/*! * Module:simul_axi_hp_wr * @file simul_axi_hp_wr.v * @date 2015-04-25 * @author Andrey Filippov * * @brief Simplified model of AXI_HP write channel (64-bit only) * * @copyright Copyright (c) 2015 Elphel, Inc. * * License: * * simul_axi_hp_wr.v is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * simul_axi_hp_wr.v is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * Additional permission under GNU GPL version 3 section 7: * If you modify this Program, or any covered work, by linking or combining it * with independent modules provided by the FPGA vendor only (this permission * does not extend to any 3-rd party modules, "soft cores" or macros) under * different license terms solely for the purpose of generating binary "bitstream" * files and/or simulating the code, the copyright holders of this Program give * you the right to distribute the covered work without those independent modules * as long as the source code for them is available from the FPGA vendor free of * charge, and there is no dependence on any encrypted modules for simulating of * the combined code. This permission applies to you if the distributed code * contains all the components and scripts required to completely simulate it * with at least one of the Free Software programs. */ `timescale 1ns/1ps module simul_axi_hp_wr#( parameter [1:0] HP_PORT=0 ) ( input rst, // AXI signals input aclk, output aresetn, // do not use? // write address input [31:0] awaddr, input awvalid, output awready, input [ 5:0] awid, input [ 1:0] awlock, // verify the correct values are here input [ 3:0] awcache, // verify the correct values are here input [ 2:0] awprot, // verify the correct values are here input [ 3:0] awlen, input [ 1:0] awsize, input [ 1:0] awburst, input [ 3:0] awqos, // verify the correct values are here // write data input [63:0] wdata, input wvalid, output wready, input [ 5:0] wid, input wlast, input [ 7:0] wstrb, // write response output bvalid, input bready, output [ 5:0] bid, output [ 1:0] bresp, // PL extra (non-AXI) signals output [ 7:0] wcount, output [ 5:0] wacount, // racount has only 3 bits input wrissuecap1en, // do not use yet // Simulation signals - use same aclk output [31:0] sim_wr_address, output [ 5:0] sim_wid, output sim_wr_valid, // ready to provide simulation data input sim_wr_ready, // simulation may pause this channel by keeping this signal inactive output [63:0] sim_wr_data, output [ 7:0] sim_wr_stb, input [ 3:0] sim_bresp_latency, // latency in writing data outside of the module output [ 2:0] sim_wr_cap, output [ 3:0] sim_wr_qos, input [31:0] reg_addr, input reg_wr, input reg_rd, input [31:0] reg_din, output [31:0] reg_dout, output reg_dvalid ); // localparam ADDRESS_BITS=32; localparam AFI_BASECTRL= 32'hf8008000+ (HP_PORT << 12); localparam AFI_WRCHAN_CTRL= AFI_BASECTRL + 'h14; localparam AFI_WRCHAN_ISSUINGCAP= AFI_BASECTRL + 'h18; localparam AFI_WRQOS= AFI_BASECTRL + 'h1c; localparam AFI_WRDATAFIFO_LEVEL= AFI_BASECTRL + 'h20; localparam AFI_WRDEBUG= AFI_BASECTRL + 'h24; // SuppressThisWarning VEditor - not yet used localparam VALID_AWLOCK = 2'b0; // TODO localparam VALID_AWCACHE = 4'b0011; // localparam VALID_AWPROT = 3'b000; localparam VALID_AWLOCK_MASK = 2'b11; // TODO localparam VALID_AWCACHE_MASK = 4'b0011; // localparam VALID_AWPROT_MASK = 3'b010; /* http://forums.xilinx.com/t5/Embedded-Processor-System-Design/Accessing-DDR-from-PL-on-Zynq/m-p/324877#M8413 Solved it! To make it work, I set the (AR/AW)CACHE=0x11 and (AR/AW)PROT=0x00. In the CDMA datasheet, these were the recommended values, which I confirmed with ChipScope, when attached to CDMA's master port. The default values set by VHLS were 0x00 and 0x10 respectively, which is also the case in the last post. Alex UPDATE: Xilinx docs say that (AR/AW)CACHE is ignored */ reg [3:0] WrDataThreshold = 'hf; reg [1:0] WrCmdReleaseMode = 0; reg wrQosHeadOfCmdQEn = 0; reg wrFabricOutCmdEn = 0; reg wrFabricQosEn = 0; reg wr32BitEn = 0; // verify it i 0 reg [2:0] wrIssueCap1 = 0; reg [2:0] wrIssueCap0 = 7; reg [3:0] staticQos = 0; wire [3:0] wr_qos_in; wire [3:0] wr_qos_out; wire aw_nempty; wire w_nempty; wire enough_data; // enough data to start a new burst `ifndef AXI_4K_LIMIT_DISABLE wire [11:3] next_wr_address; // bits that are incrtemented in 64-bit mode (higher are kept according to AXI 4KB inc. limit) `else wire [31:3] next_wr_address; `endif reg [31:0] write_address; reg [5:0] awid_r; // awid registered with write_address wire fifo_wd_rd; // read data fifo wire last_confirmed_write; wire [5:0] awid_out; // verify it matches wid_out when outputting data wire [1:0] awburst_out; wire [1:0] awsize_out; // verify it is 3'h3 wire [3:0] awlen_out; wire [31:0] awaddr_out; wire [5:0] wid_out; wire wlast_out; wire [7:0] wstrb_out; wire [63:0] wdata_out; reg fifo_data_we_d; reg fifo_addr_we_d; reg [3:0] write_left; reg [ 1:0] wburst; // registered burst type reg [ 3:0] wlen; // registered awlen type (for wrapped over transfers) wire start_write_burst_w; reg start_write_burst_r; // next after start_write_burst_w wire write_in_progress_w; // should go inactive last confirmed upstream cycle reg write_in_progress; wire [5:0] wresp_num_in_fifo; reg was_wresp_re=0; wire wresp_re; reg [ 7:0] num_full_data = 0; // Number of full data bursts in FIFO wire inc_num_full_data = wvalid && wready && wlast; // documentation sais : "When set, allows the priority of a transaction at the head of the WrCmdQ to be promoted if higher // priority transactions are backed up behind it." Whqt about demotion? Assuming it is not demoted assign sim_wr_qos = (wrQosHeadOfCmdQEn && (wr_qos_in > wr_qos_out))? wr_qos_in : wr_qos_out; assign sim_wr_cap = (wrFabricOutCmdEn && wrissuecap1en) ? wrIssueCap1 : wrIssueCap0; assign wr_qos_in = wrFabricQosEn?(awqos & {4{awvalid}}) : staticQos; //awqos & {4{awvalid}} assign aresetn= ~rst; // probably not needed at all - docs say "do not use" // Supported control register fields assign reg_dout=(reg_rd && (reg_addr==AFI_WRDATAFIFO_LEVEL))? {24'b0,wcount}: ( (reg_rd && (reg_addr==AFI_WRCHAN_CTRL))? {20'b0,WrDataThreshold,2'b0,WrCmdReleaseMode,wrQosHeadOfCmdQEn,wrFabricOutCmdEn,wrFabricQosEn,wr32BitEn}: ( (reg_rd && (reg_addr==AFI_WRCHAN_ISSUINGCAP))? {25'b0,wrIssueCap1,1'b0,wrIssueCap0}: ( (reg_rd && (reg_addr==AFI_WRQOS))? {28'b0,staticQos}:32'bz))); assign reg_dvalid = (reg_rd && ((reg_addr==AFI_WRDATAFIFO_LEVEL) || (reg_addr==AFI_WRCHAN_CTRL) || (reg_addr==AFI_WRCHAN_ISSUINGCAP) || (reg_addr==AFI_WRQOS))) ? 1 : 0; always @ (posedge aclk or posedge rst) begin if (rst) begin WrDataThreshold <= 'hf; WrCmdReleaseMode <= 0; wrQosHeadOfCmdQEn <= 0; wrFabricOutCmdEn <= 0; wrFabricQosEn <= 0; wr32BitEn <= 0; end else if (reg_wr && (reg_addr==AFI_WRCHAN_CTRL)) begin WrDataThreshold <= reg_din[11:8]; WrCmdReleaseMode <= reg_din[5:4]; wrQosHeadOfCmdQEn <= reg_din[3]; wrFabricOutCmdEn <= reg_din[2]; wrFabricQosEn <= reg_din[1]; wr32BitEn <= reg_din[0]; end if (rst) begin wrIssueCap1 <= 0; wrIssueCap0 <= 7; end else if (reg_wr && (reg_addr==AFI_WRCHAN_ISSUINGCAP)) begin wrIssueCap1 <= reg_din[6:4]; wrIssueCap0 <= reg_din[2:0]; end if (rst) begin staticQos <= 0; end else if (reg_wr && (reg_addr==AFI_WRQOS)) begin staticQos <= reg_din[3:0]; end end // generate ready signals for address and data assign wready= !wcount[7] && (!(&wcount[6:0]) || !fifo_data_we_d); always @ (posedge rst or posedge aclk) begin if (rst) fifo_data_we_d<=0; else fifo_data_we_d <= wready && wvalid; end assign awready= !wacount[5] && (!(&wacount[4:0]) || !fifo_addr_we_d); always @ (posedge rst or posedge aclk) begin if (rst) fifo_addr_we_d<=0; else fifo_addr_we_d <= awready && awvalid; end // Count full data bursts ready in FIFO always @ (posedge rst or posedge aclk) begin if (rst) num_full_data <=0; else if ( inc_num_full_data && !start_write_burst_w) num_full_data <= num_full_data + 1; else if (!inc_num_full_data && start_write_burst_w) num_full_data <= num_full_data - 1; end assign sim_wr_address= write_address; assign enough_data=|num_full_data || ((WrCmdReleaseMode==2'b01) && (wcount > {4'b0,WrDataThreshold})); assign fifo_wd_rd= write_in_progress && w_nempty && sim_wr_ready; assign sim_wr_valid= write_in_progress && w_nempty; // for continuing writes assign last_confirmed_write = (write_left==0) && fifo_wd_rd && wlast_out; // wlast_out should take precedence over write_left? assign start_write_burst_w= aw_nempty && enough_data && (! write_in_progress || last_confirmed_write); assign write_in_progress_w= (aw_nempty && enough_data) || (write_in_progress && !last_confirmed_write); // AXI: Bursts should not cross 4KB boundaries (... and to limit size of the address incrementer) // in 64 bit mode - low 3 bits are preserved, next 9 are incremented // Seems that Zynq is OK to cross 4K boundary `ifndef AXI_4K_LIMIT_DISABLE assign next_wr_address[11:3] = wburst[1]? (wburst[0]? {9'bx}:((write_address[11:3] + 1) & {5'h1f, ~wlen[3:0]})): (wburst[0]? (write_address[11:3]+1):(write_address[11:3])); `else assign next_wr_address[31:3] = wburst[1]? (wburst[0]? {29'bx}:((write_address[31:3] + 1) & {25'h1f, ~wlen[3:0]})): (wburst[0]? (write_address[31:3]+1):(write_address[31:3])); `endif assign sim_wr_data= wdata_out; assign sim_wid= wid_out; assign sim_wr_stb=wstrb_out; always @ (posedge aclk) begin start_write_burst_r <= start_write_burst_w; if (start_write_burst_r) begin if (awid_r != wid_out) begin $display ("%m: at time %t ERROR: awid=%h, wid=%h",$time,awid_out,wid_out); $stop; end end if (start_write_burst_w) begin if (awsize_out != 2'h3) begin $display ("%m: at time %t ERROR: awsize_out=%h, currently only 'h3 (8 bytes) is valid",$time,awsize_out); $stop; end end if (awvalid && awready) begin if (((awlock ^ VALID_AWLOCK) & VALID_AWLOCK_MASK) != 0) begin $display ("%m: at time %t ERROR: awlock = %h, valid %h with mask %h",$time, awlock, VALID_AWLOCK, VALID_AWLOCK_MASK); $stop; end if (((awcache ^ VALID_AWCACHE) & VALID_AWCACHE_MASK) != 0) begin $display ("%m: at time %t ERROR: awcache = %h, valid %h with mask %h",$time, awcache, VALID_AWCACHE, VALID_AWCACHE_MASK); $stop; end if (((awprot ^ VALID_AWPROT) & VALID_AWPROT_MASK) != 0) begin $display ("%m: at time %t ERROR: awprot = %h, valid %h with mask %h",$time, awprot, VALID_AWPROT, VALID_AWPROT_MASK); $stop; end end end always @ (posedge aclk or posedge rst) begin if (rst) wburst[1:0] <= 0; else if (start_write_burst_w) wburst[1:0] <= awburst_out[1:0]; if (rst) wlen[3:0] <= 0; else if (start_write_burst_w) wlen[3:0] <= awlen_out[3:0]; if (rst) write_in_progress <= 0; else write_in_progress <= write_in_progress_w; if (rst) write_left <= 0; else if (start_write_burst_w) write_left <= awlen_out[3:0]; // precedence over inc else if (fifo_wd_rd) write_left <= write_left-1; //SuppressThisWarning ISExst Result of 32-bit expression is truncated to fit in 4-bit target. if (rst) write_address <= 32'bx; else if (start_write_burst_w) write_address <= awaddr_out; // precedence over inc `ifndef AXI_4K_LIMIT_DISABLE else if (fifo_wd_rd) write_address <= {write_address[31:12],next_wr_address[11:3],write_address[2:0]}; `else else if (fifo_wd_rd) write_address <= { next_wr_address[31:3],write_address[2:0]}; `endif if (rst) awid_r <= 6'bx; else if (start_write_burst_w) awid_r <= awid_out; // precedence over inc end fifo_same_clock_fill #( .DATA_WIDTH(50),.DATA_DEPTH(5)) // read - 4, write - 32? waddr_i ( .rst (rst), .clk (aclk), .sync_rst (1'b0), .we (awvalid && awready), .re (start_write_burst_w), .data_in ({awid[5:0], awburst[1:0], awsize[1:0], awlen[3:0], awaddr[31:0], wr_qos_in[3:0]}), .data_out ({awid_out[5:0], awburst_out[1:0],awsize_out[1:0],awlen_out[3:0],awaddr_out[31:0], wr_qos_out[3:0]}), .nempty (aw_nempty), .half_full (), //aw_half_full), .under (), //waddr_under), // output reg .over (), //waddr_over), // output reg .wcount (), //waddr_wcount), // output[3:0] reg .rcount (), //waddr_rcount), // output[3:0] reg .wnum_in_fifo (wacount), // output[3:0] .rnum_in_fifo () // output[3:0] ); fifo_same_clock_fill #( .DATA_WIDTH(79),.DATA_DEPTH(7)) wdata_i ( .rst (rst), .clk (aclk), .sync_rst (1'b0), .we (wvalid && wready), .re (fifo_wd_rd), //start_write_burst_w), // wrong .data_in ({wlast, wid[5:0], wstrb[7:0], wdata[63:0]}), .data_out ({wlast_out,wid_out[5:0], wstrb_out[7:0], wdata_out[63:0]}), .nempty (w_nempty), .half_full (), //w_half_full), .under (), //wdata_under), // output reg .over (), //wdata_over), // output reg .wcount (), //wdata_wcount), // output[3:0] reg .rcount (), //wdata_rcount), // output[3:0] reg .wnum_in_fifo (wcount), // output[3:0] .rnum_in_fifo () // output[3:0] ); // **** Write response channel **** wire [ 1:0] bresp_value=2'b0; wire [ 1:0] bresp_in; wire fifo_wd_rd_dly; wire [5:0] bid_in; // input [ 3:0] sim_bresp_latency, // latency in writing data outside of the module dly_16 #( .WIDTH(1) ) bresp_dly_16_i ( .clk (aclk), // input .rst (rst), // input .dly (sim_bresp_latency[3:0]), // input[3:0] .din (last_confirmed_write), //fifo_wd_rd), // input[0:0] .dout (fifo_wd_rd_dly) // output[0:0] ); // first FIFO for bresp - latency outside of the module // wresp per burst, not per item ! fifo_same_clock_fill #( .DATA_WIDTH(8),.DATA_DEPTH(5)) wresp_ext_i ( .rst (rst), .clk (aclk), .sync_rst (1'b0), .we (last_confirmed_write), // fifo_wd_rd), .re (fifo_wd_rd_dly), // not allowing RE next cycle after bvalid .data_in ({wid_out[5:0],bresp_value[1:0]}), .data_out ({bid_in[5:0],bresp_in[1:0]}), .nempty (), .half_full (), //), .under (), //wresp_under), // output reg .over (), //wresp_over), // output reg .wcount (), //wresp_wcount), // output[3:0] reg .rcount (), //wresp_rcount), // output[3:0] reg .wnum_in_fifo (), // wresp_num_in_fifo) // output[3:0] .rnum_in_fifo () // wresp_num_in_fifo) // output[3:0] ); assign wresp_re=bready && bvalid; // && !was_wresp_re; always @ (posedge rst or posedge aclk) begin if (rst) was_wresp_re<=0; else was_wresp_re <= wresp_re; end assign bvalid=|wresp_num_in_fifo[5:1] || (!was_wresp_re && wresp_num_in_fifo[0]); // second wresp FIFO (does it exist in the actual module)? fifo_same_clock_fill #( .DATA_WIDTH(8),.DATA_DEPTH(5)) wresp_i ( .rst (rst), .clk (aclk), .sync_rst (1'b0), .we (fifo_wd_rd_dly), .re (wresp_re), // not allowing RE next cycle after bvalid .data_in ({bid_in[5:0],bresp_in[1:0]}), .data_out ({bid[5:0],bresp[1:0]}), .nempty (), //bvalid), .half_full (), //), .under (), //wresp_under), // output reg .over (), //wresp_over), // output reg .wcount (), //wresp_wcount), // output[3:0] reg .rcount (), //wresp_rcount), // output[3:0] reg .wnum_in_fifo (), // wresp_num_in_fifo) // output[3:0] .rnum_in_fifo (wresp_num_in_fifo) // wresp_num_in_fifo) // output[3:0] ); endmodule