/*!
* Module:fifo_same_clock_fill
* @file fifo_same_clock_fill.v
* @date 2014-05-20
* @author Andrey Filippov
*
* @brief Configurable synchronous FIFO using the same clock for read and write.
* Provides fill level - number of words currently in FIFO
*
* @copyright Copyright (c) 2014 Elphel, Inc.
*
* License:
*
* fifo_same_clock_fill.v is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* fifo_same_clock_fill.v is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* Additional permission under GNU GPL version 3 section 7:
* If you modify this Program, or any covered work, by linking or combining it
* with independent modules provided by the FPGA vendor only (this permission
* does not extend to any 3-rd party modules, "soft cores" or macros) under
* different license terms solely for the purpose of generating binary "bitstream"
* files and/or simulating the code, the copyright holders of this Program give
* you the right to distribute the covered work without those independent modules
* as long as the source code for them is available from the FPGA vendor free of
* charge, and there is no dependence on any encrypted modules for simulating of
* the combined code. This permission applies to you if the distributed code
* contains all the components and scripts required to completely simulate it
* with at least one of the Free Software programs.
*/
`timescale 1ns/1ps
`include "system_defines.vh"
module fifo_same_clock_fill
#(
parameter integer DATA_WIDTH=16,
parameter integer DATA_DEPTH=4
)
(
input rst, // reset, active high
input clk, // clock - positive edge
input sync_rst, // synchronously reset fifo;
input we, // write enable
input re, // read enable
input [DATA_WIDTH-1:0] data_in, // input data
output [DATA_WIDTH-1:0] data_out, // output data
output nempty, // FIFO has some data
output reg half_full, // FIFO half full
output reg under, // debug outputs - under - attempt to read from empty
output reg over, // overwritten
output reg [DATA_DEPTH-1:0] wcount,
output reg [DATA_DEPTH-1:0] rcount,
output [DATA_DEPTH: 0] wnum_in_fifo, // number of items in FIFO on write side
output [DATA_DEPTH: 0] rnum_in_fifo // number of items in FIFO on read side
);
localparam integer DATA_2DEPTH=(1<. This FF/Latch will be trimmed during the optimization process.
//ISExst: FF/Latch ddrc_test01.axibram_read_i.raddr_i.fill[4] has a constant value of 0 in block . This FF/Latch will be trimmed during the optimization process.
//ISExst: FF/Latch ddrc_test01.axibram_write_i.wdata_i.fill[4] has a constant value of 0 in block . This FF/Latch will be trimmed during the optimization process.
// Do not understand - why?
reg [DATA_DEPTH: 0] fill=0; // RAM fill
reg [DATA_DEPTH: 0] wfifo_fill=0; // FIFO (RAM+reg) fill - total number in FIFO
reg [DATA_DEPTH: 0] rfifo_fill=0; // number in FIFO, ready to be read out
reg [DATA_WIDTH-1:0] inreg;
reg [DATA_WIDTH-1:0] outreg;
reg [DATA_DEPTH-1:0] ra;
reg [DATA_DEPTH-1:0] wa;
wire [DATA_DEPTH:0] next_fill;
reg [1:0] wem;
wire rem;
reg out_full=0; //output register full
reg [DATA_WIDTH-1:0] ram [0:DATA_2DEPTH];
reg ram_nempty;
assign next_fill = fill[DATA_DEPTH:0]+((wem[0] && ~rem)?1:((~wem[0] && rem && ram_nempty)?-1:0));
assign rem= ram_nempty && (re || !out_full);
assign data_out=outreg;
assign nempty=out_full;
// assign num_in_fifo=fill[DATA_DEPTH:0];
assign wnum_in_fifo=wfifo_fill[DATA_DEPTH:0];
assign rnum_in_fifo=rfifo_fill[DATA_DEPTH:0];
always @ (posedge clk or posedge rst) begin
if (rst) fill <= 0;
else if (sync_rst) fill <= 0;
else fill <= next_fill;
if (rst) wfifo_fill <= 0;
else if (sync_rst) wfifo_fill <= 0;
else if ( we && !re) wfifo_fill <= wfifo_fill+1;
else if (!we && re) wfifo_fill <= wfifo_fill-1;
if (rst) rfifo_fill <= 0; // pessimistic, all writes are delayed by 2
else if (sync_rst) rfifo_fill <= 0;
else if ( wem[1] && !re) rfifo_fill <= rfifo_fill+1;
else if (!wem[1] && re) rfifo_fill <= rfifo_fill-1;
if (rst) wem <= 0;
else if (sync_rst) wem <= 0;
else wem <= {wem[0], we};
if (rst) ram_nempty <= 0;
else if (sync_rst) ram_nempty <= 0;
else ram_nempty <= (next_fill != 0);
if (rst) wa <= 0;
else if (sync_rst) wa <= 0;
else if (wem[0]) wa <= wa+1;
if (rst) ra <= 0;
else if (sync_rst) ra <= 0;
else if (rem) ra <= ra+1;
else if (!ram_nempty) ra <= wa; // Just recover from bit errors
if (rst) out_full <= 0;
else if (sync_rst) out_full <= 0;
else if (rem && ~re) out_full <= 1;
else if (re && ~rem) out_full <= 0;
if (rst) wcount <= 0;
else if (sync_rst) wcount <= 0;
else if (we) wcount <= wcount + 1;
if (rst) rcount <= 0;
else if (sync_rst) rcount <= 0;
else if (re) rcount <= rcount + 1;
end
// no reset elements
always @ (posedge clk) begin
half_full <=(fill & (1<<(DATA_DEPTH-1)))!=0;
if (wem[0]) ram[wa] <= inreg;
if (we) inreg <= data_in;
if (rem) outreg <= ram[ra];
under <= re & ~nempty; // underrun error
over <= wem[0] & ~rem & fill[DATA_DEPTH] & ~fill[DATA_DEPTH-1]; // overrun error
end
endmodule