/*! * Module:simul_axi_master_wraddr * @file simul_axi_master_wraddr.v * @date 2014-03-24 * @author Andrey Filippov * * @brief Simulation model for AXI write address channel * * @copyright Copyright (c) 2014 Elphel, Inc. * * License: * * simul_axi_master_wraddr.v is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * simul_axi_master_wraddr.v is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * Additional permission under GNU GPL version 3 section 7: * If you modify this Program, or any covered work, by linking or combining it * with independent modules provided by the FPGA vendor only (this permission * does not extend to any 3-rd party modules, "soft cores" or macros) under * different license terms solely for the purpose of generating binary "bitstream" * files and/or simulating the code, the copyright holders of this Program give * you the right to distribute the covered work without those independent modules * as long as the source code for them is available from the FPGA vendor free of * charge, and there is no dependence on any encrypted modules for simulating of * the combined code. This permission applies to you if the distributed code * contains all the components and scripts required to completely simulate it * with at least one of the Free Software programs. */ `timescale 1ns/1ps module simul_axi_master_wraddr #( parameter integer ID_WIDTH=12, parameter integer ADDRESS_WIDTH=32, parameter integer LATENCY=0, // minimal delay between inout and output ( 0 - next cycle) parameter integer DEPTH=8, // maximal number of commands in FIFO parameter DATA_DELAY = 3.5, parameter VALID_DELAY = 4.0 )( input clk, input reset, input [ID_WIDTH-1:0] awid_in, input [ADDRESS_WIDTH-1:0] awaddr_in, input [3:0] awlen_in, input [1:0] awsize_in, input [1:0] awburst_in, input [3:0] awcache_in, input [2:0] awprot_in, output [ID_WIDTH-1:0] awid, output [ADDRESS_WIDTH-1:0] awaddr, output [3:0] awlen, output [1:0] awsize, output [1:0] awburst, output [3:0] awcache, output [2:0] awprot, output awvalid, input awready, input set_cmd, // latch all other input data at posedge of clock output ready // command/data FIFO can accept command ); wire [ID_WIDTH-1:0] awid_out; wire [ADDRESS_WIDTH-1:0] awaddr_out; wire [3:0] awlen_out; wire [1:0] awsize_out; wire [1:0] awburst_out; wire [3:0] awcache_out; wire [2:0] awprot_out; wire awvalid_out; assign #(DATA_DELAY) awid= awid_out; assign #(DATA_DELAY) awaddr= awaddr_out; assign #(DATA_DELAY) awlen= awlen_out; assign #(DATA_DELAY) awsize= awsize_out; assign #(DATA_DELAY) awburst= awburst_out; assign #(DATA_DELAY) awcache= awcache_out; assign #(DATA_DELAY) awprot= awprot_out; assign #(VALID_DELAY) awvalid= awvalid_out; simul_axi_fifo #( .WIDTH(ID_WIDTH+ADDRESS_WIDTH+15), // total number of output bits .LATENCY(LATENCY), // minimal delay between inout and output ( 0 - next cycle) .DEPTH(DEPTH) // maximal number of commands in FIFO // parameter OUT_DELAY = 3.5, ) simul_axi_fifo_i ( .clk(clk), // input clk, .reset(reset), // input reset, .data_in({awid_in,awaddr_in,awlen_in,awsize_in,awburst_in,awcache_in,awprot_in}), // input [WIDTH-1:0] data_in, .load(set_cmd), // input load, .input_ready(ready), // output input_ready, .data_out({awid_out,awaddr_out,awlen_out,awsize_out,awburst_out,awcache_out,awprot_out}), // output [WIDTH-1:0] data_out, .valid(awvalid_out), // output valid, .ready(awready)); // input ready); endmodule