWaZjy0f9rK5T3ZdPZb32OTvsuH9VdX6SjyY5FM42i/z+vT3JG6vq+1X1YFVdd9qm46UssndfSfLOrL/59yNJPtvdL56e8XiZdtUsC731w8uwtI/64bRbeF+q6kNZj60PjE7EqVhk/76U5KbufmH9P9icRRbZv71J3pPkw0leneSHVXV/d/9kejhe0iJ795EkDyX5yyR/kuSfq+pfu/u/h2fj5dtVs0zH1tI+6ofTbqF9qap3Jbk1yZXd/fPTNBs7W2T/1pLcsRFa5yW5qqpOdPe3TsuEvJRF/+18rrt/neTXVXVvkkuTiK0za5G9uz7J3/f6i4COVdVPk1yS5N9Pz4i8DLtqlumnEX3Uz+race+qan+SO5N80v+mzzo77l93X9Tdb+vutyX5xyR/K7TOGov82/ntJB+sqr1V9Zok70vy2Gmek9+1yN49mfUrkqmqt2T9A46fOK1Tslu7apbRK1vto35W1oJ797kkb0ry1Y2rIyfaB6yeFRbcP85Si+xfdz9WVd9L8nCSF5Pc2t3b/rk6p8+Cv3tfSHJ7VT2S9aelburu587Y0PxWVX0jyeVJzquq40k+n+RVyctrFu8gDwAwyDvIAwAMElsAAIPEFgDAILEFADBIbAEADBJbAACDxBYAwCCxBQAw6H8BU0gXwe5IAxEAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 720x720 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "fig = plt.figure(figsize = (10,10))\n",
    "ax = fig.add_subplot()\n",
    "x = np.abs(predict-image)\n",
    "y = difference\n",
    "plt.plot(x,y,'o',alpha = 0.2)\n",
    "plt.rcParams.update({'font.size': 20})\n",
    "plt.xlabel(\"differnece to the true value\" )\n",
    "plt.ylabel(\"differnece of min and max of true value of the surroundings\")\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "58da6063",
   "metadata": {},
   "outputs": [],
   "source": [
    "image = Image.open(images[0])    #Open the image and read it as an Image object\n",
    "image = np.array(image)[1:,:]\n",
    "#z = np.array([image[1-1,1-1], image[1-1,1], image[1-1,1+1], image[1,1-1]])\n",
    "z = np.array([22554,22552,22519,22561])\n",
    "print(z)\n",
    "'''A = np.array([[-3,0,1],[0,-3,3],[-1,-3,4]])\n",
    "y = np.array([z[0]-z[2]+z[3], z[0]+z[1]+z[2], -z[0]-z[1]-z[2]-z[3]])\n",
    "a,b,c = np.linalg.solve(A,y)'''\n",
    "A = np.array([[3,0,-1],[0,3,3],[1,-3,-4]])\n",
    "y = np.array([-z[0]+z[2]-z[3], z[0]+z[1]+z[2], -z[0]-z[1]-z[2]-z[3]])\n",
    "print(y)\n",
    "a,b,c = np.linalg.solve(A,y)\n",
    "print(a,b,c)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2562feeb",
   "metadata": {
    "scrolled": false
   },
   "outputs": [],
   "source": [
    "i0 = (a*(-1) + b*(1) + c)\n",
    "i1 = (a*(0) + b*(1) + c)\n",
    "i2 = (a*(1) + b*(1) + c)\n",
    "i3 = (a*(-1) + b*(0) + c)\n",
    "print(sum([(i0-z[0])**2,(i1-z[1])**2,(i2-z[2])**2,(i3-z[3])**2]))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "470cc137",
   "metadata": {},
   "outputs": [],
   "source": [
    "a = 0\n",
    "b = 2\n",
    "c = 2\n",
    "i0 = (a*(-1) + b*(1) + c)\n",
    "i1 = (a*(0) + b*(1) + c)\n",
    "i2 = (a*(1) + b*(1) + c)\n",
    "i3 = (a*(-1) + b*(0) + c)\n",
    "print(sum([(i0-z[0])**2,(i1-z[1])**2,(i2-z[2])**2,(i3-z[3])**2]))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3292b395",
   "metadata": {},
   "outputs": [],
   "source": [
    "#z = np.hstack((image[0,:3], image[1,0]))\n",
    "#x = np.array([-1,0,1,-1])\n",
    "#y = np.array([-1,-1,-1,0])\n",
    "A = np.array([[-3,0,1],[0,-3,3],[1,3,-4]])\n",
    "#y = np.array([z[0]-z[2]+z[3], z[0]+z[1]+z[2], -z[0]-z[1]-z[2]-z[3]])\n",
    "y = np.array([[1,2,3],[4,5,6],[7,8,9]])\n",
    "print(np.linalg.solve(A,y))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f9687830",
   "metadata": {},
   "outputs": [],
   "source": [
    "0.5**2 + 1.5**2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e98eed4b",
   "metadata": {},
   "outputs": [],
   "source": [
    "y1= [0,1,2,3]\n",
    "y2=[4,5,6,7]\n",
    "y3=[8,9,10,11]\n",
    "np.vstack((y1,y2,y3)).T"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b7e88aab",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}