from __future__ import division from __future__ import print_function ''' # Copyright (C) 2015, Elphel.inc. # Class to control 10393 sensor-to-memory channel (including histograms) # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . @author: Andrey Filippov @copyright: 2015 Elphel, Inc. @license: GPLv3.0+ @contact: andrey@elphel.coml @deffield updated: Updated ''' __author__ = "Andrey Filippov" __copyright__ = "Copyright 2015, Elphel, Inc." __license__ = "GPL" __version__ = "3.0+" __maintainer__ = "Andrey Filippov" __email__ = "andrey@elphel.com" __status__ = "Development" #import sys #import pickle import struct from x393_mem import X393Mem import x393_axi_control_status import x393_utils import time import vrlg import x393_mcntrl #import x393_sens_cmprs SENSOR_INTERFACE_PARALLEL = "PAR12" SENSOR_INTERFACE_HISPI = "HISPI" class X393Sensor(object): DRY_MODE= True # True DEBUG_MODE=1 x393_mem=None x393_axi_tasks=None #x393X393AxiControlStatus x393_utils=None verbose=1 def __init__(self, debug_mode=1,dry_mode=True, saveFileName=None): self.DEBUG_MODE= debug_mode self.DRY_MODE= dry_mode self.x393_mem= X393Mem(debug_mode,dry_mode) self.x393_axi_tasks= x393_axi_control_status.X393AxiControlStatus(debug_mode,dry_mode) self.x393_utils= x393_utils.X393Utils(debug_mode,dry_mode, saveFileName) # should not overwrite save file path try: self.verbose=vrlg.VERBOSE except: pass def getSensorInterfaceType(self): """ Get sensor interface type by reading status register 0xfe that is set to 0 for parallel and 1 for HiSPi @return "PAR12" or "HISPI" """ if self.DRY_MODE: return SENSOR_INTERFACE_PARALLEL return (SENSOR_INTERFACE_PARALLEL, SENSOR_INTERFACE_HISPI)[self.x393_axi_tasks.read_status(address=0xfe)] # "PAR12" , "HISPI" def program_status_sensor_i2c( self, num_sensor, mode, # input [1:0] mode; seq_num): # input [5:0] seq_num; """ Set status generation mode for selected sensor port i2c control @param num_sensor - number of the sensor port (0..3) or all @param mode - status generation mode: 0: disable status generation, 1: single status request, 2: auto status, keep specified seq number, 3: auto, inc sequence number @param seq_number - 6-bit sequence number of the status message to be sent """ try: if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function for num_sensor in range(4): self.program_status_sensor_i2c (num_sensor = num_sensor, mode = mode, seq_num = seq_num) return except: pass self.x393_axi_tasks.program_status (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSI2C_CTRL_RADDR, vrlg.SENSI2C_STATUS, mode, seq_num)# //MCONTR_PHY_STATUS_REG_ADDR= 'h0, def program_status_sensor_io( self, num_sensor, mode, # input [1:0] mode; seq_num): # input [5:0] seq_num; """ Set status generation mode for selected sensor port io subsystem @param num_sensor - number of the sensor port (0..3) or all @param mode - status generation mode: 0: disable status generation, 1: single status request, 2: auto status, keep specified seq number, 3: auto, inc sequence number @param seq_number - 6-bit sequence number of the status message to be sent """ try: if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function for num_sensor in range(4): self.program_status_sensor_io (num_sensor = num_sensor, mode = mode, seq_num = seq_num) return except: pass self.x393_axi_tasks.program_status ( vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSIO_RADDR, vrlg.SENSIO_STATUS, mode, seq_num)# //MCONTR_PHY_STATUS_REG_ADDR= 'h0, def get_status_sensor_io ( self, num_sensor="All"): """ Read sensor_io status word (no sync) @param num_sensor - number of the sensor port (0..3) @return sensor_io status """ try: if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function rslt = [] for num_sensor in range(4): rslt.append(self.program_status_sensor_io (num_sensor = num_sensor)) return rslt except: pass return self.x393_axi_tasks.read_status( address=(vrlg.SENSI2C_STATUS_REG_BASE + num_sensor * vrlg.SENSI2C_STATUS_REG_INC + vrlg.SENSIO_STATUS_REG_REL)) def print_status_sensor_io (self, num_sensor="All"): """ Print sensor_io status word (no sync) @param num_sensor - number of the sensor port (0..3) """ try: if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function for num_sensor in range(4): print ("\n ==== Sensor %d"%(num_sensor)) self.print_status_sensor_io (num_sensor = num_sensor) return except: pass status= self.get_status_sensor_io(num_sensor) print ("print_status_sensor_io(%d):"%(num_sensor)) #last_in_line_1cyc_mclk, dout_valid_1cyc_mclk """ print (" last_in_line_1cyc_mclk = %d"%((status>>23) & 1)) print (" dout_valid_1cyc_mclk = %d"%((status>>22) & 1)) print (" alive_hist0_gr = %d"%((status>>21) & 1)) print (" alive_hist0_rq = %d"%((status>>20) & 1)) print (" sof_out_mclk = %d"%((status>>19) & 1)) print (" eof_mclk = %d"%((status>>18) & 1)) print (" sof_mclk = %d"%((status>>17) & 1)) print (" sol_mclk = %d"%((status>>16) & 1)) """ """ #Folowing 5 bits may be just temporarily available print (" irst = %d"%((status>>20) & 1)) print ("async_prst_with_sens_mrst = %d"%((status>>19) & 1)) print (" imrst = %d"%((status>>18) & 1)) print (" rst_mmcm = %d"%((status>>17) & 1)) print (" pxd_out_pre[1] = %d"%((status>>16) & 1)) """ print (" shifted TDO %d"%((status>>16) & 0xff)) print (" vact_alive = %d"%((status>>15) & 1)) print (" hact_ext_alive = %d"%((status>>14) & 1)) # print (" hact_alive = %d"%((status>>13) & 1)) print (" hact_run = %d"%((status>>13) & 1)) print (" locked_pxd_mmcm = %d"%((status>>12) & 1)) print (" clkin_pxd_stopped_mmcm = %d"%((status>>11) & 1)) print (" clkfb_pxd_stopped_mmcm = %d"%((status>>10) & 1)) print (" xfpgadone = %d"%((status>> 9) & 1)) print (" ps_rdy = %d"%((status>> 8) & 1)) print (" ps_out = %d"%((status>> 0) & 0xff)) print (" xfpgatdo = %d"%((status>>25) & 1)) print (" senspgmin = %d"%((status>>24) & 1)) print (" seq = %d"%((status>>26) & 0x3f)) #vact_alive, hact_ext_alive, hact_alive def get_status_sensor_i2c ( self, num_sensor="All"): """ Read sensor_i2c status word (no sync) @param num_sensor - number of the sensor port (0..3) @return sesnor_io status """ try: if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function rslt = [] for num_sensor in range(4): rslt.append(self.get_status_sensor_i2c (num_sensor = num_sensor)) return rslt except: pass return self.x393_axi_tasks.read_status( address=(vrlg.SENSI2C_STATUS_REG_BASE + num_sensor * vrlg.SENSI2C_STATUS_REG_INC + vrlg.SENSI2C_STATUS_REG_REL)) def print_status_sensor_i2c (self, num_sensor="All"): """ Print sensor_i2c status word (no sync) @param num_sensor - number of the sensor port (0..3) """ try: if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function for num_sensor in range(4): print ("\n ==== Sensor %d"%(num_sensor)) self.print_status_sensor_i2c (num_sensor = num_sensor) return except: pass status= self.get_status_sensor_i2c(num_sensor) print ("print_status_sensor_i2c(%d):"%(num_sensor)) print (" reset_on = %d"%((status>>17) & 1)) print (" req_clr = %d"%((status>>16) & 1)) print (" frame_num = %d"%((status>>12) & 0xf)) print (" alive_fs = %d"%((status>>11) & 1)) print (" busy = %d"%((status>>10) & 1)) print (" i2c_fifo_lsb = %d"%((status>> 9) & 1)) print (" i2c_fifo_nempty = %d"%((status>> 8) & 1)) print (" i2c_fifo_dout = %d"%((status>> 0) & 0xff)) print (" sda_in = %d"%((status>>25) & 1)) print (" scl_in = %d"%((status>>24) & 1)) print (" seq = %d"%((status>>26) & 0x3f)) # Functions used by sensor-related tasks def func_sensor_mode (self, hist_en, hist_nrst, chn_en, bits16): """ Combine parameters into sensor mode control word @param hist_en - bit mask to enable histogram sub-modules, when 0 - disable after processing the started frame @param hist_nrst - bit mask to immediately reset histogram sub-module (if 0) @param chn_en - enable sensor channel (False - reset) @param bits16) - True - 16 bpp mode, false - 8 bpp mode (bypass gamma). Gamma-processed data is still used for histograms @return: sensor mode control word """ rslt = 0; rslt |= (hist_en & 0xf) << vrlg.SENSOR_HIST_EN_BITS rslt |= (hist_nrst & 0xf) << vrlg.SENSOR_HIST_NRST_BITS rslt |= ((0,1)[chn_en]) << vrlg.SENSOR_CHN_EN_BIT rslt |= ((0,1)[bits16]) << vrlg.SENSOR_16BIT_BIT return rslt def func_sensor_i2c_command (self, rst_cmd = False, run_cmd = None, active_sda = None, early_release_0 = None, advance_FIFO = None, sda = None, scl = None, verbose = 1): """ @param rst_cmd - reset all FIFO (takes 16 clock pulses), also - stops i2c until run command @param run_cmd - True - run i2c, False - stop i2c (needed before software i2c), None - no change @param active_sda - pull-up SDA line during second half of SCL=0, when needed and possible @param early_release_0 - release SDA=0 immediately after the end of SCL=1 (SDA hold will be provided by week pullup) @param advance_FIFO - advance i2c read FIFO @param sda - control SDA line (stopped mode only): I, L or 0, High or 1 @param scl - control SCL line (stopped mode only): I, L or 0, High or 1 @param verbose - verbose level @return combined command word. active_sda and early_release_0 should be defined both to take effect (any of the None skips setting these parameters) """ def parse_sda_scl(val): if val is None: return 0 elif isinstance(val, (unicode,str)): if not val: return 0 if val[0] in "lL0": return 1 elif val[0] in "hH1": return 2 elif val[0] in "iI": return 3 else: print("Unrecognized value for SDA/SCL: %s, should be in lL0hH1iI (or None/ empty string)"%(val)) return 0 else: if val == 0: return 1 elif val == 1: return 2 else: return 3 if verbose>1: print ("func_sensor_i2c_command(): rst_cmd= ",rst_cmd,", run_cmd=",run_cmd,", active_sda = ",active_sda,", early_release_0 = ",early_release_0, ", sda=",sda,", scl=",scl) rslt = 0 rslt |= (0,1)[rst_cmd] << vrlg.SENSI2C_CMD_RESET if not run_cmd is None: rslt |= 1 << vrlg.SENSI2C_CMD_RUN rslt |= (0,1)[run_cmd] << (vrlg.SENSI2C_CMD_RUN - vrlg.SENSI2C_CMD_RUN_PBITS) if (not active_sda is None) and (not early_release_0 is None): rslt |= (0,1)[early_release_0] << vrlg.SENSI2C_CMD_ACIVE_EARLY0 rslt |= (0,1)[active_sda] << vrlg.SENSI2C_CMD_ACIVE_SDA rslt |= 1 << vrlg.SENSI2C_CMD_ACIVE if advance_FIFO: rslt |= 1 << vrlg.SENSI2C_CMD_FIFO_RD rslt |= parse_sda_scl(sda) << vrlg.SENSI2C_CMD_SOFT_SDA rslt |= parse_sda_scl(scl) << vrlg.SENSI2C_CMD_SOFT_SCL if verbose>0: print (" => 0x%x"%(rslt)) return rslt def func_sensor_i2c_table_reg_wr (self, slave_addr, rah, num_bytes, bit_delay, verbose = 1): """ @param slave_addr - 7-bit i2c slave address @param rah - register address high byte (bits [15:8]) optionally used for register write commands @param num_bytes - number of bytes to send (including register address bytes) 1..10 @param bit_delay - number of mclk clock cycle in 1/4 of the SCL period @param verbose - verbose level @return combined table data word. """ if verbose>0: print ("func_sensor_i2c_table_reg_wr(): slave_addr= ",slave_addr,", rah=",rah,", num_bytes = ",num_bytes,", bit_delay = ",bit_delay) rslt = 0 rslt |= (slave_addr & ((1 << vrlg.SENSI2C_TBL_SA_BITS) - 1)) << vrlg.SENSI2C_TBL_SA rslt |= (rah & ((1 << vrlg.SENSI2C_TBL_RAH_BITS) - 1)) << vrlg.SENSI2C_TBL_RAH rslt |= (num_bytes & ((1 << vrlg.SENSI2C_TBL_NBWR_BITS) - 1)) << vrlg.SENSI2C_TBL_NBWR rslt |= (bit_delay & ((1 << vrlg.SENSI2C_TBL_DLY_BITS) - 1)) << vrlg.SENSI2C_TBL_DLY return rslt def func_sensor_i2c_table_reg_rd (self, two_byte_addr, num_bytes_rd, bit_delay, verbose = 1): """ @param two_byte_addr - Use a 2-byte register address for read command (False - single byte) @param num_bytes_rd - Number of bytes to read (1..8) @param bit_delay - number of mclk clock cycle in 1/4 of the SCL period @param verbose - verbose level @return combined table data word. """ if verbose>0: print ("func_sensor_i2c_table_reg_rd(): two_byte_addr= ",two_byte_addr,", num_bytes_rd=",num_bytes_rd,", bit_delay = ",bit_delay) rslt = 0 rslt |= 1 << vrlg.SENSI2C_TBL_RNWREG # this is read register command (0 - write register) if two_byte_addr > 1: two_byte_addr = 1 rslt |= (0,1)[two_byte_addr] << vrlg.SENSI2C_TBL_NABRD rslt |= (num_bytes_rd & ((1 << vrlg.SENSI2C_TBL_NBRD_BITS) - 1)) << vrlg.SENSI2C_TBL_NBRD rslt |= (bit_delay & ((1 << vrlg.SENSI2C_TBL_DLY_BITS) - 1)) << vrlg.SENSI2C_TBL_DLY return rslt def func_sensor_io_ctl (self, mrst = None, arst = None, aro = None, mmcm_rst = None, clk_sel = None, set_delays = False, quadrants = None): """ Combine sensor I/O control parameters into a control word @param mrst - True - activate MRST signal (low), False - deactivate MRST (high), None - no change @param arst - True - activate ARST signal (low), False - deactivate ARST (high), None - no change @param aro - True - activate ARO signal (low), False - deactivate ARO (high), None - no change @param mmcm_rst - True - activate MMCM reset, False - deactivate MMCM reset, None - no change (needed after clock change/interruption) @param clk_sel - True - use pixel clock from the sensor, False - use internal clock (provided to the sensor), None - no chnage @param set_delays - (self-clearing) load all pre-programmed delays for the sensor pad inputs @param quadrants - 90-degree shifts for data [1:0], hact [3:2] and vact [5:4] (6'h01), None - no change @return sensor i/o control word """ rslt = 0 if not mrst is None: rslt |= (3,2)[mrst] << vrlg.SENS_CTRL_MRST if not arst is None: rslt |= (3,2)[arst] << vrlg.SENS_CTRL_ARST if not aro is None: rslt |= (3,2)[aro] << vrlg.SENS_CTRL_ARO if not mmcm_rst is None: rslt |= (2,3)[mmcm_rst] << vrlg.SENS_CTRL_RST_MMCM if not clk_sel is None: rslt |= (2,3)[clk_sel] << vrlg.SENS_CTRL_EXT_CLK rslt |= (0,1)[set_delays] << vrlg.SENS_CTRL_LD_DLY if not quadrants is None: rslt |= 1 << vrlg.SENS_CTRL_QUADRANTS_EN rslt |= (quadrants & ((1 << vrlg.SENS_CTRL_QUADRANTS_WIDTH) - 1)) << vrlg.SENS_CTRL_QUADRANTS return rslt def func_sensor_jtag_ctl(self, pgmen = None, # <2: keep PGMEN, 2 - PGMEN low (inactive), 3 - high (active) enable JTAG control prog = None, # <2: keep prog, 2 - prog low (active), 3 - high (inactive) ("program" pin control) tck = None, # <2: keep TCK, 2 - set TCK low, 3 - set TCK high tms = None, # <2: keep TMS, 2 - set TMS low, 3 - set TMS high tdi = None): # <2: keep TDI, 2 - set TDI low, 3 - set TDI high """ JTAG interface for programming external sensor multiplexer using shared signal lines on the sensor ports @param pgmen - False PGMEN low (inactive), True - high (active) enable JTAG control, None - keep previous value @param prog - False prog low (active), True - high (inactive) ("program" pin control), None - keep previous value @param tck = False - set TCK low, True - set TCK high, None - keep previous value @param tms = False - set TMS low, True - set TMS high, None - keep previous value @param tdi = False - set TDI low, True - set TDI high, None - keep previous value @return combined control word """ rslt = 0 if not pgmen is None: rslt |= (2,3)[pgmen] << vrlg.SENS_JTAG_PGMEN if not prog is None: rslt |= (2,3)[prog] << vrlg.SENS_JTAG_PROG if not tck is None: rslt |= (2,3)[tck] << vrlg.SENS_JTAG_TCK if not tms is None: rslt |= (2,3)[tms] << vrlg.SENS_JTAG_TMS if not tdi is None: rslt |= (2,3)[tdi] << vrlg.SENS_JTAG_TDI return rslt def func_sensor_gamma_ctl(self, bayer = 0, table_page = 0, en_input = True, repet_mode = True, # Normal mode, single trigger - just for debugging TODO: re-assign? trig = False): """ @param bayer - Bayer shift (0..3) @param table_page - Gamma table page @param en_input - Enable input @param repet_mode - Repetitive (normal) mode. Set False for debugging, then use trig for single frame trigger @param trig - single trigger (when repet_mode is False), debug feature @return combined control word """ rslt = 0 rslt |= (bayer & 3) << vrlg.SENS_GAMMA_MODE_BAYER rslt |= (0,1)[table_page] << vrlg.SENS_GAMMA_MODE_PAGE rslt |= (0,1)[en_input] << vrlg.SENS_GAMMA_MODE_EN rslt |= (0,1)[repet_mode] << vrlg.SENS_GAMMA_MODE_REPET rslt |= (0,1)[trig] << vrlg.SENS_GAMMA_MODE_TRIG return rslt def func_status_addr_sensor_i2c(self, num_sensor): """ @param num_sensor - sensor port number (0..3) @return status register address for i2c for selected sensor port """ return (vrlg.SENSI2C_STATUS_REG_BASE + num_sensor * vrlg.SENSI2C_STATUS_REG_INC + vrlg.SENSI2C_STATUS_REG_REL); def func_status_addr_sensor_io(self, num_sensor): """ @param num_sensor - sensor port number (0..3) @return status register address for I/O for selected sensor port """ return (vrlg.SENSI2C_STATUS_REG_BASE + num_sensor * vrlg.SENSI2C_STATUS_REG_INC + vrlg.SENSIO_STATUS_REG_REL); def set_sensor_mode (self, num_sensor, hist_en, hist_nrst, chn_en, bits16): """ Set sensor mode @param num_sensor - sensor port number (0..3) @param hist_en - bit mask to enable histogram sub-modules, when 0 - disable after processing the started frame @param hist_nrst - bit mask to immediately reset histogram sub-module (if 0) @param chn_en - enable sensor channel (False - reset) @param bits16) - True - 16 bpp mode, false - 8 bpp mode (bypass gamma). Gamma-processed data is still used for histograms """ try: if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function for num_sensor in range(4): self.set_sensor_mode (num_sensor = num_sensor, hist_en = hist_en, hist_nrst = hist_nrst, chn_en = chn_en, bits16 = bits16) return except: pass self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSOR_CTRL_RADDR, self.func_sensor_mode( hist_en = hist_en, hist_nrst = hist_nrst, chn_en = chn_en, bits16 = bits16)) def set_sensor_i2c_command (self, num_sensor, rst_cmd = False, run_cmd = None, active_sda = None, early_release_0 = None, advance_FIFO = None, sda = None, scl = None, verbose = 1): """ @param num_sensor - sensor port number (0..3) or all @param rst_cmd - reset all FIFO (takes 16 clock pulses), also - stops i2c until run command @param run_cmd - True - run i2c, False - stop i2c (needed before software i2c), None - no change @param active_sda - pull-up SDA line during second half of SCL=0, when needed and possible @param early_release_0 - release SDA=0 immediately after the end of SCL=1 (SDA hold will be provided by week pullup) @param advance_FIFO - advance i2c read FIFO @param sda - control SDA line (stopped mode only): I, L or 0, High or 1 @param scl - control SCL line (stopped mode only): I, L or 0, High or 1 @param verbose - verbose level active_sda and early_release_0 should be defined both to take effect (any of the None skips setting these parameters) """ try: if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function for num_sensor in range(4): self.set_sensor_i2c_command (num_sensor, rst_cmd = rst_cmd, run_cmd = run_cmd, active_sda = active_sda, early_release_0 = early_release_0, advance_FIFO = advance_FIFO, sda = sda, scl = scl, verbose = verbose) return except: pass self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSI2C_CTRL_RADDR, self.func_sensor_i2c_command( rst_cmd = rst_cmd, run_cmd = run_cmd, active_sda = active_sda, early_release_0 = early_release_0, advance_FIFO = advance_FIFO, sda = sda, scl = scl, verbose = verbose-1)) def set_sensor_i2c_table_reg_wr (self, num_sensor, page, slave_addr, rah, num_bytes, bit_delay, verbose = 1): """ Set table entry for a single index for register write @param num_sensor - sensor port number (0..3) @param page - 1 byte table index (later provided as high byte of the 32-bit command) @param slave_addr - 7-bit i2c slave address @param rah - register address high byte (bits [15:8]) optionally used for register write commands @param num_bytes - number of bytes to send (including register address bytes) 1..10 @param bit_delay - number of mclk clock cycle in 1/4 of the SCL period @param verbose - verbose level """ ta = (1 << vrlg.SENSI2C_CMD_TABLE) | (1 << vrlg.SENSI2C_CMD_TAND) | (page & 0xff) td = (1 << vrlg.SENSI2C_CMD_TABLE) | self.func_sensor_i2c_table_reg_wr( slave_addr = slave_addr, rah = rah, num_bytes = num_bytes, bit_delay = bit_delay, verbose = verbose) self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSI2C_CTRL_RADDR, ta) self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSI2C_CTRL_RADDR, td) def set_sensor_i2c_table_reg_rd (self, num_sensor, page, two_byte_addr, num_bytes_rd, bit_delay, verbose = 1): """ Set table entry for a single index for register write @param num_sensor - sensor port number (0..3) @param page - 1 byte table index (later provided as high byte of the 32-bit command) @param two_byte_addr - Use a 2-byte register address for read command (False - single byte) @param num_bytes_rd - Number of bytes to read (1..8) @param bit_delay - number of mclk clock cycle in 1/4 of the SCL period @param verbose - verbose level """ ta = (1 << vrlg.SENSI2C_CMD_TABLE) | (1 << vrlg.SENSI2C_CMD_TAND) | (page & 0xff) td = (1 << vrlg.SENSI2C_CMD_TABLE) | self.func_sensor_i2c_table_reg_rd( two_byte_addr = two_byte_addr, num_bytes_rd = num_bytes_rd, bit_delay = bit_delay, verbose = verbose) self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSI2C_CTRL_RADDR, ta) self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSI2C_CTRL_RADDR, td) if verbose > 1: print ("ta= 0x%x, td = 0x%x"%(ta,td)) def write_sensor_reg16(self, num_sensor, reg_addr16, reg_data16): """ Write i2c register in immediate mode @param num_sensor - sensor port number (0..3), or "all" - same to all sensors @param reg_addr16 - 16-bit register address (page+low byte, for MT9P006 high byte is an 8-bit slave address = 0x90) @param reg_data16 - 16-bit data to write to sensor register """ self.write_sensor_i2c (num_sensor = num_sensor, rel_addr = True, addr = 0, data = ((reg_addr16 & 0xffff) << 16) | (reg_data16 & 0xffff) ) def write_sensor_i2c (self, num_sensor, rel_addr, addr, data): """ Write i2c command to the i2c command sequencer @param num_sensor - sensor port number (0..3), or "all" - same to all sensors @param rel_addr - True - relative frame address, False - absolute frame address @param addr - frame address (0..15) @param data - depends on context: 1 - register write: index page, 3 payload bytes. Payload bytes are used according to table and sent after the slave address and optional high address byte other bytes are sent in descending order (LSB- last). If less than 4 bytes are programmed in the table the high bytes (starting with the one from the table) are skipped. If more than 4 bytes are programmed in the table for the page (high byte), one or two next 32-bit words bypass the index table and all 4 bytes are considered payload ones. If less than 4 extra bytes are to be sent for such extra word, only the lower bytes are sent. 2 - register read: index page, slave address (8-bit, with lower bit 0) and one or 2 address bytes (as programmed in the table. Slave address is always in byte 2 (bits 23:16), byte1 (high register address) is skipped if read address in the table is programmed to be a single-byte one """ try: if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function for num_sensor in range(4): self.write_sensor_i2c (num_sensor = num_sensor, rel_addr = rel_addr, addr = addr, data = data) return except: pass reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) reg_addr += ((vrlg.SENSI2C_ABS_RADDR,vrlg.SENSI2C_REL_RADDR)[rel_addr] ) reg_addr += (addr & ~vrlg.SENSI2C_ADDR_MASK); self.x393_axi_tasks.write_control_register(reg_addr, data) def read_sensor_i2c (self, num_sensor, num_bytes = None, verbose = 0): """ Read sequence of bytes available @param num_sensor - sensor port number (0..3), or "all" - same to all sensors @param num_bytes - number of bytes to read (None - all in FIFO) @verbose - verbose level @return list of read bytes """ ODDEVEN="ODDEVEN" DAV = "DAV" DATA = "DATA" def read_i2c_data(num_sensor): addr = vrlg.SENSI2C_STATUS_REG_BASE + num_sensor * vrlg.SENSI2C_STATUS_REG_INC + vrlg.SENSI2C_STATUS_REG_REL d = self.x393_axi_tasks.read_status(addr) return {ODDEVEN : (d >> 9) & 1, DAV : (d >> 8) & 1, DATA : d & 0xff} timeout = 1.0 # sec end_time = time.time() + timeout rslt = [] while True: d = read_i2c_data(num_sensor) if not d[DAV]: if num_bytes is None: break # no data available in FIFO and number of bytes is not specified while (time.time() < end_time) and (not d[DAV]): # wait for data available d = read_i2c_data(num_sensor) if not d[DAV]: break # no data available - timeout rslt.append(d[DATA]) # advance to the next data byte oddeven = d[ODDEVEN] self. set_sensor_i2c_command ( num_sensor = num_sensor, advance_FIFO = True, verbose = verbose) # wait until odd/even bit reverses (no timeout here) while d[ODDEVEN] == oddeven: d = read_i2c_data(num_sensor) if len(rslt) == num_bytes: break # read all that was requested (num_bytes == None will not get here) return rslt def print_sensor_i2c (self, num_sensor, reg_addr, indx = 1, sa7 = 0x48, verbose = 1): """ Read sequence of bytes available and print the result as a single hex number @param num_sensor - sensor port number (0..3), or "all" - same to all sensors @param reg_addr - register to read address 1/2 bytes (defined by previously set format) @param indx - i2c command index in 1 256-entry table (defines here i2c delay, number of address bytes and number of data bytes) @param sa7 - 7-bit i2c slave address @param verbose - verbose level """ #clean up FIFO dl = self.read_sensor_i2c (num_sensor = num_sensor, num_bytes = None, verbose = verbose) if len(dl): d = 0 for b in dl: d = (d << 8) | (b & 0xff) fmt="FIFO contained %d bytes i2c data = 0x%%0%dx"%(len(dl),len(dl*2)) print (fmt%(d)) #create and send i2c command in ASAP mode: i2c_cmd = ((indx & 0xff) << 24) | (sa7 <<17) | (reg_addr & 0xffff) #write_sensor_i2c 0 1 0 0x91900004 self.write_sensor_i2c(num_sensor = num_sensor, rel_addr = 1, addr = 0, data = i2c_cmd) time.sleep(0.05) # We do not know how many bytes are expected, so just wait long enough and hope all bytes are in fifo already dl = self.read_sensor_i2c (num_sensor = num_sensor, num_bytes = None, verbose = verbose) if len(dl): d = 0 for b in dl: d = (d << 8) | (b & 0xff) if verbose > 0: fmt="i2c data[0x%02x:0x%x] = 0x%%0%dx"%(sa7,reg_addr,len(dl)*2) print (fmt%(d)) return d def set_sensor_flipXY(self, num_sensor, flip_x = False, flip_y = False, verbose = 1): """ Set sensor horizontal and vertical mirror (flip) @param num_sensor - sensor number or "all" @param flip_x - mirror image around vertical axis @param flip_y - mirror image around horizontal axis @param verbose - verbose level """ sensorType = self.getSensorInterfaceType() if flip_x is None: flip_x = False if flip_y is None: flip_y = False if sensorType == "PAR12": data = (0,0x8000)[flip_y] | (0,0x4000)[flip_x] self.write_sensor_reg16 (num_sensor = num_sensor, reg_addr16 = 0x9020, reg_data16 = data) elif sensorType == "HISPI": data = (0,0x8000)[flip_y] | (0,0x4000)[flip_x] | 0x41 self.write_sensor_reg16 (num_sensor = num_sensor, reg_addr16 = 0x3040, reg_data16 = data) else: raise ("Unknown sensor type: %s"%(sensorType)) def set_sensor_gains_exposure(self, num_sensor, gain_r = None, gain_gr = None, gain_gb = None, gain_b = None, exposure = None, verbose = 1): """ Set sensor analog gains (raw register values) and exposure (in scan lines) @param num_sensor - sensor number or "all" @param gain_r - RED gain @param gain_gr - GREEN in red row gain @param gain_gb - GREEN in blue row gain @param gain_b - BLUE gain @param exposure - exposure time in scan lines @param verbose - verbose level """ sensorType = self.getSensorInterfaceType() if sensorType == "PAR12": if not gain_r is None: self.write_sensor_reg16 (num_sensor = num_sensor, reg_addr16 = 0x902d, reg_data16 = gain_r) if not gain_gr is None: self.write_sensor_reg16 (num_sensor = num_sensor, reg_addr16 = 0x902b, reg_data16 = gain_gr) if not gain_gb is None: self.write_sensor_reg16 (num_sensor = num_sensor, reg_addr16 = 0x902e, reg_data16 = gain_gb) if not gain_b is None: self.write_sensor_reg16 (num_sensor = num_sensor, reg_addr16 = 0x902c, reg_data16 = gain_b) if not exposure is None: self.write_sensor_reg16 (num_sensor = num_sensor, reg_addr16 = 0x9009, reg_data16 = exposure) elif sensorType == "HISPI": if not gain_r is None: self.write_sensor_reg16 (num_sensor = num_sensor, reg_addr16 = 0x208, reg_data16 = gain_r) if not gain_gr is None: self.write_sensor_reg16 (num_sensor = num_sensor, reg_addr16 = 0x206, # SMIA register reg_data16 = gain_gr) if not gain_gb is None: self.write_sensor_reg16 (num_sensor = num_sensor, reg_addr16 = 0x20c, # SMIA register reg_data16 = gain_gb) if not gain_b is None: self.write_sensor_reg16 (num_sensor = num_sensor, reg_addr16 = 0x20a, # SMIA register reg_data16 = gain_b) if not exposure is None: self.write_sensor_reg16 (num_sensor = num_sensor, reg_addr16 = 0x202, # SMIA register reg_data16 = exposure) else: raise ("Unknown sensor type: %s"%(sensorType)) def set_sensor_io_ctl (self, num_sensor, mrst = None, arst = None, aro = None, mmcm_rst = None, clk_sel = None, set_delays = False, quadrants = None): """ Set sensor I/O controls, including I/O signals @param num_sensor - sensor port number (0..3) @param mrst - True - activate MRST signal (low), False - deactivate MRST (high), None - no change @param arst - True - activate ARST signal (low), False - deactivate ARST (high), None - no change @param aro - True - activate ARO signal (low), False - deactivate ARO (high), None - no change @param mmcm_rst - True - activate MMCM reset, False - deactivate MMCM reset, None - no change (needed after clock change/interruption) @param clk_sel - True - use pixel clock from the sensor, False - use internal clock (provided to the sensor), None - no chnage @param set_delays - (self-clearing) load all pre-programmed delays for the sensor pad inputs @param quadrants - 90-degree shifts for data [1:0], hact [3:2] and vact [5:4] (6'h01), None - no change """ try: if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function for num_sensor in range(4): self.set_sensor_io_ctl (num_sensor, mrst = mrst, arst = arst, aro = aro, mmcm_rst = mmcm_rst, clk_sel = clk_sel, set_delays = set_delays, quadrants = quadrants) return except: pass data = self.func_sensor_io_ctl ( mrst = mrst, arst = arst, aro = aro, mmcm_rst = mmcm_rst, clk_sel = clk_sel, set_delays = set_delays, quadrants = quadrants) reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_CTRL; self.x393_axi_tasks.write_control_register(reg_addr, data) # TODO: Make one for HiSPi (it is different) def set_sensor_io_dly_parallel (self, num_sensor, mmcm_phase, iclk_dly, vact_dly, hact_dly, pxd_dly): """ Set sensor port input delays and mmcm phase @param num_sensor - sensor port number (0..3) @param mmcm_phase - MMCM clock phase @param iclk_dly - delay in the input clock line (3 LSB are not used) @param vact_dly - delay in the VACT line (3 LSB are not used) @param hact_dly - delay in the HACT line (3 LSB are not used) @param pxd_dly - list of data line delays (12 elements, 3 LSB are not used) """ dlys=((pxd_dly[0] & 0xff) | ((pxd_dly[1] & 0xff) << 8) | ((pxd_dly[ 2] & 0xff) << 16) | ((pxd_dly[ 3] & 0xff) << 24), (pxd_dly[4] & 0xff) | ((pxd_dly[5] & 0xff) << 8) | ((pxd_dly[ 6] & 0xff) << 16) | ((pxd_dly[ 7] & 0xff) << 24), (pxd_dly[8] & 0xff) | ((pxd_dly[9] & 0xff) << 8) | ((pxd_dly[10] & 0xff) << 16) | ((pxd_dly[11] & 0xff) << 24), (hact_dly & 0xff) | ((vact_dly & 0xff) << 8) | ((iclk_dly & 0xff) << 16) | ((mmcm_phase & 0xff) << 24)) reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_DELAYS; self.x393_axi_tasks.write_control_register(reg_addr + 0, dlys[0]) # {pxd3, pxd2, pxd1, pxd0} self.x393_axi_tasks.write_control_register(reg_addr + 1, dlys[1]) # {pxd7, pxd6, pxd5, pxd4} self.x393_axi_tasks.write_control_register(reg_addr + 2, dlys[2]) # {pxd11, pxd10, pxd9, pxd8} self.x393_axi_tasks.write_control_register(reg_addr + 3, dlys[3]) # {mmcm_phase, bpf, vact, hact} self.set_sensor_io_ctl (num_sensor = num_sensor, set_delays = True) def set_sensor_io_dly_hispi (self, num_sensor, mmcm_phase = None, #24 steps in 3ns period lane0_dly = None, lane1_dly = None, lane2_dly = None, lane3_dly = None): """ Set sensor port input delays and mmcm phase @param num_sensor - sensor port number (0..3) or all, 'A' @param mmcm_phase - MMCM clock phase @param lane0_dly - delay in the lane0 (3 LSB are not used) // All 4 lane delays should be set simultaneously @param lane1_dly - delay in the lane1 (3 LSB are not used) @param lane2_dly - delay in the lane2 (3 LSB are not used) @param lane3_dly - delay in the lane3 (3 LSB are not used)) """ try: if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function for num_sensor in range(4): self.set_sensor_io_dly_hispi (num_sensor = num_sensor, mmcm_phase = mmcm_phase, lane0_dly = lane0_dly, lane1_dly = lane1_dly, lane2_dly = lane2_dly, lane3_dly = lane3_dly) return except: pass reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_DELAYS try: # if any delay is None - do not set dlys=(lane0_dly & 0xff) | ((lane1_dly & 0xff) << 8) | ((lane2_dly & 0xff) << 16) | ((lane3_dly & 0xff) << 24) self.x393_axi_tasks.write_control_register(reg_addr + 2, dlys) except: pass if not mmcm_phase is None: self.x393_axi_tasks.write_control_register(reg_addr + 3, mmcm_phase & 0xff) def set_sensor_hispi_lanes(self, num_sensor, lane0 = 0, lane1 = 1, lane2 = 2, lane3 = 3): """ Set HiSPi sensor lane map (physical lane for each logical lane) @param num_sensor - sensor port number (0..3) @param lane0 - physical (input) lane number for logical (internal) lane 0 @param lane1 - physical (input) lane number for logical (internal) lane 1 @param lane2 - physical (input) lane number for logical (internal) lane 2 @param lane3 - physical (input) lane number for logical (internal) lane 3 """ data = ((lane0 & 3) << 0 ) | ((lane1 & 3) << 2 ) | ((lane2 & 3) << 4 ) | ((lane3 & 3) << 6 ) reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_DELAYS; self.x393_axi_tasks.write_control_register(reg_addr + 1, data) def set_sensor_fifo_lag(self, num_sensor, fifo_lag = 7): """ Set HiSPi sensor FIFO lag (when to start line output, ~= 1/2 FIFO size) @param num_sensor - sensor port number (0..3) @param fifo_lag - number of pixels to write to FIFO before starting output """ reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_DELAYS; self.x393_axi_tasks.write_control_register(reg_addr + 0, fifo_lag) def set_sensor_io_jtag (self, num_sensor, pgmen = None, # <2: keep PGMEN, 2 - PGMEN low (inactive), 3 - high (active) enable JTAG control prog = None, # <2: keep prog, 2 - prog low (active), 3 - high (inactive) ("program" pin control) tck = None, # <2: keep TCK, 2 - set TCK low, 3 - set TCK high tms = None, # <2: keep TMS, 2 - set TMS low, 3 - set TMS high tdi = None): # <2: keep TDI, 2 - set TDI low, 3 - set TDI high """ JTAG interface for programming external sensor multiplexer using shared signal lines on the sensor ports @param num_sensor - sensor port number (0..3) @param pgmen - False PGMEN low (inactive), True - high (active) enable JTAG control, None - keep previous value @param prog - False prog low (active), True - high (inactive) ("program" pin control), None - keep previous value @param tck = False - set TCK low, True - set TCK high, None - keep previous value @param tms = False - set TMS low, True - set TMS high, None - keep previous value @param tdi = False - set TDI low, True - set TDI high, None - keep previous value """ reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_JTAG; data = self.func_sensor_jtag_ctl ( pgmen = pgmen, prog = prog, tck = tck, tms = tms, tdi = tdi) self.x393_axi_tasks.write_control_register(reg_addr, data) # def jtag_prep_status(self, chn): # seq_num = ((self.get_status_sensor_io(num_sensor = chn) >> 26) + 1) & 0x3f # self.program_status_sensor_io(num_sensor = num_sensor, # mode = 1, # input [1:0] mode; # seq_num = seq_num) # input [5:0] seq_num; # return seq_num def jtag_get_tdo(self, chn): seq_num = ((self.get_status_sensor_io(num_sensor = chn) >> 26) + 1) & 0x3f self.program_status_sensor_io(num_sensor = chn, mode = 1, # input [1:0] mode; seq_num = seq_num) # input [5:0] seq_num; for _ in range(10): stat = self.get_status_sensor_io(num_sensor = chn) if seq_num == ((stat >> 26) & 0x3f): break else: print ("wait_sensio_status(): Failed to get seq_num== 0x%x, current is 0x%x"%(seq_num, (stat >> 26) & 0x3f)) return (stat >> 25) & 1 def jtag_send(self, chn, tms, ln, d): i = ln & 7 if (i == 0): i = 8 d &= 0xff; r = 0 while i > 0: self.set_sensor_io_jtag (num_sensor = chn, pgmen = None, prog = None, tck = 0, tms = tms, tdi = ((d << 1) >> 8) & 1) d <<= 1 r = (r << 1) + self.jtag_get_tdo(chn) self.set_sensor_io_jtag (num_sensor = chn, pgmen = None, prog = None, tck = 1, tms = None, tdi = None) self.set_sensor_io_jtag (num_sensor = chn, pgmen = None, prog = None, tck = 0, tms = None, tdi = None) i -= 1 return r def jtag_write_bits (self, chn, buf, # data to write ln, # number of bits to write # check, # compare readback data with previously written, abort on mismatch last): # output last bit with TMS=1 # prev = None): # if null - don't use rbuf = [] r = 0 for d0 in buf: d=d0 for _ in range(8): if ln >0: self.set_sensor_io_jtag (num_sensor = chn, pgmen = None, prog = None, tck = 0, tms = (0,1)[(ln == 1) and last], tdi = ((d << 1) >> 8) & 1) d <<= 1 r = (r << 1) + self.jtag_get_tdo(chn) self.set_sensor_io_jtag (num_sensor = chn, pgmen = None, prog = None, tck = 1, tms = None, tdi = None) self.set_sensor_io_jtag (num_sensor = chn, pgmen = None, prog = None, tck = 0, tms = None, tdi = None) else: r <<= 1 ln -= 1 rbuf.append(r & 0xff) return rbuf def jtag_set_pgm_mode(self,chn,en): self.set_sensor_io_jtag (num_sensor = chn, pgmen = en, prog = None, tck = 0, tms = None, tdi = None) def jtag_set_pgm(self,chn,en): self.set_sensor_io_jtag (num_sensor = chn, pgmen = None, prog = en, tck = 0, tms = None, tdi = None) def JTAG_openChannel (self, chn): self.jtag_set_pgm_mode (chn, 1); self.jtag_set_pgm (chn, 1) self.jtag_set_pgm (chn, 0) time.sleep (0.01) self.jtag_send (chn, 1, 5, 0 ) # set Test-Logic-Reset state self.jtag_send (chn, 0, 1, 0 ) # set Run-Test-Idle state def JTAG_EXTEST (self, chn, buf, ln): # self.jtag_send(chn, 1, 5, 0 ) # step 1 - set Test-Logic-Reset state # self.jtag_send(chn, 0, 1, 0 ) # step 2 - set Run-Test-Idle state self.jtag_send(chn, 1, 2, 0 ) # step 3 - set SELECT-IR state self.jtag_send(chn, 0, 2, 0 ) # step 4 - set SHIFT-IR state self.jtag_send(chn, 0, 5, 0xf0) # step 5 - start of EXTEST self.jtag_send(chn, 1, 1, 0 ) # step 6 - finish EXTEST self.jtag_send(chn, 1, 2, 0 ) # step 7 - set SELECT-DR state self.jtag_send(chn, 0, 2, 0 ) # step 8 - set CAPTURE-DR state rbuf = self.jtag_write_bits (chn = chn, buf = buf, # data to write ln = ln, # number of bytes to write last = 1) self.jtag_send(chn, 1, 1, 0 ) #step 9 - set UPDATE-DR state return rbuf # /dev/sfpgabscan0 def readbscan(self, filename): ffs=struct.pack("B",0xff)*97 with open(filename,'r+') as jtag: jtag.write(ffs) jtag.seek (0,0) boundary= jtag.read(97) return boundary def checkSclSda(self, chn, verbose = 1): ''' Check which board is connected to the sensor board @param chn - sensor port number (0..3) @param verbose - if >0, print debug output @return - name of the FPGA-based board detected, "sensor" (grounded pad 7) or "" if none detected ''' def print_i2c(chn): self.program_status_sensor_i2c(num_sensor = chn, mode = 1, seq_num = 0) status= self.get_status_sensor_i2c(num_sensor = chn) sda_in =(status>>25) & 1 scl_in =(status>>24) & 1 print ("chn = %d, scl = %d, sda = %d"%(chn,scl_in, sda_in)) def print_bv(chn, boundary, value, key): self.program_status_sensor_i2c(num_sensor = chn, mode = 1, seq_num = 0) status= self.get_status_sensor_i2c(num_sensor = chn) sda_in =(status>>25) & 1 scl_in =(status>>24) & 1 print ("%d: sda = %d, bit number SDA = %d, pin value SDA = %d"%(key, sda_in, value['sda'], (((ord(boundary[value['sda'] >> 3]) >> (7 -(value['sda'] & 7))) &1)) )) print ("%d: scl = %d, bit number SCL = %d, pin value SCL = %d"%(key, scl_in, value['scl'], (((ord(boundary[value['scl'] >> 3]) >> (7 -(value['scl'] & 7))) &1)) )) boards = [{'model':'10347', 'scl': 241,'sda': 199}, #// E4, C1 {'model':'10359', 'scl': 280,'sda': 296}] #// H6, J5 bscan_path=('/dev/sfpgabscan%d'%(chn)) self. program_status_sensor_io(num_sensor = chn, mode = 1, seq_num = 0) status = self.get_status_sensor_io(num_sensor=chn) senspgmin = (status >> 24) & 1 if not senspgmin: print ("Some sensor board is connected to port # %d, not FPGA"%(chn)) return "sensor" test = [1]*len(boards) #Stop hardware i2c controller self.set_sensor_i2c_command(num_sensor = chn, run_cmd = False) #Set SCL=0, SDA=0 and read values: self.set_sensor_i2c_command(num_sensor = chn, sda = 0, scl = 0) if verbose > 0: print_i2c(chn = chn) boundary = self.readbscan(bscan_path) for key, value in enumerate(boards): test[key] &= ((((ord(boundary[value['sda'] >> 3]) >> (7 -(value['sda'] & 7))) &1) == 0) and (((ord(boundary[value['scl'] >> 3]) >> (7 -(value['scl'] & 7))) &1) == 0)) if verbose >0: print_bv(chn=chn, boundary = boundary, value = value, key=key) #Set SCL=1, SDA=0 and read values: self.set_sensor_i2c_command(num_sensor = chn, sda = 0, scl = 1) boundary = self.readbscan(bscan_path) for key, value in enumerate(boards): test[key] &= ((((ord(boundary[value['sda'] >> 3]) >> (7 -(value['sda'] & 7))) &1) == 0) and (((ord(boundary[value['scl'] >> 3]) >> (7 -(value['scl'] & 7))) &1) == 1)) if verbose >0: print_bv(chn=chn, boundary = boundary, value = value, key=key) #Set SCL=0, SDA=1 and read values: self.set_sensor_i2c_command(num_sensor = chn, sda = 1, scl = 0) boundary = self.readbscan(bscan_path) for key, value in enumerate(boards): test[key] &= ((((ord(boundary[value['sda'] >> 3]) >> (7 -(value['sda'] & 7))) &1) == 1) and (((ord(boundary[value['scl'] >> 3]) >> (7 -(value['scl'] & 7))) &1) == 0)) if verbose >0: print_bv(chn=chn, boundary = boundary, value = value, key=key) #Set SCL=1, SDA=1 and read values: self.set_sensor_i2c_command(num_sensor = chn, sda = 1, scl = 1) boundary = self.readbscan(bscan_path) for key, value in enumerate(boards): test[key] &= ((((ord(boundary[value['sda'] >> 3]) >> (7 -(value['sda'] & 7))) &1) == 1) and (((ord(boundary[value['scl'] >> 3]) >> (7 -(value['scl'] & 7))) &1) == 1)) if verbose >0: print_bv(chn=chn, boundary = boundary, value = value, key=key) for key, value in enumerate(boards): if test[key]: if verbose >0: print ("Detected FPGA-based board :%s"%(value['model'])) return value['model'] return "" """ def set_sensor_i2c_command (self, num_sensor, rst_cmd = False, run_cmd = None, active_sda = None, early_release_0 = None, advance_FIFO = None, sda = None, scl = None, verbose = 1): @param num_sensor - sensor port number (0..3) @param rst_cmd - reset all FIFO (takes 16 clock pulses), also - stops i2c until run command @param run_cmd - True - run i2c, False - stop i2c (needed before software i2c), None - no change @param active_sda - pull-up SDA line during second half of SCL=0, when needed and possible @param early_release_0 - release SDA=0 immediately after the end of SCL=1 (SDA hold will be provided by week pullup) @param advance_FIFO - advance i2c read FIFO @param sda - control SDA line (stopped mode only): I, L or 0, High or 1 @param scl - control SCL line (stopped mode only): I, L or 0, High or 1 @param verbose - verbose level active_sda and early_release_0 should be defined both to take effect (any of the None skips setting these parameters) def program_status_sensor_i2c( self, num_sensor, mode, # input [1:0] mode; seq_num): # input [5:0] seq_num; def print_status_sensor_i2c (self, num_sensor="All"): Print sensor_i2c status word (no sync) @param num_sensor - number of the sensor port (0..3) try: if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function for num_sensor in range(4): print ("\n ==== Sensor %d"%(num_sensor)) self.print_status_sensor_i2c (num_sensor = num_sensor) return except: pass status= self.get_status_sensor_i2c(num_sensor) print ("print_status_sensor_i2c(%d):"%(num_sensor)) print (" reset_on = %d"%((status>> 7) & 1)) print (" req_clr = %d"%((status>> 6) & 1)) print (" alive_fs = %d"%((status>> 5) & 1)) print (" busy = %d"%((status>> 4) & 1)) print (" frame_num = %d"%((status>> 0) & 0xf)) print (" sda_in = %d"%((status>>25) & 1)) print (" scl_in = %d"%((status>>24) & 1)) print (" seq = %d"%((status>>26) & 0x3f)) set_sensor_mode 0 0 0 1 0 set_sensor_mode 1 0 0 1 0 set_sensor_mode 2 0 0 1 0 set_sensor_mode 3 0 0 1 0 program_status_sensor_io all 1 0 print_status_sensor_io all python import struct import time def readbscan(filename): ffs=struct.pack("B",0xff)*97 with open(filename,'r+') as jtag: #time.sleep(5) jtag.write(ffs) #time.sleep(5) jtag.seek (0,0) #time.sleep(5) boundary= jtag.read(97) #time.sleep(5) return boundary b = readbscan('/dev/sfpgabscan1') $boards=array ( '0' => array ('model' => '10347', 'scl' =>241,'sda' => 199), // E4, C1 '1' => array ('model' => '10359', 'scl' =>280,'sda' => 296) // H6, J5 ); #cd /usr/local/verilog/; test_mcntrl.py -x @hargs cd /usr/local/verilog/; test_mcntrl.py @hargs setupSensorsPower "PAR12" measure_all "*DI" program_status_sensor_io all 1 0 print_status_sensor_io all setSensorClock checkSclSda 1 cat /usr/local/verilog/x359.bit > /dev/sfpgaconfjtag1 #jtag_set_pgm_mode 0 1 #jtag_set_pgm_mode 1 1 #jtag_set_pgm_mode 2 1 #jtag_set_pgm_mode 3 1 #set_sensor_mode 0 0 0 1 0 #set_sensor_mode 1 0 0 1 0 #set_sensor_mode 2 0 0 1 0 #set_sensor_mode 3 0 0 1 0 set_sensor_io_ctl 1 0 #turn mrst off to enable clocked signal (and to read done!) TODO: Add to the driver program_status_sensor_io all 1 0 print_status_sensor_io 1 # all set_sensor_io_ctl (self, num_sensor, mrst = None, arst = None, aro = None, mmcm_rst = None, clk_sel = None, set_delays = False, quadrants = None): set_sensor_io_jtag 1 None None None None 0 program_status_sensor_io all 1 0 print_status_sensor_io 1 get_status_sensor_io 1 x393 +0.001s--> set_sensor_io_jtag 1 None None None None 0 x393 +0.001s--> program_status_sensor_io all 1 0 x393 +0.002s--> print_status_sensor_io 1 # all print_status_sensor_io(1): irst = 0 async_prst_with_sens_mrst = 0 imrst = 1 rst_mmcm = 0 pxd_out_pre[1] = 0 vact_alive = 0 hact_ext_alive = 0 hact_run = 0 locked_pxd_mmcm = 1 clkin_pxd_stopped_mmcm = 0 clkfb_pxd_stopped_mmcm = 0 xfpgadone = 1 ps_rdy = 1 ps_out = 0 xfpgatdo = 0 senspgmin = 1 seq = 0 x393 +0.001s--> set_sensor_io_jtag 1 None None None None 1 x393 +0.001s--> program_status_sensor_io all 1 0 x393 +0.002s--> print_status_sensor_io 1 # all print_status_sensor_io(1): irst = 0 async_prst_with_sens_mrst = 0 imrst = 1 rst_mmcm = 0 pxd_out_pre[1] = 1 vact_alive = 0 hact_ext_alive = 0 hact_run = 0 locked_pxd_mmcm = 1 clkin_pxd_stopped_mmcm = 0 clkfb_pxd_stopped_mmcm = 0 xfpgadone = 1 ps_rdy = 1 ps_out = 0 xfpgatdo = 1 senspgmin = 1 seq = 0 #setSensorClock(self, freq_MHz = 24.0, iface = "2V5_LVDS", quiet = 0) >>> b = readbscan('/dev/sfpgabscan0') >>> b b = '\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00$\x82\x12I\t\x00\x80\x02\x00@\x00\x04\x00\x00@\x00\x00\x00\x00\x00@\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00 \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b = '\xff\xff\xff\xff\xff\xff\xff\xff\xf7\xff\xdb}\xed\xb6\xf6\xff\x7f\xfd\xff\xbf\xff\xfb\xff\xff\xbf\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xfb\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xdf\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xf0' b = '\xff\xff\xff\xff\xff\xff\xff\xff\xf7\xff\xdb}\xed\xb6\xf6\xff\x7f\xfd\xff\xbf\xff\xfb\xff\xff\xbf\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xfb\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xdf\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xf0' a='ffffffffff7fffffffffffffffffffffffffffffffffffffbfffffffffffffffffffff7fff7ffffffbffffffffffffffffffffffffffffffffffffffffdffffffffffffffffffffff6dfffffffffffffffedf7fdbfedff7ffff6fffeffffffbff0' al = [] for i in range(len(a)/2): al.append(int('0x'+a[2*i:2*i+2],0)) bl = [] for i in b: bl.append(ord(i)) for i,x in enumerate(zip(al,bl)): print ("%02x %02x %02x"%(i,x[0],x[1])) fwrite returned 97
Boundary: ffffffffff7fffffffffffffffffffffffffffffffffffffbfffffffffffffffffffffffff7ffffffbffffffffffffffffffffffffffffffffffffffffdffffffffffffffffffffff6dfffffffffffffffedf7fdbfedff7ffff6fffeffffffbff0 fwrite returned 97
Boundary: ffffffffff7fffffffffffffffffffffffffffffffffffffbfffffffffffffffffffff7ffffffffffbffffffffffffffffffffffffffffffffffffffffdffffffffffffffffffffff6dfffffffffffffffedf7fdbfedff7ffff6fffeffffffbff0 fwrite returned 97
Boundary: ffffffffff7fffffffffffffffffffffffffffffffffffffbffffffffffffffffffffffffffffffffbffffffffffffffffffffffffffffffffffffffffdffffffffffffffffffffff6dfffffffffffffffedf7fdbfedff7ffff6fffeffffffbff0 >>> b1 = readbscan('/dev/sfpgabscan0') >>> b1 '\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xf0' '\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00$\x82\x12I\t\x00\x80\x02\x00@\x00\x04\x00\x00@\x00\x00\x00\x00\x00@\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00 \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' cd /sys/kernel/debug/dynamic_debug root@elphel393:/sys/kernel/debug/dynamic_debug# cat control | grep fpga drivers/elphel/fpgajtag353.c:655 [fpgajtag]fpga_jtag_lseek =_ "fpga_jtag_lseek, fsize= 0x%x\012" drivers/elphel/fpgajtag353.c:679 [fpgajtag]fpga_jtag_lseek =_ "fpga_jtag_lseek, file->f_pos= 0x%x\012" drivers/elphel/fpgajtag353.c:1405 [fpgajtag]fpga_jtag_init =_ "elphel test %s: MAJOR %d" drivers/elphel/fpgajtag353.c:751 [fpgajtag]wait_sensio_status =_ "seq_num = %d received after %d wait cycles" drivers/elphel/fpgajtag353.c:764 [fpgajtag]set_pgm_mode =_ "set_pgm_mode (%d,%d)\012" drivers/elphel/fpgajtag353.c:789 [fpgajtag]set_pgm =_ "set_pgm (%d,%d)\012" drivers/elphel/fpgajtag353.c:851 [fpgajtag]jtag_send =_ "jtag_send(0x%x, 0x%x, 0x%x, 0x%x)\015\012" drivers/elphel/fpgajtag353.c:950 [fpgajtag]jtag_write_bits =_ "jtag_write_bits(0x%x, 0x%x, 0x%x, 0x%x, 0x%x)\015\012" drivers/elphel/fpgajtag353.c:1096 [fpgajtag]JTAG_configure =_ "JTAG_configure: chn=%x, wp=0x%x, rp=0x%x, len=0x%x\015\012" drivers/elphel/fpgajtag353.c:1211 [fpgajtag]JTAG_openChannel =_ "JTAG_openChannel (%d)\012" drivers/elphel/fpgajtag353.c:367 [fpgajtag]fpga_jtag_open =_ "fpga_jtag_open: minor=%x, channel=%x, buf=%p\015\012" drivers/elphel/fpgajtag353.c:440 [fpgajtag]fpga_jtag_open =_ "fpga_jtag_open: chn=%x, JTAG_channels[chn].sizew=%x, JTAG_channels[chn].sizer=%x\015\012" drivers/elphel/fpgajtag353.c:441 [fpgajtag]fpga_jtag_open =_ "fpga_jtag_open: chn=%x, JTAG_channels[chn].bitsw=%x, JTAG_channels[chn].bitsr=%x\015\012" drivers/elphel/fpgajtag353.c:446 [fpgajtag]fpga_jtag_open =_ "fpga_jtag_open: inode->i_size=%x, chn=%x\015\012" drivers/elphel/fpgajtag353.c:1231 [fpgajtag]JTAG_resetChannel =_ "JTAG_resetChannel (%d)\012" drivers/elphel/fpgajtag353.c:1342 [fpgajtag]JTAG_CAPTURE =_ "\012" drivers/elphel/fpgajtag353.c:1347 [fpgajtag]JTAG_CAPTURE =_ "\012" drivers/elphel/fpgajtag353.c:1344 [fpgajtag]JTAG_CAPTURE =_ "%3x " drivers/elphel/fpgajtag353.c:1345 [fpgajtag]JTAG_CAPTURE =_ "\012" drivers/elphel/fpgajtag353.c:456 [fpgajtag]fpga_jtag_release =_ "fpga_jtag_release: p=%x,chn=%x, wp=0x%x, rp=0x%x\015\012" drivers/elphel/fpgajtag353.c:497 [fpgajtag]fpga_jtag_release =_ "fpga_jtag_release: done\015\012" drivers/elphel/fpgajtag353.c:509 [fpgajtag]fpga_jtag_write =_ "fpga_jtag_write: p=%x,chn=%x, buf address=%lx count=%lx *offs=%lx, wp=%lx,size=0x%x\015\012" drivers/elphel/fpgajtag353.c:562 [fpgajtag]fpga_jtag_write =_ "fpga_jtag_write end: p=%x,chn=%x, buf address=%lx count=%lx *offs=%lx, wp=%lx,size=0x%x\015\012" drivers/elphel/fpgajtag353.c:574 [fpgajtag]fpga_jtag_read =_ "fpga_jtag_read: p=%x,chn=%x, buf address=%lx count=%lx *offs=%lx, rp=%lx,size=0x%x\015\012" drivers/elphel/fpgajtag353.c:601 [fpgajtag]fpga_jtag_read =_ "fpga_jtag_read_01: p=%x,chn=%x, buf address=%lx count=%lx *offs=%lx, rp=%lx,size=0x%x\015\012" drivers/elphel/fpgajtag353.c:624 [fpgajtag]fpga_jtag_read =_ "fpga_jtag_read_01: p=%x,chn=%x, buf address=%lx count=%lx *offs=%lx, rp=%lx,size=0x%x\015\012" drivers/elphel/fpgajtag353.c:635 [fpgajtag]fpga_jtag_read =_ "fpga_jtag_read_end: p=%x,chn=%x, buf address=%lx count=%lx *offs=%lx, rp=%lx,size=0x%x, mode=%x\015\012" drivers/elphel/fpgajtag353.c:1416 [fpgajtag]fpga_jtag_exit =_ "unregistering driver" root@elphel393:/sys/kernel/debug/dynamic_debug# echo 'file drivers/elphel/fpgajtag353.c +p' > control afpgaconfjtag jtagraw memory_bandwidth mtd4ro ram2 stderr tty18 tty30 tty43 tty56 ttyS1 block kmem mmcblk0 mtdblock0 ram3 stdin tty19 tty31 tty44 tty57 ttyS2 char kmsg mmcblk0p1 mtdblock1 random stdout tty2 tty32 tty45 tty58 ttyS3 console log mmcblk0p2 mtdblock2 rtc0 tty tty20 tty33 tty46 tty59 ubi_ctrl cpu_dma_latency loop-control mtab mtdblock3 sfpgabscan0 tty0 tty21 tty34 tty47 tty6 urandom disk loop0 mtd0 mtdblock4 sfpgabscan1 tty1 tty22 tty35 tty48 tty60 vcs fd loop1 mtd0ro network_latency sfpgabscan2 tty10 tty23 tty36 tty49 tty61 vcs1 fpgaconfjtag loop2 mtd1 network_throughput sfpgabscan3 tty11 tty24 tty37 tty5 tty62 vcsa fpgaresetjtag loop3 mtd1ro null sfpgaconfjtag tty12 tty25 tty38 tty50 tty63 vcsa1 full loop4 mtd2 psaux sfpgaconfjtag0 tty13 tty26 tty39 tty51 tty7 watchdog i2c-0 loop5 mtd2ro ptmx sfpgaconfjtag1 tty14 tty27 tty4 tty52 tty8 watchdog0 iio:device0 loop6 mtd3 pts sfpgaconfjtag2 tty15 tty28 tty40 tty53 tty9 xdevcfg initctl loop7 mtd3ro ram0 sfpgaconfjtag3 tty16 tty29 tty41 tty54 ttyPS0 zero input mem mtd4 ram1 shm tty17 tty3 tty42 tty55 ttyS0 fseek ($jtag,0); $boundary= fread($jtag, 97); fclose($jtag); return $boundary; packedData=struct.pack(self.ENDIAN+"L",data) d=struct.unpack(self.ENDIAN+"L",packedData)[0] mm[page_offs:page_offs+4]=packedData """ def set_sensor_io_width ( self, num_sensor, width): # 0 - use HACT, >0 - generate HACT from start to specified width """ Set sensor frame width @param num_sensor - sensor port number (0..3) or all @param width - sensor 16-bit frame width (0 - use sensor HACT signal) """ try: if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function for num_sensor in range(4): self.set_sensor_io_width (num_sensor, width = width) return except: pass reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_WIDTH; self.x393_axi_tasks.write_control_register(reg_addr, width) def set_sensor_lens_flat_heights (self, num_sensor, height0_m1 = None, height1_m1 = None, height2_m1 = None): """ Set division of the composite frame into sub-frames for the vignetting correction module @param num_sensor - sensor port number (0..3) @param height0_m1 - height of the first sub-frame minus 1 @param height1_m1 - height of the second sub-frame minus 1 @param height2_m1 - height of the third sub-frame minus 1 (No need for the 4-th, as it will just go until end of the composite frame) """ reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_LENS_RADDR; if not height0_m1 is None: self.x393_axi_tasks.write_control_register(reg_addr + 0, height0_m1) if not height1_m1 is None: self.x393_axi_tasks.write_control_register(reg_addr + 1, height1_m1) if not height2_m1 is None: self.x393_axi_tasks.write_control_register(reg_addr + 2, height2_m1) def set_sensor_lens_flat_parameters (self, num_sensor, num_sub_sensor, # add mode "DIRECT", "ASAP", "RELATIVE", "ABSOLUTE" and frame number AX = None, AY = None, BX = None, BY = None, C = None, scales0 = None, scales1 = None, scales2 = None, scales3 = None, fatzero_in = None, fatzero_out = None, post_scale = None): """ Program vignetting correction and per-color scale @param num_sensor - sensor port number (0..3) @param num_sub_sensor - sub-sensor attached to the same port through multiplexer (0..3) TODO: add mode "DIRECT", "ASAP", "RELATIVE", "ABSOLUTE" and frame number for sequencer All the next parameters can be None - will not be set @param AX (19 bits) @param AY (19 bits) @param BX (21 bits) @param BY (21 bits) @param C (19 bits) @param scales0 (17 bits) - color channel 0 scale @param scales1 (17 bits) - color channel 1 scale @param scales2 (17 bits) - color channel 2 scale @param scales3 (17 bits) - color channel 3 scale @param fatzero_in (16 bits) @param fatzero_out (16 bits) @param post_scale (4 bits) - shift of the result """ def func_lens_data ( num_sensor, addr, data, width): return ((num_sensor & 3) << 24) | ((addr & 0xff) << 16) | (data & ((1 << width) - 1)) reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_LENS_RADDR + vrlg.SENS_LENS_COEFF if not AX is None: self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_AX, AX, 19)) if not AY is None: self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_AY, AY, 19)) if not BX is None: self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_BX, BX, 21)) if not BY is None: self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_BY, BY, 21)) if not C is None: self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_C, C, 19)) if not scales0 is None: self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_SCALES + 0, scales0, 17)) if not scales1 is None: self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_SCALES + 2, scales1, 17)) if not scales2 is None: self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_SCALES + 4, scales2, 17)) if not scales3 is None: self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_SCALES + 6, scales3, 17)) if not fatzero_in is None: self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_FAT0_IN, fatzero_in, 16)) if not fatzero_out is None: self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_FAT0_OUT, fatzero_out, 16)) if not post_scale is None: self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_POST_SCALE, post_scale, 4)) def program_gamma (self, num_sensor, sub_channel, gamma = 0.57, black = 0.04, page = 0): """ Program gamma tables for specified sensor port and subchannel @param num_sensor - sensor port number (0..3), all - all sensors @param num_sub_sensor - sub-sensor attached to the same port through multiplexer (0..3) @param gamma - gamma value (1.0 - linear) @param black - black level, 1.0 corresponds to 256 for 8bit values @param page - gamma table page number (only used if SENS_GAMMA_BUFFER > 0 """ curves_data = self.calc_gamma257(gamma = gamma, black = black, rshift = 6) * 4 try: if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function for num_sensor in range(4): self.program_gamma ( num_sensor = num_sensor, sub_channel = sub_channel, gamma = gamma, black = black, page = page) return except: pass self.program_curves(num_sensor = num_sensor, sub_channel = sub_channel, curves_data = curves_data, page = page) def program_curves (self, num_sensor, sub_channel, curves_data, page = 0): """ Program gamma tables for specified sensor port and subchannel @param num_sensor - sensor port number (0..3) @param num_sub_sensor - sub-sensor attached to the same port through multiplexer (0..3) @param curves_data - either 1028-element list (257 per color component) or a file path with the same data, same as for Verilog $readmemh @param page - gamma table page number (only used if SENS_GAMMA_BUFFER > 0 """ def set_sensor_gamma_table_addr ( num_sensor, sub_channel, color, page = 0): # only used if SENS_GAMMA_BUFFER != 0 data = (1 << 20) | ((color & 3) <<8) if (vrlg.SENS_GAMMA_BUFFER): data |= (sub_channel & 3) << 11 # [12:11] data |= page << 10 else: data |= (sub_channel & 3) << 10 # [11:10] reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_GAMMA_RADDR + vrlg.SENS_GAMMA_ADDR_DATA self.x393_axi_tasks.write_control_register(reg_addr, data) def set_sensor_gamma_table_data ( #; // need 256 for a single color data num_sensor, data18): # ; // 18-bit table data reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_GAMMA_RADDR + vrlg.SENS_GAMMA_ADDR_DATA; self.x393_axi_tasks.write_control_register(reg_addr, data18 & ((1 << 18) - 1)) if isinstance(curves_data, (unicode,str)): with open(curves_data) as f: tokens=f.read().split() curves_data = [] for w in tokens: curves_data.append(int(w,16)) set_sensor_gamma_table_addr ( num_sensor = num_sensor, sub_channel = sub_channel, color = 0, page = page) for n in range(4): for i in range(256): base =curves_data[257*n+i]; diff =curves_data[257*n+i+1]-curves_data[257*n+i]; diff1=curves_data[257*n+i+1]-curves_data[257*n+i]+8; # $display ("%x %x %x %x %x %x",n,i,curves_data[257*n+i], base, diff, diff1); #1; if ((diff > 63) or (diff < -64)): data18 = (1 << 17) | (base & 0x3ff) | (((diff1 >> 4) & 0x7f) << 10) # {1'b1,diff1[10:4],base[9:0]}; else: data18 = (base & 0x3ff) | (( diff & 0x7f) << 10) # {1'b0,diff [ 6:0],base[9:0]}; set_sensor_gamma_table_data ( num_sensor = num_sensor, data18 = data18) def calc_gamma257(self, gamma, black, rshift = 6 ): """ @brief Calculate gamma table (as array of 257 unsigned short values) @param gamma - gamma value (1.0 - linear), 0 - linear as a special case @param black - black level, 1.0 corresponds to 256 for 8bit values @return array of 257 int elements (for a single color), right-shifted to match original 0..0x3ff range """ gtable = [] if gamma <= 0: # special case for i in range (257): ig = min(i*256, 0xffff) gtable.append(ig >> rshift) else: black256 = max(0.0, min(255, black * 256.0)) k= 1.0 / (256.0 - black256) gamma =max(0.13, min(gamma, 10.0)) for i in range (257): x=k * (i - black256) x = max(x, 0.0) ig = int (0.5 + 65535.0 * pow(x, gamma)) ig = min(ig, 0xffff) gtable.append(ig >> rshift) return gtable def set_sensor_gamma_heights (self, num_sensor, height0_m1, height1_m1, height2_m1): """ Set division of the composite frame into sub-frames for gamma correction (separate for each subframe @param num_sensor - sensor port number (0..3) @param height0_m1 - height of the first sub-frame minus 1 @param height1_m1 - height of the second sub-frame minus 1 @param height2_m1 - height of the third sub-frame minus 1 (No need for the 4-th, as it will just go until end of the composite frame) """ reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_GAMMA_RADDR + vrlg.SENS_GAMMA_HEIGHT01 self.x393_axi_tasks.write_control_register(reg_addr, (height0_m1 & 0xffff) | ((height1_m1 & 0xffff) << 16)); reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_GAMMA_RADDR + vrlg.SENS_GAMMA_HEIGHT2; self.x393_axi_tasks.write_control_register(reg_addr, height2_m1 & 0xffff); def set_sensor_gamma_ctl (self, num_sensor, bayer = 0, table_page = 0, en_input = True, repet_mode = True, # Normal mode, single trigger - just for debugging TODO: re-assign? trig = False): """ Setup sensor gamma correction @param num_sensor - sensor port number (0..3) @param bayer - Bayer shift (0..3) @param table_page - Gamma table page @param en_input - Enable input @param repet_mode - Repetitive (normal) mode. Set False for debugging, then use trig for single frame trigger @param trig - single trigger (when repet_mode is False), debug feature """ data = self.func_sensor_gamma_ctl ( bayer = bayer, table_page = table_page, en_input = en_input, repet_mode = repet_mode, trig = trig) reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_GAMMA_RADDR + vrlg.SENS_GAMMA_CTRL; self.x393_axi_tasks.write_control_register(reg_addr, data); def set_sensor_histogram_window (self, num_sensor, subchannel, left, top, width_m1, height_m1): """ Program histogram window @param num_sensor - sensor port number (0..3) @param num_sub_sensor - sub-sensor attached to the same port through multiplexer (0..3) @param left - histogram window left margin @param top - histogram window top margin @param width_m1 - one less than window width. If 0 - use frame right margin (end of HACT) @param height_m1 - one less than window height. If 0 - use frame bottom margin (end of VACT) """ raddr = (vrlg.HISTOGRAM_RADDR0, vrlg.HISTOGRAM_RADDR1, vrlg.HISTOGRAM_RADDR2, vrlg.HISTOGRAM_RADDR3) reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + raddr[subchannel & 3] if self.DEBUG_MODE: print("set_sensor_histogram_window():") print("num_sensor = ", num_sensor) print("subchannel = ", subchannel) print("left = ", left) print("top = ", top) print("width_m1 = ", width_m1) print("height_m1 = ", height_m1) self.x393_axi_tasks.write_control_register(reg_addr + vrlg.HISTOGRAM_LEFT_TOP, ((top & 0xffff) << 16) | (left & 0xffff)) self.x393_axi_tasks.write_control_register(reg_addr + vrlg.HISTOGRAM_WIDTH_HEIGHT, ((height_m1 & 0xffff) << 16) | (width_m1 & 0xffff)) def set_sensor_histogram_saxi (self, en, nrst, confirm_write, cache_mode = 3): """ Setup SAXI GP channel to transfer histograms (16 pages, up to 16 sensors) to the system memory @param en - enable transfers @param nrst - negated reset False - immediate reset, True - normal run; @param confirm_write - wait for the write confirmed (over B channel) before switching channels @param cache_mode AXI cache mode, default should be 4'h3 """ if self.DEBUG_MODE: print("set_sensor_histogram_saxi():") print("en = ", en) print("nrst = ", nrst) print("confirm_write = ", confirm_write) print("cache_mode= ", cache_mode) data = 0; data |= (0,1)[en] << vrlg.HIST_SAXI_EN data |= (0,1)[nrst] << vrlg.HIST_SAXI_NRESET data |= (0,1)[confirm_write] << vrlg.HIST_CONFIRM_WRITE data |= (cache_mode & 0xf) << vrlg.HIST_SAXI_AWCACHE self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + vrlg.HIST_SAXI_MODE_ADDR_REL, data) def set_sensor_histogram_saxi_addr (self, num_sensor, subchannel, page): """ Setup SAXI GP start address in 4KB pages (1 page - 1 subchannel histogram) @param num_sensor - sensor port number (0..3) @param num_sub_sensor - sub-sensor attached to the same port through multiplexer (0..3) @param page - system memory page address (in 4KB units) """ if self.DEBUG_MODE: print("set_sensor_histogram_saxi_addr():") print("num_sensor = ", num_sensor) print("subchannel = ", subchannel) print("page = ", page) num_histogram_frames = 1 << vrlg.NUM_FRAME_BITS channel = ((num_sensor & 3) << 2) + (subchannel & 3) channel_page = page + num_histogram_frames * channel self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + vrlg.HIST_SAXI_ADDR_REL + channel, channel_page) def control_sensor_memory(self, num_sensor, command, reset_frame = False, verbose = 1): """ Control memory access (write) of a sensor channel @param num_sensor - memory sensor channel (or all) @param command - one of (case insensitive): reset - reset channel, channel pointers immediately, stop - stop at the end of the frame (if repetitive), single - acquire single frame , repetitive - repetitive mode @param reset_frame - reset frame number @param vebose - verbose level """ try: if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function for num_sensor in range(4): print ('num_sensor = ',num_sensor) self.control_sensor_memory(num_sensor = num_sensor, command = command, reset_frame = reset_frame, verbose = verbose) return except: pass rpt = False sngl = False en = False rst = False if command[:3].upper() == 'RES': rst = True elif command[:2].upper() == 'ST': pass elif command[:2].upper() == 'SI': sngl = True en = True elif command[:3].upper() == 'REP': rpt = True en = True else: print ("Unrecognized command %s. Valid commands are RESET, STOP, SINGLE, REPETITIVE"%(command)) return base_addr = vrlg.MCONTR_SENS_BASE + vrlg.MCONTR_SENS_INC * num_sensor; mode= x393_mcntrl.func_encode_mode_scan_tiled( skip_too_late = True, disable_need = False, repetitive= rpt, single = sngl, reset_frame = reset_frame, extra_pages = 0, write_mem = True, enable = en, chn_reset = rst) self.x393_axi_tasks.write_control_register(base_addr + vrlg.MCNTRL_SCANLINE_MODE, mode) if verbose > 0 : print ("write_control_register(0x%08x, 0x%08x)"%(base_addr + vrlg.MCNTRL_SCANLINE_MODE, mode)) def setup_sensor_memory (self, num_sensor, frame_sa, frame_sa_inc, last_frame_num, frame_full_width, window_width, window_height, window_left, window_top): """ Setup memory controller for a sensor channel @param num_sensor - sensor port number (0..3) @param frame_sa - 22-bit frame start address ((3 CA LSBs==0. BA==0) @param frame_sa_inc - 22-bit frame start address increment ((3 CA LSBs==0. BA==0) @param last_frame_num - 16-bit number of the last frame in a buffer @param frame_full_width - 13-bit Padded line length (8-row increment), in 8-bursts (16 bytes) @param window_width - 13-bit - in 8*16=128 bit bursts @param window_height - 16-bit window height (in scan lines) @param window_left - 13-bit window left margin in 8-bursts (16 bytes) @param window_top - 16-bit window top margin (in scan lines """ base_addr = vrlg.MCONTR_SENS_BASE + vrlg.MCONTR_SENS_INC * num_sensor; mode= x393_mcntrl.func_encode_mode_scan_tiled( skip_too_late = True, disable_need = False, repetitive= True, single = False, reset_frame = False, extra_pages = 0, write_mem = True, enable = True, chn_reset = False) self.x393_axi_tasks.write_control_register(base_addr + vrlg.MCNTRL_SCANLINE_STARTADDR, frame_sa); # RA=80, CA=0, BA=0 22-bit frame start address (3 CA LSBs==0. BA==0) self.x393_axi_tasks.write_control_register(base_addr + vrlg.MCNTRL_SCANLINE_FRAME_SIZE, frame_sa_inc); self.x393_axi_tasks.write_control_register(base_addr + vrlg.MCNTRL_SCANLINE_FRAME_LAST, last_frame_num); self.x393_axi_tasks.write_control_register(base_addr + vrlg.MCNTRL_SCANLINE_FRAME_FULL_WIDTH, frame_full_width); self.x393_axi_tasks.write_control_register(base_addr + vrlg.MCNTRL_SCANLINE_WINDOW_WH, ((window_height & 0xffff) << 16) | (window_width & 0xffff)) #/WINDOW_WIDTH + (WINDOW_HEIGHT<<16)); self.x393_axi_tasks.write_control_register(base_addr + vrlg.MCNTRL_SCANLINE_WINDOW_X0Y0, ((window_top & 0xffff) << 16) | (window_left & 0xffff)) #WINDOW_X0+ (WINDOW_Y0<<16)); self.x393_axi_tasks.write_control_register(base_addr + vrlg.MCNTRL_SCANLINE_WINDOW_STARTXY, 0) self.x393_axi_tasks.write_control_register(base_addr + vrlg.MCNTRL_SCANLINE_MODE, mode)