/******************************************************************************* * Module: mcntrl_linear_rw * Date:2015-01-29 * Author: andrey * Description: Organize paged R/W from DDR3 memory in scan-line order * with window support * * Copyright (c) 2015 . * mcntrl_linear_rw.v is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * mcntrl_linear_rw.v is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . *******************************************************************************/ `timescale 1ns/1ps // TODO: ADD MCNTRL_SCANLINE_FRAME_PAGE_RESET to caller module mcntrl_linear_rw #( parameter ADDRESS_NUMBER= 15, parameter COLADDR_NUMBER= 10, parameter NUM_XFER_BITS= 6, // number of bits to specify transfer length parameter FRAME_WIDTH_BITS= 13, // Maximal frame width - 8-word (16 bytes) bursts parameter FRAME_HEIGHT_BITS= 16, // Maximal frame height parameter MCNTRL_SCANLINE_ADDR= 'h120, parameter MCNTRL_SCANLINE_MASK= 'h3f0, // both channels 0 and 1 parameter MCNTRL_SCANLINE_MODE= 'h0, // set mode register: {extra_pages[1:0],write,enable,!reset} parameter MCNTRL_SCANLINE_STATUS_CNTRL= 'h1, // control status reporting parameter MCNTRL_SCANLINE_STARTADDR= 'h2, // 22-bit frame start address (3 CA LSBs==0. BA==0) parameter MCNTRL_SCANLINE_FRAME_FULL_WIDTH='h3, // Padded line length (8-row increment), in 8-bursts (16 bytes) parameter MCNTRL_SCANLINE_WINDOW_WH= 'h4, // low word - 13-bit window width (0->'h4000), high word - 16-bit frame height (0->'h10000) parameter MCNTRL_SCANLINE_WINDOW_X0Y0= 'h5, // low word - 13-bit window left, high word - 16-bit window top parameter MCNTRL_SCANLINE_WINDOW_STARTXY= 'h6, // low word - 13-bit start X (relative to window), high word - 16-bit start y // Start XY can be used when read command to start from the middle // TODO: Add number of blocks to R/W? (blocks can be different) - total length? // Read back current address (for debugging)? parameter MCNTRL_SCANLINE_STATUS_REG_ADDR= 'h4, parameter MCNTRL_SCANLINE_PENDING_CNTR_BITS=2, // Number of bits to count pending trasfers, currently 2 is enough, but may increase // if memory controller will allow programming several sequences in advance to // spread long-programming (tiled) over fast-programming (linear) requests. // But that should not be too big to maintain 2-level priorities parameter MCNTRL_SCANLINE_FRAME_PAGE_RESET =1'b0 // reset internal page number to zero at the frame start (false - only when hard/soft reset) // parameter MCNTRL_SCANLINE_WRITE_MODE = 1'b0 // module is configured to write tiles to external memory (false - read tiles) )( input rst, input mclk, // programming interface input [7:0] cmd_ad, // byte-serial command address/data (up to 6 bytes: AL-AH-D0-D1-D2-D3 input cmd_stb, // strobe (with first byte) for the command a/d output [7:0] status_ad, // byte-wide address/data output status_rq, // request to send downstream (last byte with rq==0) input status_start, // acknowledge of address (first byte) from downsteram input frame_start, // resets page, x,y, and initiates transfer requests (in write mode will wait for next_page) input next_page, // page was read/written from/to 4*1kB on-chip buffer // output page_ready, // == xfer_done, connect externally | Single-cycle pulse indicating that a page was read/written from/to DDR3 memory output frame_done, // single-cycle pulse when the full frame (window) was transferred to/from DDR3 memory output frame_finished,// turns on and stays on after frame_done // optional I/O for channel synchronization output [FRAME_HEIGHT_BITS-1:0] line_unfinished, // number of the current (ufinished ) line, REALATIVE TO FRAME, NOT WINDOW?. input suspend, // suspend transfers (from external line number comparator) output xfer_want, // "want" data transfer output xfer_need, // "need" - really need a transfer (only 1 page/ room for 1 page left in a buffer), want should still be set. input xfer_grant, // sequencer programming access granted, deassert wait/need output xfer_start_rd, // initiate a transfer (next cycle after xfer_grant) output xfer_start_wr, // initiate a transfer (next cycle after xfer_grant) output [2:0] xfer_bank, // bank address output [ADDRESS_NUMBER-1:0] xfer_row, // memory row output [COLADDR_NUMBER-4:0] xfer_col, // start memory column in 8-bursts output [NUM_XFER_BITS-1:0] xfer_num128, // number of 128-bit words to transfer (8*16 bits) - full bursts of 8 ( 0 - maximal length, 64) output xfer_partial, // partial tile (first of 2) , sequencer will not generate page_next at the end of block input xfer_done, // transfer to/from the buffer finished output xfer_page_rst_wr, // reset buffer internal page - at each frame start or when specifically reset (write to memory channel), @posedge output xfer_page_rst_rd // reset buffer internal page - at each frame start or when specifically reset (read memory channel), @negedge ); localparam NUM_RC_BURST_BITS=ADDRESS_NUMBER+COLADDR_NUMBER-3; //to spcify row and col8 == 22 localparam MPY_WIDTH= NUM_RC_BURST_BITS; // 22 localparam PAR_MOD_LATENCY= 9; // TODO: Find actual worst-case latency for: reg [FRAME_WIDTH_BITS-1:0] curr_x; // (calculated) start of transfer x (relative to window left) reg [FRAME_HEIGHT_BITS-1:0] curr_y; // (calculated) start of transfer y (relative to window top) reg [FRAME_HEIGHT_BITS:0] next_y; // (calculated) next row number reg [NUM_RC_BURST_BITS-1:0] line_start_addr;// (calculated) Line start (in {row,col8} in burst8 // calculating full width from the frame width reg [FRAME_HEIGHT_BITS-1:0] frame_y; // current line number referenced to the frame top reg [FRAME_WIDTH_BITS-1:0] frame_x; // current column number referenced to the frame left reg [FRAME_HEIGHT_BITS-4:0] frame_y8_r; // (13 bits) current row with bank removed, latency2 (to be absorbed when inferred DSP multipler) reg [FRAME_WIDTH_BITS:0] frame_full_width_r; // (14 bit) register to be absorbed by MPY reg [MPY_WIDTH-1:0] mul_rslt; reg [NUM_RC_BURST_BITS-1:0] start_addr_r; // 22 bit - to be absorbed by DSP reg [2:0] bank_reg [2:0]; wire [FRAME_WIDTH_BITS+FRAME_HEIGHT_BITS-3:0] mul_rslt_w; reg [FRAME_WIDTH_BITS:0] row_left; // number of 8-bursts left in the current row reg last_in_row; reg [COLADDR_NUMBER-3:0] mem_page_left; // number of 8-bursts left in the pointed memory page reg [COLADDR_NUMBER-4:0] line_start_page_left; // number of 8-burst left in the memory page from the start of the frame line reg [NUM_XFER_BITS:0] lim_by_xfer; // number of bursts left limited by the longest transfer (currently 64) // reg [MAX_TILE_WIDTH:0] lim_by_tile_width; // number of bursts left limited by the longest transfer (currently 64) wire [COLADDR_NUMBER-3:0] remainder_in_xfer ;//remainder_tile_width; // number of bursts postponed to the next partial tile (because of the page crossing) MSB-sign reg continued_xfer; //continued_tile; // this is a continued tile (caused by page crossing) - only once reg [NUM_XFER_BITS-1:0] leftover; //[MAX_TILE_WIDTH-1:0] leftover_cols; // valid with continued_tile, number of columns left reg [NUM_XFER_BITS:0] xfer_num128_r; // number of 128-bit words to transfer (8*16 bits) - full bursts of 8 // reg [NUM_XFER_BITS-1:0] xfer_num128_m1_r; // number of 128-bit words to transfer minus 1 (8*16 bits) - full bursts of 8 wire pgm_param_w; // program one of the parameters, invalidate calculated results for PAR_MOD_LATENCY reg [2:0] xfer_start_r; // 1 hot started by xfer start only (not by parameter change) reg xfer_start_rd_r; reg xfer_start_wr_r; reg [PAR_MOD_LATENCY-1:0] par_mod_r; reg [PAR_MOD_LATENCY-1:0] recalc_r; // 1-hot CE for re-calculating registers wire calc_valid; // calculated registers have valid values wire chn_en; // enable requests by channle (continue ones in progress) wire chn_rst; // resets command, including fifo; reg chn_rst_d; // delayed by 1 cycle do detect turning off // reg xfer_reset_page_r; reg xfer_page_rst_r=1; reg xfer_page_rst_pos=1; reg xfer_page_rst_neg=1; reg [2:0] page_cntr; wire cmd_wrmem; //=MCNTRL_SCANLINE_WRITE_MODE; // 0: read from memory, 1:write to memory wire [1:0] cmd_extra_pages; // external module needs more than 1 page reg busy_r; reg want_r; reg need_r; reg frame_done_r; reg frame_finished_r; wire last_in_row_w; wire last_row_w; reg last_block; reg [MCNTRL_SCANLINE_PENDING_CNTR_BITS-1:0] pending_xfers; // number of requested,. but not finished block transfers reg [NUM_RC_BURST_BITS-1:0] row_col_r; reg [FRAME_HEIGHT_BITS-1:0] line_unfinished_r [1:0]; wire pre_want; wire [1:0] status_data; wire [3:0] cmd_a; wire [31:0] cmd_data; wire cmd_we; wire set_mode_w; wire set_status_w; wire set_start_addr_w; wire set_frame_width_w; wire set_window_wh_w; wire set_window_x0y0_w; wire set_window_start_w; wire lsw13_zero=!(|cmd_data[FRAME_WIDTH_BITS-1:0]); // LSW 13 (FRAME_WIDTH_BITS) low bits are all 0 - set carry bit // wire msw13_zero=!(|cmd_data[FRAME_WIDTH_BITS+15:16]); // MSW 13 (FRAME_WIDTH_BITS) low bits are all 0 - set carry bit wire msw_zero= !(|cmd_data[31:16]); // MSW all bits are 0 - set carry bit // reg [4:0] mode_reg;//mode register: {extra_pages[1:0],write,enable,!reset} reg [4:0] mode_reg;//mode register: {extra_pages[1:0],write,enable,!reset} reg [NUM_RC_BURST_BITS-1:0] start_addr; // (programmed) Frame start (in {row,col8} in burst8, bank ==0 // reg [FRAME_WIDTH_BITS:0] frame_width; // (programmed) 0- max //FIXME!!!!!!!! reg [FRAME_WIDTH_BITS:0] frame_full_width; // (programmed) increment combined row/col when moving to the next line // frame_width rounded up to max transfer (half page) if frame_width> max transfer/2, // otherwise (smaller widths) round up to the nearest power of 2 reg [FRAME_WIDTH_BITS:0] window_width; // (programmed) 0- max reg [FRAME_HEIGHT_BITS:0] window_height; // (programmed) 0- max reg [FRAME_WIDTH_BITS-1:0] window_x0; // (programmed) window left reg [FRAME_HEIGHT_BITS-1:0] window_y0; // (programmed) window top reg [FRAME_WIDTH_BITS-1:0] start_x; // (programmed) normally 0, copied to curr_x on frame_start reg [FRAME_HEIGHT_BITS-1:0] start_y; // (programmed) normally 0, copied to curr_y on frame_start reg xfer_done_d; // xfer_done delayed by 1 cycle; // reg no_more_needed; // frame finished, no more requests is needed assign set_mode_w = cmd_we && (cmd_a== MCNTRL_SCANLINE_MODE); assign set_status_w = cmd_we && (cmd_a== MCNTRL_SCANLINE_STATUS_CNTRL); assign set_start_addr_w = cmd_we && (cmd_a== MCNTRL_SCANLINE_STARTADDR); assign set_frame_width_w = cmd_we && (cmd_a== MCNTRL_SCANLINE_FRAME_FULL_WIDTH); assign set_window_wh_w = cmd_we && (cmd_a== MCNTRL_SCANLINE_WINDOW_WH); assign set_window_x0y0_w = cmd_we && (cmd_a== MCNTRL_SCANLINE_WINDOW_X0Y0); assign set_window_start_w = cmd_we && (cmd_a== MCNTRL_SCANLINE_WINDOW_STARTXY); // Set parameter registers always @(posedge rst or posedge mclk) begin if (rst) mode_reg <= 0; else if (set_mode_w) mode_reg <= cmd_data[4:0]; // [4:0]; if (rst) start_addr <= 0; else if (set_start_addr_w) start_addr <= cmd_data[NUM_RC_BURST_BITS-1:0]; if (rst) frame_full_width <= 0; else if (set_frame_width_w) frame_full_width <= {lsw13_zero,cmd_data[FRAME_WIDTH_BITS-1:0]}; if (rst) begin window_width <= 0; window_height <= 0; end else if (set_window_wh_w) begin window_width <= {lsw13_zero,cmd_data[FRAME_WIDTH_BITS-1:0]}; window_height <= {msw_zero,cmd_data[FRAME_HEIGHT_BITS+15:16]}; end if (rst) begin window_x0 <= 0; window_y0 <= 0; end else if (set_window_x0y0_w) begin window_x0 <= cmd_data[FRAME_WIDTH_BITS-1:0]; window_y0 <=cmd_data[FRAME_HEIGHT_BITS+15:16]; end if (rst) begin start_x <= 0; start_y <= 0; end else if (set_window_start_w) begin start_x <= cmd_data[FRAME_WIDTH_BITS-1:0]; start_y <=cmd_data[FRAME_HEIGHT_BITS+15:16]; end end assign mul_rslt_w= frame_y8_r * frame_full_width_r; // 5 MSBs will be discarded // assign xfer_num128= xfer_num128_m1_r[NUM_XFER_BITS-1:0]; assign xfer_num128= xfer_num128_r[NUM_XFER_BITS-1:0]; // assign xfer_start= xfer_start_r[0]; assign xfer_start_rd= xfer_start_rd_r; assign xfer_start_wr= xfer_start_wr_r; assign calc_valid= par_mod_r[PAR_MOD_LATENCY-1]; // MSB, longest 0 // assign xfer_page= xfer_page_r; // assign xfer_reset_page = xfer_reset_page_r; assign xfer_page_rst_wr= xfer_page_rst_r; assign xfer_page_rst_rd= xfer_page_rst_neg; assign xfer_partial= xfer_limited_by_mem_page_r; assign frame_done= frame_done_r; assign frame_finished= frame_finished_r; assign pre_want= chn_en && busy_r && !want_r && !xfer_start_r[0] && calc_valid && !last_block && !suspend && !frame_start; // assign pre_want= chn_en && busy_r && !want_r && !xfer_start_r[0] && calc_valid && !no_more_needed && !suspend; // assign last_in_row_w=(row_left=={{(FRAME_WIDTH_BITS-NUM_XFER_BITS){1'b0}},xfer_num128_r}); assign last_row_w= next_y==window_height; assign xfer_want= want_r; assign xfer_need= need_r; assign xfer_bank= bank_reg[2]; // TODO: just a single reg layer assign xfer_row= row_col_r[NUM_RC_BURST_BITS-1:COLADDR_NUMBER-3] ; // memory row assign xfer_col= row_col_r[COLADDR_NUMBER-4:0]; // start memory column in 8-bursts assign line_unfinished=line_unfinished_r[1]; assign chn_en = &mode_reg[1:0]; // enable requests by channle (continue ones in progress) assign chn_rst = ~mode_reg[0]; // resets command, including fifo; assign cmd_wrmem = mode_reg[2];// 0: read from memory, 1:write to memory assign cmd_extra_pages = mode_reg[4:3]; // external module needs more than 1 page assign status_data= {frame_finished_r, busy_r}; // TODO: Add second bit? assign pgm_param_w= cmd_we; localparam [COLADDR_NUMBER-3-NUM_XFER_BITS-1:0] EXTRA_BITS=0; assign remainder_in_xfer = {EXTRA_BITS, lim_by_xfer}-mem_page_left; integer i; // localparam EXTRA_BITS={ADDRESS_NUMBER-3-COLADDR_NUMBER-3{1'b0}}; // localparam EXTRA_BITS={COLADDR_NUMBER-3-NUM_XFER_BITS{1'b0}}; wire xfer_limited_by_mem_page; reg xfer_limited_by_mem_page_r; assign xfer_limited_by_mem_page= mem_page_left < {EXTRA_BITS,lim_by_xfer}; /// Recalcualting jusrt after starting request - preparing for the next one. Also happens after parameter change. /// Should dpepend only on the parameters updated separately (curr_x, curr_y) always @(posedge mclk) begin // TODO: Match latencies (is it needed?) Reduce consumption by CE? if (recalc_r[0]) begin // cycle 1 frame_x <= curr_x + window_x0; frame_y <= curr_y + window_y0; next_y <= curr_y + 1; row_left <= window_width - curr_x; // 14 bits - 13 bits end // registers to be absorbed in DSP block frame_y8_r <= frame_y[FRAME_HEIGHT_BITS-1:3]; // lat=2 frame_full_width_r <= frame_full_width; start_addr_r <= start_addr; mul_rslt <= mul_rslt_w[MPY_WIDTH-1:0]; // frame_y8_r * frame_width_r; // 7 bits will be discarded lat=3; line_start_addr <= start_addr_r+mul_rslt; // lat=4 // TODO: Verify MPY/register timing above if (recalc_r[5]) begin // cycle 6 row_col_r <= line_start_addr+frame_x; // line_start_page_left <= {COLADDR_NUMBER-3{1'b0}} - line_start_addr[COLADDR_NUMBER-4:0]; // 7 bits line_start_page_left <= - line_start_addr[COLADDR_NUMBER-4:0]; // 7 bits end bank_reg[0] <= frame_y[2:0]; //TODO: is it needed - a pipeline for the bank? - remove! for (i=0;i<2; i = i+1) bank_reg[i+1] <= bank_reg[i]; if (recalc_r[6]) begin // cycle 7 mem_page_left <= {1'b1,line_start_page_left} - frame_x[COLADDR_NUMBER-4:0]; lim_by_xfer <= (|row_left[FRAME_WIDTH_BITS:NUM_XFER_BITS])? (1<=3)) need_r <= 1; if (rst) want_r <= 0; else if (chn_rst || xfer_grant) want_r <= 0; else if (pre_want && (page_cntr>{1'b0,cmd_extra_pages})) want_r <= 1; if (rst) page_cntr <= 0; else if (frame_start) page_cntr <= cmd_wrmem?0:4; // What about last pages (like if only 1 page is needed)? Early frame end? // else if ( xfer_start_r[0] && !next_page) page_cntr <= page_cntr - 1; // else if (!xfer_start_r[0] && next_page) page_cntr <= page_cntr + 1; else if ( start_not_partial && !next_page) page_cntr <= page_cntr - 1; else if (!start_not_partial && next_page) page_cntr <= page_cntr + 1; // xfer_reset_page_r <= chn_rst; // || frame_start ; // TODO: Check if it is better to reset page on frame start? if (rst) xfer_page_rst_r <= 1; else xfer_page_rst_r <= chn_rst || (MCNTRL_SCANLINE_FRAME_PAGE_RESET ? (frame_start & cmd_wrmem):1'b0); if (rst) xfer_page_rst_pos <= 1; else xfer_page_rst_pos <= chn_rst || (MCNTRL_SCANLINE_FRAME_PAGE_RESET ? (frame_start & ~cmd_wrmem):1'b0); // increment x,y (two cycles) if (rst) curr_x <= 0; else if (chn_rst || frame_start) curr_x <= start_x; else if (xfer_start_r[0]) curr_x <= last_in_row?0: curr_x + xfer_num128_r; if (rst) curr_y <= 0; else if (chn_rst || frame_start) curr_y <= start_y; else if (xfer_start_r[0] && last_in_row) curr_y <= next_y[FRAME_HEIGHT_BITS-1:0]; if (rst) last_block <= 0; else if (chn_rst || !busy_r) last_block <= 0; // else if (last_row_w && last_in_row_w) last_block <= 1; else if (xfer_start_r[0]) last_block <= last_row_w && last_in_row_w; if (rst) pending_xfers <= 0; else if (chn_rst || !busy_r) pending_xfers <= 0; else if ( xfer_start_r[0] && !xfer_done) pending_xfers <= pending_xfers + 1; else if (!xfer_start_r[0] && xfer_done) pending_xfers <= pending_xfers - 1; // else if ( start_not_partial && !xfer_done) pending_xfers <= pending_xfers + 1; // else if (!start_not_partial && xfer_done) pending_xfers <= pending_xfers - 1; //line_unfinished_r cmd_wrmem if (rst) line_unfinished_r[0] <= 0; //{FRAME_HEIGHT_BITS{1'b0}}; else if (chn_rst || frame_start) line_unfinished_r[0] <= window_y0+start_y; else if (xfer_start_r[2]) line_unfinished_r[0] <= window_y0+next_y[FRAME_HEIGHT_BITS-1:0]; // latency 2 from xfer_start if (rst) line_unfinished_r[1] <= 0; //{FRAME_HEIGHT_BITS{1'b0}}; else if (chn_rst || frame_start) line_unfinished_r[1] <= window_y0+start_y; // in read mode advance line number ASAP else if (xfer_start_r[2] && !cmd_wrmem) line_unfinished_r[1] <= window_y0+next_y[FRAME_HEIGHT_BITS-1:0]; // latency 2 from xfer_start // in write mode advance line number only when it is guaranteed it will be the first to acyually access memory else if (xfer_grant && cmd_wrmem) line_unfinished_r[1] <= line_unfinished_r[0]; end always @ (negedge mclk) begin xfer_page_rst_neg <= xfer_page_rst_pos; end cmd_deser #( .ADDR (MCNTRL_SCANLINE_ADDR), .ADDR_MASK (MCNTRL_SCANLINE_MASK), .NUM_CYCLES (6), .ADDR_WIDTH (4), .DATA_WIDTH (32) ) cmd_deser_32bit_i ( .rst (rst), // input .clk (mclk), // input .ad (cmd_ad), // input[7:0] .stb (cmd_stb), // input .addr (cmd_a), // output[15:0] .data (cmd_data), // output[31:0] .we (cmd_we) // output ); status_generate #( .STATUS_REG_ADDR (MCNTRL_SCANLINE_STATUS_REG_ADDR), .PAYLOAD_BITS (2) ) status_generate_i ( .rst (rst), // input .clk (mclk), // input .we (set_status_w), // input .wd (cmd_data[7:0]), // input[7:0] .status (status_data), // input[25:0] .ad (status_ad), // output[7:0] .rq (status_rq), // output .start (status_start) // input ); endmodule