/******************************************************************************* * Module: x393_testbench01 * Date:2015-02-06 * Author: andrey * Description: testbench for the initial x393.v simulation * * Copyright (c) 2015 . * x393_testbench01.v is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * x393_testbench01.tf is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . *******************************************************************************/ `timescale 1ns/1ps `define use200Mhz 1 `define DEBUG_FIFO 1 module x393_testbench01 #( `include "includes/x393_parameters.vh" `include "includes/x393_simulation_parameters.vh" )( ); `ifdef IVERILOG // $display("IVERILOG is defined"); `include "IVERILOG_INCLUDE.v" `else // $display("IVERILOG is not defined"); parameter lxtname = "x393.lxt"; `endif `define DEBUG_WR_SINGLE 1 `define DEBUG_RD_DATA 1 `include "includes/x393_localparams.vh" // DDR3 signals wire SDRST; wire SDCLK; // output wire SDNCLK; // output wire [ADDRESS_NUMBER-1:0] SDA; // output[14:0] wire [ 2:0] SDBA; // output[2:0] wire SDWE; // output wire SDRAS; // output wire SDCAS; // output wire SDCKE; // output wire SDODT; // output wire [15:0] SDD; // inout[15:0] wire SDDML; // inout wire DQSL; // inout wire NDQSL; // inout wire SDDMU; // inout wire DQSU; // inout wire NDQSU; // inout wire DUMMY_TO_KEEP; // output to keep PS7 signals from "optimization" // wire MEMCLK; // Simulation signals reg [11:0] ARID_IN_r; reg [31:0] ARADDR_IN_r; reg [3:0] ARLEN_IN_r; reg [2:0] ARSIZE_IN_r; reg [1:0] ARBURST_IN_r; reg [11:0] AWID_IN_r; reg [31:0] AWADDR_IN_r; reg [3:0] AWLEN_IN_r; reg [2:0] AWSIZE_IN_r; reg [1:0] AWBURST_IN_r; reg [11:0] WID_IN_r; reg [31:0] WDATA_IN_r; reg [ 3:0] WSTRB_IN_r; reg WLAST_IN_r; reg [11:0] LAST_ARID; // last issued ARID // SuppressWarnings VEditor : assigned in $readmem() system task wire [ 9:0] SIMUL_AXI_ADDR_W; // SuppressWarnings VEditor wire SIMUL_AXI_MISMATCH; // SuppressWarnings VEditor reg [31:0] SIMUL_AXI_READ; // SuppressWarnings VEditor reg [ 9:0] SIMUL_AXI_ADDR; // SuppressWarnings VEditor reg SIMUL_AXI_FULL; // some data available reg [31:0] registered_rdata; // here read data from tasks goes reg CLK; reg RST; reg AR_SET_CMD_r; wire AR_READY; reg AW_SET_CMD_r; wire AW_READY; reg W_SET_CMD_r; wire W_READY; wire [11:0] #(AXI_TASK_HOLD) ARID_IN = ARID_IN_r; wire [31:0] #(AXI_TASK_HOLD) ARADDR_IN = ARADDR_IN_r; wire [3:0] #(AXI_TASK_HOLD) ARLEN_IN = ARLEN_IN_r; wire [2:0] #(AXI_TASK_HOLD) ARSIZE_IN = ARSIZE_IN_r; wire [1:0] #(AXI_TASK_HOLD) ARBURST_IN = ARBURST_IN_r; wire [11:0] #(AXI_TASK_HOLD) AWID_IN = AWID_IN_r; wire [31:0] #(AXI_TASK_HOLD) AWADDR_IN = AWADDR_IN_r; wire [3:0] #(AXI_TASK_HOLD) AWLEN_IN = AWLEN_IN_r; wire [2:0] #(AXI_TASK_HOLD) AWSIZE_IN = AWSIZE_IN_r; wire [1:0] #(AXI_TASK_HOLD) AWBURST_IN = AWBURST_IN_r; wire [11:0] #(AXI_TASK_HOLD) WID_IN = WID_IN_r; wire [31:0] #(AXI_TASK_HOLD) WDATA_IN = WDATA_IN_r; wire [ 3:0] #(AXI_TASK_HOLD) WSTRB_IN = WSTRB_IN_r; wire #(AXI_TASK_HOLD) WLAST_IN = WLAST_IN_r; wire #(AXI_TASK_HOLD) AR_SET_CMD = AR_SET_CMD_r; wire #(AXI_TASK_HOLD) AW_SET_CMD = AW_SET_CMD_r; wire #(AXI_TASK_HOLD) W_SET_CMD = W_SET_CMD_r; reg [3:0] RD_LAG; // ready signal lag in axi read channel (0 - RDY=1, 1..15 - RDY is asserted N cycles after valid) reg [3:0] B_LAG; // ready signal lag in axi arete response channel (0 - RDY=1, 1..15 - RDY is asserted N cycles after valid) // Simulation modules interconnection wire [11:0] arid; wire [31:0] araddr; wire [3:0] arlen; wire [2:0] arsize; wire [1:0] arburst; // SuppressWarnings VEditor : assigned in $readmem(14) system task wire [3:0] arcache; // SuppressWarnings VEditor : assigned in $readmem() system task wire [2:0] arprot; wire arvalid; wire arready; wire [11:0] awid; wire [31:0] awaddr; wire [3:0] awlen; wire [2:0] awsize; wire [1:0] awburst; // SuppressWarnings VEditor : assigned in $readmem() system task wire [3:0] awcache; // SuppressWarnings VEditor : assigned in $readmem() system task wire [2:0] awprot; wire awvalid; wire awready; wire [11:0] wid; wire [31:0] wdata; wire [3:0] wstrb; wire wlast; wire wvalid; wire wready; wire [31:0] rdata; // SuppressWarnings VEditor : assigned in $readmem() system task wire [11:0] rid; wire rlast; // SuppressWarnings VEditor : assigned in $readmem() system task wire [1:0] rresp; wire rvalid; wire rready; wire rstb=rvalid && rready; // SuppressWarnings VEditor : assigned in $readmem() system task wire [1:0] bresp; // SuppressWarnings VEditor : assigned in $readmem() system task wire [11:0] bid; wire bvalid; wire bready; always #(CLKIN_PERIOD/2) CLK <= ~CLK; initial begin `ifdef IVERILOG $display("IVERILOG is defined"); `else $display("IVERILOG is not defined"); `endif `ifdef ICARUS $display("ICARUS is defined"); `else $display("ICARUS is not defined"); `endif $dumpfile(lxtname); // SuppressWarnings VEditor : assigned in $readmem() system task $dumpvars(0,x393_testbench01); CLK <=1'b0; RST <= 1'bx; AR_SET_CMD_r <= 1'b0; AW_SET_CMD_r <= 1'b0; W_SET_CMD_r <= 1'b0; #500; // $display ("x393_i.ddrc_sequencer_i.phy_cmd_i.phy_top_i.rst=%d",x393_i.ddrc_sequencer_i.phy_cmd_i.phy_top_i.rst); #500; RST <= 1'b1; #99000; // same as glbl repeat (20) @(posedge CLK) ; RST <=1'b0; //set simulation-only parameters axi_set_b_lag(0); //(1); axi_set_rd_lag(0); program_status_all(3,'h2a); // mode auto with sequence number increment //... set_up; wait_phase_shifter_ready; read_all_status; // enable output for address/commands to DDR chip enable_cmda(1); repeat (16) @(posedge CLK) ; // remove reset from DDR chip activate_sdrst(0); // was enabled at system reset #5000; // actually 500 usec required repeat (16) @(posedge CLK) ; enable_cke(1); repeat (16) @(posedge CLK) ; /* run_mrs; repeat (4) @(posedge CLK) ; // enable refresh enable_refresh(1); #100; */ #2000; $finish; end // protect from never end initial begin // #10000000; #200000; $display("finish testbench 2"); $finish; end assign x393_i.ps7_i.FCLKCLK= {4{CLK}}; assign x393_i.ps7_i.FCLKRESETN= {RST,~RST,RST,~RST}; // Read address assign x393_i.ps7_i.MAXIGP0ARADDR= araddr; assign x393_i.ps7_i.MAXIGP0ARVALID= arvalid; assign arready= x393_i.ps7_i.MAXIGP0ARREADY; assign x393_i.ps7_i.MAXIGP0ARID= arid; assign x393_i.ps7_i.MAXIGP0ARLEN= arlen; assign x393_i.ps7_i.MAXIGP0ARSIZE= arsize[1:0]; // arsize[2] is not used assign x393_i.ps7_i.MAXIGP0ARBURST= arburst; // Read data assign rdata= x393_i.ps7_i.MAXIGP0RDATA; assign rvalid= x393_i.ps7_i.MAXIGP0RVALID; assign x393_i.ps7_i.MAXIGP0RREADY= rready; assign rid= x393_i.ps7_i.MAXIGP0RID; assign rlast= x393_i.ps7_i.MAXIGP0RLAST; assign rresp= x393_i.ps7_i.MAXIGP0RRESP; // Write address assign x393_i.ps7_i.MAXIGP0AWADDR= awaddr; assign x393_i.ps7_i.MAXIGP0AWVALID= awvalid; assign awready= x393_i.ps7_i.MAXIGP0AWREADY; //assign awready= AWREADY_AAAA; assign x393_i.ps7_i.MAXIGP0AWID=awid; // SuppressWarnings VEditor all // wire [ 1:0] AWLOCK; // SuppressWarnings VEditor all // wire [ 3:0] AWCACHE; // SuppressWarnings VEditor all // wire [ 2:0] AWPROT; assign x393_i.ps7_i.MAXIGP0AWLEN= awlen; assign x393_i.ps7_i.MAXIGP0AWSIZE= awsize[1:0]; // awsize[2] is not used assign x393_i.ps7_i.MAXIGP0AWBURST= awburst; // SuppressWarnings VEditor all // wire [ 3:0] AWQOS; // Write data assign x393_i.ps7_i.MAXIGP0WDATA= wdata; assign x393_i.ps7_i.MAXIGP0WVALID= wvalid; assign wready= x393_i.ps7_i.MAXIGP0WREADY; assign x393_i.ps7_i.MAXIGP0WID= wid; assign x393_i.ps7_i.MAXIGP0WLAST= wlast; assign x393_i.ps7_i.MAXIGP0WSTRB= wstrb; // Write responce assign bvalid= x393_i.ps7_i.MAXIGP0BVALID; assign x393_i.ps7_i.MAXIGP0BREADY= bready; assign bid= x393_i.ps7_i.MAXIGP0BID; assign bresp= x393_i.ps7_i.MAXIGP0BRESP; // Top module under test x393 #( .MCONTR_WR_MASK (MCONTR_WR_MASK), .MCONTR_RD_MASK (MCONTR_RD_MASK), .MCONTR_CMD_WR_ADDR (MCONTR_CMD_WR_ADDR), .MCONTR_BUF0_RD_ADDR (MCONTR_BUF0_RD_ADDR), .MCONTR_BUF1_WR_ADDR (MCONTR_BUF1_WR_ADDR), .MCONTR_BUF2_RD_ADDR (MCONTR_BUF2_RD_ADDR), .MCONTR_BUF3_WR_ADDR (MCONTR_BUF3_WR_ADDR), .MCONTR_BUF4_RD_ADDR (MCONTR_BUF4_RD_ADDR), .DLY_LD (DLY_LD), .DLY_LD_MASK (DLY_LD_MASK), .MCONTR_PHY_0BIT_ADDR (MCONTR_PHY_0BIT_ADDR), .MCONTR_PHY_0BIT_ADDR_MASK (MCONTR_PHY_0BIT_ADDR_MASK), .MCONTR_PHY_0BIT_DLY_SET (MCONTR_PHY_0BIT_DLY_SET), .MCONTR_PHY_0BIT_CMDA_EN (MCONTR_PHY_0BIT_CMDA_EN), .MCONTR_PHY_0BIT_SDRST_ACT (MCONTR_PHY_0BIT_SDRST_ACT), .MCONTR_PHY_0BIT_CKE_EN (MCONTR_PHY_0BIT_CKE_EN), .MCONTR_PHY_0BIT_DCI_RST (MCONTR_PHY_0BIT_DCI_RST), .MCONTR_PHY_0BIT_DLY_RST (MCONTR_PHY_0BIT_DLY_RST), .MCONTR_TOP_0BIT_ADDR (MCONTR_TOP_0BIT_ADDR), .MCONTR_TOP_0BIT_ADDR_MASK (MCONTR_TOP_0BIT_ADDR_MASK), .MCONTR_TOP_0BIT_MCONTR_EN (MCONTR_TOP_0BIT_MCONTR_EN), .MCONTR_TOP_0BIT_REFRESH_EN (MCONTR_TOP_0BIT_REFRESH_EN), .MCONTR_PHY_16BIT_ADDR (MCONTR_PHY_16BIT_ADDR), .MCONTR_PHY_16BIT_ADDR_MASK (MCONTR_PHY_16BIT_ADDR_MASK), .MCONTR_PHY_16BIT_PATTERNS (MCONTR_PHY_16BIT_PATTERNS), .MCONTR_PHY_16BIT_PATTERNS_TRI (MCONTR_PHY_16BIT_PATTERNS_TRI), .MCONTR_PHY_16BIT_WBUF_DELAY (MCONTR_PHY_16BIT_WBUF_DELAY), .MCONTR_PHY_16BIT_EXTRA (MCONTR_PHY_16BIT_EXTRA), .MCONTR_PHY_STATUS_CNTRL (MCONTR_PHY_STATUS_CNTRL), .MCONTR_ARBIT_ADDR (MCONTR_ARBIT_ADDR), .MCONTR_ARBIT_ADDR_MASK (MCONTR_ARBIT_ADDR_MASK), .MCONTR_TOP_16BIT_ADDR (MCONTR_TOP_16BIT_ADDR), .MCONTR_TOP_16BIT_ADDR_MASK (MCONTR_TOP_16BIT_ADDR_MASK), .MCONTR_TOP_16BIT_CHN_EN (MCONTR_TOP_16BIT_CHN_EN), .MCONTR_TOP_16BIT_REFRESH_PERIOD (MCONTR_TOP_16BIT_REFRESH_PERIOD), .MCONTR_TOP_16BIT_REFRESH_ADDRESS (MCONTR_TOP_16BIT_REFRESH_ADDRESS), .MCONTR_TOP_16BIT_STATUS_CNTRL (MCONTR_TOP_16BIT_STATUS_CNTRL), .MCONTR_PHY_STATUS_REG_ADDR (MCONTR_PHY_STATUS_REG_ADDR), .MCONTR_TOP_STATUS_REG_ADDR (MCONTR_TOP_STATUS_REG_ADDR), .CHNBUF_READ_LATENCY (CHNBUF_READ_LATENCY), .DFLT_DQS_PATTERN (DFLT_DQS_PATTERN), .DFLT_DQM_PATTERN (DFLT_DQM_PATTERN), .DFLT_DQ_TRI_ON_PATTERN (DFLT_DQ_TRI_ON_PATTERN), .DFLT_DQ_TRI_OFF_PATTERN (DFLT_DQ_TRI_OFF_PATTERN), .DFLT_DQS_TRI_ON_PATTERN (DFLT_DQS_TRI_ON_PATTERN), .DFLT_DQS_TRI_OFF_PATTERN (DFLT_DQS_TRI_OFF_PATTERN), .DFLT_WBUF_DELAY (DFLT_WBUF_DELAY), .DFLT_INV_CLK_DIV (DFLT_INV_CLK_DIV), .DFLT_CHN_EN (DFLT_CHN_EN), .DFLT_REFRESH_ADDR (DFLT_REFRESH_ADDR), .DFLT_REFRESH_PERIOD (DFLT_REFRESH_PERIOD), .ADDRESS_NUMBER (ADDRESS_NUMBER), .COLADDR_NUMBER (COLADDR_NUMBER), .PHASE_WIDTH (PHASE_WIDTH), .SLEW_DQ (SLEW_DQ), .SLEW_DQS (SLEW_DQS), .SLEW_CMDA (SLEW_CMDA), .SLEW_CLK (SLEW_CLK), .IBUF_LOW_PWR (IBUF_LOW_PWR), .REFCLK_FREQUENCY (REFCLK_FREQUENCY), .HIGH_PERFORMANCE_MODE (HIGH_PERFORMANCE_MODE), .CLKIN_PERIOD (CLKIN_PERIOD), .CLKFBOUT_MULT (CLKFBOUT_MULT), .CLKFBOUT_MULT_REF (CLKFBOUT_MULT_REF), .CLKFBOUT_DIV_REF (CLKFBOUT_DIV_REF), .DIVCLK_DIVIDE (DIVCLK_DIVIDE), .CLKFBOUT_PHASE (CLKFBOUT_PHASE), .SDCLK_PHASE (SDCLK_PHASE), .CLK_PHASE (CLK_PHASE), .CLK_DIV_PHASE (CLK_DIV_PHASE), .MCLK_PHASE (MCLK_PHASE), .REF_JITTER1 (REF_JITTER1), .SS_EN (SS_EN), .SS_MODE (SS_MODE), .SS_MOD_PERIOD (SS_MOD_PERIOD), .CMD_PAUSE_BITS (CMD_PAUSE_BITS), .CMD_DONE_BIT (CMD_DONE_BIT), .STATUS_ADDR (STATUS_ADDR), .STATUS_ADDR_MASK (STATUS_ADDR_MASK), .STATUS_DEPTH (STATUS_DEPTH), .AXI_WR_ADDR_BITS (AXI_WR_ADDR_BITS), .AXI_RD_ADDR_BITS (AXI_RD_ADDR_BITS), .CONTROL_ADDR (CONTROL_ADDR), .CONTROL_ADDR_MASK (CONTROL_ADDR_MASK), .NUM_CYCLES_LOW_BIT (NUM_CYCLES_LOW_BIT), .NUM_CYCLES_00 (NUM_CYCLES_00), .NUM_CYCLES_01 (NUM_CYCLES_01), .NUM_CYCLES_02 (NUM_CYCLES_02), .NUM_CYCLES_03 (NUM_CYCLES_03), .NUM_CYCLES_04 (NUM_CYCLES_04), .NUM_CYCLES_05 (NUM_CYCLES_05), .NUM_CYCLES_06 (NUM_CYCLES_06), .NUM_CYCLES_07 (NUM_CYCLES_07), .NUM_CYCLES_08 (NUM_CYCLES_08), .NUM_CYCLES_09 (NUM_CYCLES_09), .NUM_CYCLES_10 (NUM_CYCLES_10), .NUM_CYCLES_11 (NUM_CYCLES_11), .NUM_CYCLES_12 (NUM_CYCLES_12), .NUM_CYCLES_13 (NUM_CYCLES_13), .NUM_CYCLES_14 (NUM_CYCLES_14), .NUM_CYCLES_15 (NUM_CYCLES_15), .MCNTRL_PS_ADDR (MCNTRL_PS_ADDR), .MCNTRL_PS_MASK (MCNTRL_PS_MASK), .MCNTRL_PS_STATUS_REG_ADDR (MCNTRL_PS_STATUS_REG_ADDR), .MCNTRL_PS_EN_RST (MCNTRL_PS_EN_RST), .MCNTRL_PS_CMD (MCNTRL_PS_CMD), .MCNTRL_PS_STATUS_CNTRL (MCNTRL_PS_STATUS_CNTRL), .NUM_XFER_BITS (NUM_XFER_BITS), .FRAME_WIDTH_BITS (FRAME_WIDTH_BITS), .FRAME_HEIGHT_BITS (FRAME_HEIGHT_BITS), .MCNTRL_SCANLINE_CHN2_ADDR (MCNTRL_SCANLINE_CHN2_ADDR), .MCNTRL_SCANLINE_CHN3_ADDR (MCNTRL_SCANLINE_CHN3_ADDR), .MCNTRL_SCANLINE_MASK (MCNTRL_SCANLINE_MASK), .MCNTRL_SCANLINE_MODE (MCNTRL_SCANLINE_MODE), .MCNTRL_SCANLINE_STATUS_CNTRL (MCNTRL_SCANLINE_STATUS_CNTRL), .MCNTRL_SCANLINE_STARTADDR (MCNTRL_SCANLINE_STARTADDR), .MCNTRL_SCANLINE_FRAME_FULL_WIDTH (MCNTRL_SCANLINE_FRAME_FULL_WIDTH), .MCNTRL_SCANLINE_WINDOW_WH (MCNTRL_SCANLINE_WINDOW_WH), .MCNTRL_SCANLINE_WINDOW_X0Y0 (MCNTRL_SCANLINE_WINDOW_X0Y0), .MCNTRL_SCANLINE_WINDOW_STARTXY (MCNTRL_SCANLINE_WINDOW_STARTXY), .MCNTRL_SCANLINE_STATUS_REG_CHN2_ADDR (MCNTRL_SCANLINE_STATUS_REG_CHN2_ADDR), .MCNTRL_SCANLINE_STATUS_REG_CHN3_ADDR (MCNTRL_SCANLINE_STATUS_REG_CHN3_ADDR), .MCNTRL_SCANLINE_PENDING_CNTR_BITS (MCNTRL_SCANLINE_PENDING_CNTR_BITS), .MAX_TILE_WIDTH (MAX_TILE_WIDTH), .MAX_TILE_HEIGHT (MAX_TILE_HEIGHT), .MCNTRL_TILED_CHN4_ADDR (MCNTRL_TILED_CHN4_ADDR), .MCNTRL_TILED_MASK (MCNTRL_TILED_MASK), .MCNTRL_TILED_MODE (MCNTRL_TILED_MODE), .MCNTRL_TILED_STATUS_CNTRL (MCNTRL_TILED_STATUS_CNTRL), .MCNTRL_TILED_STARTADDR (MCNTRL_TILED_STARTADDR), .MCNTRL_TILED_FRAME_FULL_WIDTH (MCNTRL_TILED_FRAME_FULL_WIDTH), .MCNTRL_TILED_WINDOW_WH (MCNTRL_TILED_WINDOW_WH), .MCNTRL_TILED_WINDOW_X0Y0 (MCNTRL_TILED_WINDOW_X0Y0), .MCNTRL_TILED_WINDOW_STARTXY (MCNTRL_TILED_WINDOW_STARTXY), .MCNTRL_TILED_TILE_WH (MCNTRL_TILED_TILE_WH), .MCNTRL_TILED_STATUS_REG_CHN4_ADDR (MCNTRL_TILED_STATUS_REG_CHN4_ADDR), .MCNTRL_TILED_PENDING_CNTR_BITS (MCNTRL_TILED_PENDING_CNTR_BITS), .MCNTRL_TILED_FRAME_PAGE_RESET (MCNTRL_TILED_FRAME_PAGE_RESET), .BUFFER_DEPTH32 (BUFFER_DEPTH32), .MCNTRL_TEST01_ADDR (MCNTRL_TEST01_ADDR), .MCNTRL_TEST01_MASK (MCNTRL_TEST01_MASK), .MCNTRL_TEST01_CHN2_MODE (MCNTRL_TEST01_CHN2_MODE), .MCNTRL_TEST01_CHN2_STATUS_CNTRL (MCNTRL_TEST01_CHN2_STATUS_CNTRL), .MCNTRL_TEST01_CHN3_MODE (MCNTRL_TEST01_CHN3_MODE), .MCNTRL_TEST01_CHN3_STATUS_CNTRL (MCNTRL_TEST01_CHN3_STATUS_CNTRL), .MCNTRL_TEST01_CHN4_MODE (MCNTRL_TEST01_CHN4_MODE), .MCNTRL_TEST01_CHN4_STATUS_CNTRL (MCNTRL_TEST01_CHN4_STATUS_CNTRL), .MCNTRL_TEST01_STATUS_REG_CHN2_ADDR (MCNTRL_TEST01_STATUS_REG_CHN2_ADDR), .MCNTRL_TEST01_STATUS_REG_CHN3_ADDR (MCNTRL_TEST01_STATUS_REG_CHN3_ADDR), .MCNTRL_TEST01_STATUS_REG_CHN4_ADDR (MCNTRL_TEST01_STATUS_REG_CHN4_ADDR) ) x393_i ( .SDRST (SDRST), // DDR3 reset (active low) .SDCLK (SDCLK), // output .SDNCLK (SDNCLK), // outputread_and_wait(BASEADDR_STATUS) .SDA (SDA[14:0]), // output[14:0] .SDBA (SDBA[2:0]), // output[2:0] .SDWE (SDWE), // output .SDRAS (SDRAS), // output .SDCAS (SDCAS), // output .SDCKE (SDCKE), // output .SDODT (SDODT), // output .SDD (SDD[15:0]), // inout[15:0] .SDDML (SDDML), // inout .DQSL (DQSL), // inout .NDQSL (NDQSL), // inout .SDDMU (SDDMU), // inout .DQSU (DQSU), // inout .NDQSU (NDQSU), // inout .DUMMY_TO_KEEP(DUMMY_TO_KEEP) // to keep PS7 signals from "optimization" // ,.MEMCLK (MEMCLK) ); // Micron DDR3 memory model /* Instance of Micron DDR3 memory model */ ddr3 #( .TCK_MIN (2500), .TJIT_PER (100), .TJIT_CC (200), .TERR_2PER (147), .TERR_3PER (175), .TERR_4PER (194), .TERR_5PER (209), .TERR_6PER (222), .TERR_7PER (232), .TERR_8PER (241), .TERR_9PER (249), .TERR_10PER (257), .TERR_11PER (263), .TERR_12PER (269), .TDS (125), .TDH (150), .TDQSQ (200), .TDQSS (0.25), .TDSS (0.20), .TDSH (0.20), .TDQSCK (400), .TQSH (0.38), .TQSL (0.38), .TDIPW (600), .TIPW (900), .TIS (350), .TIH (275), .TRAS_MIN (37500), .TRC (52500), .TRCD (15000), .TRP (15000), .TXP (7500), .TCKE (7500), .TAON (400), .TWLS (325), .TWLH (325), .TWLO (9000), .TAA_MIN (15000), .CL_TIME (15000), .TDQSCK_DLLDIS (400), .TRRD (10000), .TFAW (40000), .CL_MIN (5), .CL_MAX (14), .AL_MIN (0), .AL_MAX (2), .WR_MIN (5), .WR_MAX (16), .BL_MIN (4), .BL_MAX (8), .CWL_MIN (5), .CWL_MAX (10), .TCK_MAX (3300), .TCH_AVG_MIN (0.47), .TCL_AVG_MIN (0.47), .TCH_AVG_MAX (0.53), .TCL_AVG_MAX (0.53), .TCH_ABS_MIN (0.43), .TCL_ABS_MIN (0.43), .TCKE_TCK (3), .TAA_MAX (20000), .TQH (0.38), .TRPRE (0.90), .TRPST (0.30), .TDQSH (0.45), .TDQSL (0.45), .TWPRE (0.90), .TWPST (0.30), .TCCD (4), .TCCD_DG (2), .TRAS_MAX (60e9), .TWR (15000), .TMRD (4), .TMOD (15000), .TMOD_TCK (12), .TRRD_TCK (4), .TRRD_DG (3000), .TRRD_DG_TCK (2), .TRTP (7500), .TRTP_TCK (4), .TWTR (7500), .TWTR_DG (3750), .TWTR_TCK (4), .TWTR_DG_TCK (2), .TDLLK (512), .TRFC_MIN (260000), .TRFC_MAX (70200000), .TXP_TCK (3), .TXPDLL (24000), .TXPDLL_TCK (10), .TACTPDEN (1), .TPRPDEN (1), .TREFPDEN (1), .TCPDED (1), .TPD_MAX (70200000), .TXPR (270000), .TXPR_TCK (5), .TXS (270000), .TXS_TCK (5), .TXSDLL (512), .TISXR (350), .TCKSRE (10000), .TCKSRE_TCK (5), .TCKSRX (10000), .TCKSRX_TCK (5), .TCKESR_TCK (4), .TAOF (0.7), .TAONPD (8500), .TAOFPD (8500), .ODTH4 (4), .ODTH8 (6), .TADC (0.7), .TWLMRD (40), .TWLDQSEN (25), .TWLOE (2000), .DM_BITS (2), .ADDR_BITS (15), .ROW_BITS (15), .COL_BITS (10), .DQ_BITS (16), .DQS_BITS (2), .BA_BITS (3), .MEM_BITS (10), .AP (10), .BC (12), .BL_BITS (3), .BO_BITS (2), .CS_BITS (1), .RANKS (1), .RZQ (240), .PRE_DEF_PAT (8'hAA), .STOP_ON_ERROR (1), .DEBUG (1), .BUS_DELAY (0), .RANDOM_OUT_DELAY (0), .RANDOM_SEED (31913), .RDQSEN_PRE (2), .RDQSEN_PST (1), .RDQS_PRE (2), .RDQS_PST (1), .RDQEN_PRE (0), .RDQEN_PST (0), .WDQS_PRE (2), .WDQS_PST (1), .check_strict_mrbits (1), .check_strict_timing (1), .feature_pasr (1), .feature_truebl4 (0), .feature_odt_hi (0), .PERTCKAVG (512), .LOAD_MODE (4'b0000), .REFRESH (4'b0001), .PRECHARGE (4'b0010), .ACTIVATE (4'b0011), .WRITE (4'b0100), .READ (4'b0101), .ZQ (4'b0110), .NOP (4'b0111), .PWR_DOWN (4'b1000), .SELF_REF (4'b1001), .RFF_BITS (128), .RFF_CHUNK (32), .SAME_BANK (2'd0), .DIFF_BANK (2'd1), .DIFF_GROUP (2'd2), .SIMUL_500US (5), .SIMUL_200US (2) ) ddr3_i ( .rst_n (SDRST), // input .ck (SDCLK), // input .ck_n (SDNCLK), // input .cke (SDCKE), // input .cs_n (1'b0), // input .ras_n (SDRAS), // input .cas_n (SDCAS), // input .we_n (SDWE), // input .dm_tdqs ({SDDMU,SDDML}), // inout[1:0] .ba (SDBA[2:0]), // input[2:0] .addr (SDA[14:0]), // input[14:0] .dq (SDD[15:0]), // inout[15:0] .dqs ({DQSU,DQSL}), // inout[1:0] .dqs_n ({NDQSU,NDQSL}), // inout[1:0] .tdqs_n (), // output[1:0] .odt (SDODT) // input ); // Simulation modules simul_axi_master_rdaddr #( .ID_WIDTH(12), .ADDRESS_WIDTH(32), .LATENCY(AXI_RDADDR_LATENCY), // minimal delay between inout and output ( 0 - next cycle) .DEPTH(8), // maximal number of commands in FIFO .DATA_DELAY(3.5), .VALID_DELAY(4.0) ) simul_axi_master_rdaddr_i ( .clk(CLK), .reset(RST), .arid_in(ARID_IN[11:0]), .araddr_in(ARADDR_IN[31:0]), .arlen_in(ARLEN_IN[3:0]), .arsize_in(ARSIZE_IN[2:0]), .arburst_in(ARBURST_IN[1:0]), .arcache_in(4'b0), .arprot_in(3'b0), // .arprot_in(2'b0), .arid(arid[11:0]), .araddr(araddr[31:0]), .arlen(arlen[3:0]), .arsize(arsize[2:0]), .arburst(arburst[1:0]), .arcache(arcache[3:0]), .arprot(arprot[2:0]), .arvalid(arvalid), .arready(arready), .set_cmd(AR_SET_CMD), // latch all other input data at posedge of clock .ready(AR_READY) // command/data FIFO can accept command ); simul_axi_master_wraddr #( .ID_WIDTH(12), .ADDRESS_WIDTH(32), .LATENCY(AXI_WRADDR_LATENCY), // minimal delay between inout and output ( 0 - next cycle) .DEPTH(8), // maximal number of commands in FIFO .DATA_DELAY(3.5), .VALID_DELAY(4.0) ) simul_axi_master_wraddr_i ( .clk(CLK), .reset(RST), .awid_in(AWID_IN[11:0]), .awaddr_in(AWADDR_IN[31:0]), .awlen_in(AWLEN_IN[3:0]), .awsize_in(AWSIZE_IN[2:0]), .awburst_in(AWBURST_IN[1:0]), .awcache_in(4'b0), .awprot_in(3'b0), //.awprot_in(2'b0), .awid(awid[11:0]), .awaddr(awaddr[31:0]), .awlen(awlen[3:0]), .awsize(awsize[2:0]), .awburst(awburst[1:0]), .awcache(awcache[3:0]), .awprot(awprot[2:0]), .awvalid(awvalid), .awready(awready), .set_cmd(AW_SET_CMD), // latch all other input data at posedge of clock .ready(AW_READY) // command/data FIFO can accept command ); simul_axi_master_wdata #( .ID_WIDTH(12), .DATA_WIDTH(32), .WSTB_WIDTH(4), .LATENCY(AXI_WRDATA_LATENCY), // minimal delay between inout and output ( 0 - next cycle) .DEPTH(8), // maximal number of commands in FIFO .DATA_DELAY(3.2), .VALID_DELAY(3.6) ) simul_axi_master_wdata_i ( .clk(CLK), .reset(RST), .wid_in(WID_IN[11:0]), .wdata_in(WDATA_IN[31:0]), .wstrb_in(WSTRB_IN[3:0]), .wlast_in(WLAST_IN), .wid(wid[11:0]), .wdata(wdata[31:0]), .wstrb(wstrb[3:0]), .wlast(wlast), .wvalid(wvalid), .wready(wready), .set_cmd(W_SET_CMD), // latch all other input data at posedge of clock .ready(W_READY) // command/data FIFO can accept command ); simul_axi_slow_ready simul_axi_slow_ready_read_i( .clk(CLK), .reset(RST), //input reset, .delay(RD_LAG), //input [3:0] delay, .valid(rvalid), // input valid, .ready(rready) //output ready ); simul_axi_slow_ready simul_axi_slow_ready_write_resp_i( .clk(CLK), .reset(RST), //input reset, .delay(B_LAG), //input [3:0] delay, .valid(bvalid), // input ADDRESS_NUMBER+2:0 valid, .ready(bready) //output ready ); simul_axi_read simul_axi_read_i( .clk(CLK), .reset(RST), .last(rlast), .data_stb(rstb), .raddr(ARADDR_IN[11:2]), .rlen(ARLEN_IN), .rcmd(AR_SET_CMD), .addr_out(SIMUL_AXI_ADDR_W), .burst(), // burst in progress - just debug .err_out()); // data last does not match predicted or FIFO over/under run - just debug // wire [ 3:0] SIMUL_ADD_ADDR; always @ (posedge CLK) begin if (RST) SIMUL_AXI_FULL <=0; else if (rstb) SIMUL_AXI_FULL <=1; if (rstb) begin SIMUL_AXI_ADDR <= SIMUL_AXI_ADDR_W; SIMUL_AXI_READ <= rdata; `ifdef DEBUG_RD_DATA $display (" Read data (addr:data): 0x%x:0x%x @%t",SIMUL_AXI_ADDR_W,rdata,$time); `endif end end // SuppressWarnings VEditor all - these variables are just for viewing, not used anywhere else reg DEBUG1, DEBUG2, DEBUG3; reg [11:0] GLOBAL_WRITE_ID=0; reg [11:0] GLOBAL_READ_ID=0; reg [7:0] target_phase=0; // to compare/wait for phase shifter ready task set_up; begin // set dq /dqs tristate on/off patterns axi_set_tristate_patterns; // set patterns for DM (always 0) and DQS - always the same (may try different for write lev.) axi_set_dqs_dqm_patterns; // prepare all sequences set_all_sequences; // prepare write buffer write_block_buf; // fill block memory // set all delays //#axi_set_delays - from tables, per-pin axi_set_same_delays(DLY_DQ_IDELAY,DLY_DQ_ODELAY,DLY_DQS_IDELAY,DLY_DQS_ODELAY,DLY_DM_ODELAY,DLY_CMDA_ODELAY); // set clock phase relative to DDR clk axi_set_phase(DLY_PHASE); end endtask task set_all_sequences; begin $display("SET MRS @ %t",$time); set_mrs(1); $display("SET REFRESH @ %t",$time); set_refresh( 50, // input [ 9:0] t_rfc; // =50 for tCK=2.5ns 16); //input [ 7:0] t_refi; // 48/97 for normal, 8 - for simulation $display("SET WRITE LEVELING @ %t",$time); set_write_lev(16); // write leveling, 16 times (full buffer - 128) $display("SET READ PATTERN @ %t",$time); set_read_pattern(8); // 8x2*64 bits, 32x32 bits to read $display("SET WRITE BLOCK @ %t",$time); set_write_block( 3'h5, // bank 15'h1234, // row address 10'h100 // column address ); $display("SET READ BLOCK @ %t",$time); set_read_block( 3'h5, // bank 15'h1234, // row address 10'h100 // column address ); end endtask task enable_cmda; input en; begin write_contol_register(MCONTR_PHY_0BIT_ADDR + MCONTR_PHY_0BIT_CMDA_EN + en, 0); end endtask task enable_cke; input en; begin write_contol_register(MCONTR_PHY_0BIT_ADDR + MCONTR_PHY_0BIT_CKE_EN + en, 0); end endtask task activate_sdrst; input en; begin write_contol_register(MCONTR_PHY_0BIT_ADDR + MCONTR_PHY_0BIT_SDRST_ACT + en, 0); end endtask task enable_refresh; input en; begin write_contol_register(MCONTR_PHY_0BIT_ADDR + MCONTR_TOP_0BIT_REFRESH_EN + en, 0); end endtask task write_block_buf; integer i, j; begin $display("**** write_block_buf @%t", $time); for (i = 0; i < 256; i = i + 16) begin axi_write_addr_data( i, // id MCONTR_BUF1_WR_ADDR + (i << 2), // addr i | (((i + 7) & 'hff) << 8) | (((i + 23) & 'hff) << 16) | (((i + 31) & 'hff) << 24), 4'hf, // len 1, // burst type - increment 1'b1, // data_en 4'hf, // wstrb 1'b0 // last ); $display("+Write block data (addr:data): 0x%x:0x%x @%t", i, i | (((i + 7) & 'hff) << 8) | (((i + 23) & 'hff) << 16) | (((i + 31) & 'hff) << 24), $time); for (j = 1; j < 16; j = j + 1) begin axi_write_data( i, // id (i + j) | ((((i + j) + 7) & 'hff) << 8) | ((((i + j) + 23) & 'hff) << 16) | ((((i + j) + 31) & 'hff) << 24), 4'hf, // wstrb (1 == 15) ? 1 : 0 // last ); $display(" Write block data (addr:data): 0x%x:0x%x @%t", (i + j), (i + j) | ((((i + j) + 7) & 'hff) << 8) | ((((i + j) + 23) & 'hff) << 16) | ((((i + j) + 31) & 'hff) << 24), $time); end end end endtask // read memory task read_block_buf; input integer num_read; // number of words to read (will be rounded up to multiple of 16) integer i; //,j; begin $display("**** read_block_buf @%t", $time); axi_set_rd_lag(0); for (i = 0; i < num_read; i = i + 16) begin wait(arready); // $display ("read_block_buf (0x%x) @%t",i,$time); axi_read_addr( i, // id MCONTR_BUF0_RD_ADDR + (i << 2), // addr 4'hf, // len 1 // burst type - increment ); end end endtask task set_read_block; input [ 2:0] ba; input [14:0] ra; input [ 9:0] ca; reg [29:0] cmd_addr; reg [31:0] data; integer i; begin cmd_addr <= MCONTR_CMD_WR_ADDR + READ_BLOCK_OFFSET; // activate // addr bank RCW ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD NOP, B_RST data <= func_encode_cmd( ra[14:0], ba[2:0], 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // see if pause is needed . See when buffer read should be started - maybe before WR command // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // first read // read // addr bank RCW ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD NOP, B_RST data <= func_encode_cmd( {5'b0,ca[9:0]}, ba[2:0], 2, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // nop // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 0, 0, ba[2:0], 0, 0, 1, 0, 0, 0, 1, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; //repeat remaining reads for (i=1;i<64;i=i+1) begin // read // addr bank RCW ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD NOP, B_RST data <= func_encode_cmd({5'b0,ca[9:0]}+(i<<3),ba[2:0],2, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; end // nop - all 3 below are the same? - just repeat? // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 0, 0, ba[2:0], 0, 0, 1, 0, 0, 0, 1, 1, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // nop // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 0, 0, ba[2:0], 0, 0, 1, 0, 0, 0, 1, 1, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // nop // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 0, 0, ba[2:0], 0, 0, 1, 0, 0, 0, 1, 1, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // tRTP = 4*tCK is already satisfied, no skip here // precharge, end of a page (B_RST) // addr bank RCW ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD NOP, B_RST data <= func_encode_cmd( ra[14:0], ba[2:0], 5, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // Turn off DCI, set DONE // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; end endtask task set_write_block; input[2:0]ba; input[14:0]ra; input[9:0]ca; reg[29:0] cmd_addr; reg[31:0] data; integer i; begin cmd_addr <= MCONTR_CMD_WR_ADDR + WRITE_BLOCK_OFFSET; // activate // addr bank RCW ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD NOP, B_RST data <= func_encode_cmd( ra[14:0], ba[2:0], 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // see if pause is needed . See when buffer read should be started - maybe before WR command // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); // tRCD @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // first write // write // addr bank RCW ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD NOP, B_RST data <= func_encode_cmd( {5'b0,ca[9:0]}, ba[2:0], 3, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0); // B_RD moved 1 cycle earlier @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // nop // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 0, 0, ba[2:0], 1, 0, 1, 1, 1, 0, 1, 0, 1, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; //repeat remaining writes for (i = 1; i < 64; i = i + 1) begin // write // add bank RCW ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD NOP, B_RST data <= func_encode_cmd( {5'b0,ca[9:0]}, ba[2:0], 3, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; end // nop // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 0, 0, ba[2:0], 1, 0, 0, 1, 1, 1, 0, 0, 1, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // nop // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 0, 0, ba[2:0], 1, 0, 0, 1, 1, 1, 0, 0, 0, 1); // removed B_RD 1 cycle earlier @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // nop // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 0, 0, ba[2:0], 1, 0, 0, 1, 1, 1, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // ODT off, it has latency // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 2, 0, ba[2:0], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // precharge, ODT off // addr bank RCW ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD NOP, B_RST data <= func_encode_cmd( ra[14:0], ba[2:0], 5, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 2, 0, ba[2:0], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // Finalize, set DONE // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; end endtask // Set MR3, read nrep*8 words, save to buffer (port0). No ACTIVATE/PRECHARGE are needed/allowed task set_read_pattern; input integer nrep; // input [ 2:0] ba; // input [14:0] ra; // input [ 9:0] ca; reg[29:0] cmd_addr; reg[31:0] data; reg[17:0] mr3_norm; reg[17:0] mr3_patt; integer i; begin cmd_addr <= MCONTR_CMD_WR_ADDR + READ_PATTERN_OFFSET; mr3_norm <= ddr3_mr3( 1'h0, // mpr; // MPR mode: 0 - normal, 1 - dataflow from MPR 2'h0); // [1:0] mpr_rf; // MPR read function: 2'b00: predefined pattern 0101... mr3_patt <= ddr3_mr3( 1'h1, // mpr; // MPR mode: 0 - normal, 1 - dataflow from MPR 2'h0); // [1:0] mpr_rf; // MPR read function: 2'b00: predefined pattern 0101... // Set pattern mode // addr bank RCW ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD NOP, B_RST data <= func_encode_cmd(mr3_patt[14:0], mr3_patt[17:15], 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); // tMOD @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // first read // read // addr bank RCW ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD NOP, B_RST data <= func_encode_cmd( 0, 0, 2, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // nop (combine with previous?) // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; //repeat remaining reads for (i = 1; i < nrep; i = i + 1) begin // addr bank RCW ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD NOP, B_RST data <= func_encode_cmd( 0, 0, 2, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; end // nop - all 3 below are the same? - just repeat? // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // nop // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // nop // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // nop, no write buffer - next page // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // Turn off read pattern mode // addr bank RCW ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD NOP, B_RST data <= func_encode_cmd(mr3_norm[14:0], mr3_norm[17:15], 7, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // tMOD (keep DCI enabled) // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 5, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // Turn off DCI // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // Finalize (set DONE) data <= func_encode_skip( 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; end endtask task set_write_lev; input[CMD_PAUSE_BITS-1:0]nrep; reg[17:0] mr1_norm; reg[17:0] mr1_wlev; reg[29:0] cmd_addr; reg[31:0] data; reg[CMD_PAUSE_BITS-1:0] dqs_low_rpt; reg[CMD_PAUSE_BITS-1:0] nrep_minus_1; begin dqs_low_rpt <= 8; nrep_minus_1 <= nrep - 1; mr1_norm <= ddr3_mr1( 1'h0, // qoff; // output enable: 0 - DQ, DQS operate in normal mode, 1 - DQ, DQS are disabled 1'h0, // tdqs; // termination data strobe (for x8 devices) 0 - disabled, 1 - enabled 3'h2, // [2:0] rtt; // on-die termination resistance: // 3'b010 - RZQ/2 (120 Ohm) 1'h0, // wlev; // write leveling 2'h0, // ods; // output drive strength: // 2'b00 - RZQ/6 - 40 Ohm 2'h0, // [1:0] al; // additive latency: 2'b00 - disabled (AL=0) 1'b0); // dll; // 0 - DLL enabled (normal), 1 - DLL disabled mr1_wlev <= ddr3_mr1( 1'h0, // qoff; // output enable: 0 - DQ, DQS operate in normal mode, 1 - DQ, DQS are disabled 1'h0, // tdqs; // termination data strobe (for x8 devices) 0 - disabled, 1 - enabled 3'h2, // [2:0] rtt; // on-die termination resistance: // 3'b010 - RZQ/2 (120 Ohm) 1'h1, // wlev; // write leveling 2'h0, // ods; // output drive strength: // 2'b00 - RZQ/6 - 40 Ohm 2'h0, // [1:0] al; // additive latency: 2'b00 - disabled (AL=0) 1'b0); // dll; // 0 - DLL enabled (normal), 1 - DLL disabled cmd_addr <= MCONTR_CMD_WR_ADDR + WRITELEV_OFFSET; // Enter write leveling mode @(posedge CLK) // addr bank RCW ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD NOP, B_RST data <= func_encode_cmd(mr1_wlev[14:0], mr1_wlev[17:15], 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); // tWLDQSEN=25tCK @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // enable DQS output, keep it low (15 more tCK for the total of 40 tCK // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip(dqs_low_rpt, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // Toggle DQS as needed for write leveling, write to buffer // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip(nrep_minus_1,0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // continue toggling (5 times), but disable writing to buffer (used same wbuf latency as for read) // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 4, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // Keep DCI (but not ODT) active ODT should be off befor MRS // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // exit write leveling mode, ODT off, DCI off // addr bank RCW ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD NOP, B_RST data <= func_encode_cmd(mr1_norm[14:0], mr1_norm[17:15], 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); // tMOD @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // Finalize. See if DONE can be combined with B_RST, if not - insert earlier // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1); // can DONE be combined with B_RST? @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; end endtask task set_refresh; input[9:0]t_rfc; // =50 for tCK=2.5ns input[7:0]t_refi; // 48/97 for normal, 8 - for simulation reg[29:0] cmd_addr; reg[31:0] data; begin cmd_addr <= MCONTR_CMD_WR_ADDR + REFRESH_OFFSET; @(posedge CLK) // addr bank RCW ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD NOP, B_RST data <= func_encode_cmd( 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // =50 tREFI=260 ns before next ACTIVATE or REFRESH, @2.5ns clock, @5ns cycle // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( t_rfc, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // Ready for normal operation // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // write_contol_register(DLY_SET,0); write_contol_register(MCONTR_PHY_16BIT_ADDR + MCONTR_TOP_16BIT_REFRESH_ADDRESS, REFRESH_OFFSET); write_contol_register(MCONTR_PHY_16BIT_ADDR + MCONTR_TOP_16BIT_REFRESH_PERIOD, {24'h0,t_refi}); // enable refresh - should it be done here? // write_contol_register(MCONTR_PHY_0BIT_ADDR + MCONTR_TOP_0BIT_REFRESH_EN + 1, 0); end endtask task set_mrs; // will also calibrate ZQ input reset_dll; reg[17:0] mr0; reg[17:0] mr1; reg[17:0] mr2; reg[17:0] mr3; reg[29:0] cmd_addr; reg[31:0] data; begin mr0 <= ddr3_mr0( 1'h0, // pd; // precharge power down 0 - dll off (slow exit), 1 - dll on (fast exit) 3'h2, // [2:0] wr; // write recovery (encode ceil(tWR/tCK)) // 3'b010: 6 reset_dll, // dll_rst; // 1 - dll reset (self clearing bit) 4'h4, // [3:0] cl; // CAS latency: // 0100: 6 (time 15ns) 1'h0, // bt; // read burst type: 0 sequential (nibble), 1 - interleave 2'h0); // [1:0] bl; // burst length: // 2'b00 - fixed BL8 mr1 <= ddr3_mr1( 1'h0, // qoff; // output enable: 0 - DQ, DQS operate in normal mode, 1 - DQ, DQS are disabled 1'h0, // tdqs; // termination data strobe (for x8 devices) 0 - disabled, 1 - enabled 3'h2, // [2:0] rtt; // on-die termination resistance: // 3'b010 - RZQ/2 (120 Ohm) 1'h0, // wlev; // write leveling 2'h0, // ods; // output drive strength: // 2'b00 - RZQ/6 - 40 Ohm 2'h0, // [1:0] al; // additive latency: 2'b00 - disabled (AL=0) 1'b0); // dll; // 0 - DLL enabled (normal), 1 - DLL disabled mr2 <= ddr3_mr2( 2'h0, // [1:0] rtt_wr; // Dynamic ODT : // 2'b00 - disabled, 2'b01 - RZQ/4 = 60 Ohm, 2'b10 - RZQ/2 = 120 Ohm 1'h0, // srt; // Self-refresh temperature 0 - normal (0-85C), 1 - extended (<=95C) 1'h0, // asr; // Auto self-refresh 0 - disabled (manual), 1 - enabled (auto) 3'h0); // [2:0] cwl; // CAS write latency:3'b000 5CK (tCK >= 2.5ns), 3'b001 6CK (1.875ns <= tCK < 2.5ns) mr3 <= ddr3_mr3( 1'h0, // mpr; // MPR mode: 0 - normal, 1 - dataflow from MPR 2'h0); // [1:0] mpr_rf; // MPR read function: 2'b00: predefined pattern 0101... cmd_addr <= MCONTR_CMD_WR_ADDR + INITIALIZE_OFFSET; @(posedge CLK) $display("mr0=0x%x", mr0); $display("mr1=0x%x", mr1); $display("mr2=0x%x", mr2); $display("mr3=0x%x", mr3); // addr bank RCW ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD NOP, B_RST data <= func_encode_cmd(mr2[14:0], mr2[17:15], 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // addr bank RCW ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD NOP, B_RST data <= func_encode_cmd(mr3[14:0], mr3[17:15], 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // addr bank RCW ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD NOP, B_RST data <= func_encode_cmd(mr1[14:0], mr1[17:15], 7, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0); // SEL==1 - just testing? @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // addr bank RCW ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD NOP, B_RST data <= func_encode_cmd(mr0[14:0], mr0[17:15], 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // encode ZQCL: // addr bank RCW ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD NOP, B_RST data <= func_encode_cmd(15'h400, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // 512 clock cycles after ZQCL // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 256, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; // sequence done bit, skip length is ignored // skip done bank ODT CKE SEL DQEN DQSEN DQSTGL DCI B_WR B_RD B_RST data <= func_encode_skip( 10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); @(posedge CLK) axi_write_single_w(cmd_addr, data); cmd_addr <= cmd_addr + 1; end endtask /* function [31:0] encode_seq_skip; input [CMD_PAUSE_BITS-1:0] skip; input done; input dci_en; input odt_en; begin encode_seq_skip={ {14-CMD_DONE_BIT{1'b0}}, done, skip[CMD_PAUSE_BITS-1:0], 3'b0, //phy_bank_in[2:0], 3'b0, // phy_rcw_in[2:0], // {ras,cas,we} odt_en, // phy_odt_in, 1'b0, // phy_cke_in, // may be optimized? 1'b0, // phy_sel_in, // first/second half-cycle, other will be nop (cke+odt applicable to both) 1'b0, // phy_dq_en_in, //phy_dq_tri_in, // tristate DQ lines (internal timing sequencer for 0->1 and 1->0) 1'b0, // phy_dqs_en_in, //phy_dqs_tri_in, // tristate DQS lines (internal timing sequencer for 0->1 and 1->0) 1'b0, //enable toggle DQS according to the pattern dci_en, // phy_dci_en_in, //phy_dci_in, // DCI disable, both DQ and DQS lines (internal logic and timing sequencer for 0->1 and 1->0) 1'b0, // phy_buf_wr, // connect to external buffer (but only if not paused) 1'b0, // phy_buf_rd, // connect to external buffer (but only if not paused) 1'b0, // add NOP after the current command, keep other data 1'b0 // Reserved for future use }; end endfunction */ function [ADDRESS_NUMBER+2:0] ddr3_mr0; input pd; // precharge power down 0 - dll off (slow exit), 1 - dll on (fast exit) input [2:0] wr; // write recovery: // 3'b000: 16 // 3'b001: 5 // 3'b010: 6 // 3'b011: 7 // 3'b100: 8 // 3'b101: 10 // 3'b110: 12 // 3'b111: 14 input dll_rst; // 1 - dll reset (self clearing bit) input [3:0] cl; // CAS latency (>=15ns): // 0000: reserved // 0010: 5 // 0100: 6 // 0110: 7 // 1000: 8 // 1010: 9 // 1100: 10 // 1110: 11 // 0001: 12 // 0011: 13 // 0101: 14 input bt; // read burst type: 0 sequential (nibble), 1 - interleaved input [1:0] bl; // burst length: // 2'b00 - fixed BL8 // 2'b01 - 4 or 8 on-the-fly by A12 // 2'b10 - fixed BL4 (chop) // 2'b11 - reserved begin ddr3_mr0 = { 3'b0, {ADDRESS_NUMBER-13{1'b0}}, pd, // MR0.12 wr, // MR0.11_9 dll_rst, // MR0.8 1'b0, // MR0.7 cl[3:1], // MR0.6_4 bt, // MR0.3 cl[0], // MR0.2 bl[1:0]}; // MR0.1_0 end endfunction function [ADDRESS_NUMBER+2:0] ddr3_mr1; input qoff; // output enable: 0 - DQ, DQS operate in normal mode, 1 - DQ, DQS are disabled input tdqs; // termination data strobe (for x8 devices) 0 - disabled, 1 - enabled input [2:0] rtt; // on-die termination resistance: // 3'b000 - disabled // 3'b001 - RZQ/4 (60 Ohm) // 3'b010 - RZQ/2 (120 Ohm) // 3'b011 - RZQ/6 (40 Ohm) // 3'b100 - RZQ/12(20 Ohm) // 3'b101 - RZQ/8 (30 Ohm) // 3'b11x - reserved input wlev; // write leveling input [1:0] ods; // output drive strength: // 2'b00 - RZQ/6 - 40 Ohm // 2'b01 - RZQ/7 - 34 Ohm // 2'b1x - reserved input [1:0] al; // additive latency: // 2'b00 - disabled (AL=0) // 2'b01 - AL=CL-1; // 2'b10 - AL=CL-2 // 2'b11 - reserved input dll; // 0 - DLL enabled (normal), 1 - DLL disabled begin ddr3_mr1 = { 3'h1, {ADDRESS_NUMBER-13{1'b0}}, qoff, // MR1.12 tdqs, // MR1.11 1'b0, // MR1.10 rtt[2], // MR1.9 1'b0, // MR1.8 wlev, // MR1.7 rtt[1], // MR1.6 ods[1], // MR1.5 al[1:0], // MR1.4_3 rtt[0], // MR1.2 ods[0], // MR1.1 dll}; // MR1.0 end endfunction function [ADDRESS_NUMBER+2:0] ddr3_mr2; input [1:0] rtt_wr; // Dynamic ODT : // 2'b00 - disabled // 2'b01 - RZQ/4 = 60 Ohm // 2'b10 - RZQ/2 = 120 Ohm // 2'b11 - reserved input srt; // Self-refresh temperature 0 - normal (0-85C), 1 - extended (<=95C) input asr; // Auto self-refresh 0 - disabled (manual), 1 - enabled (auto) input [2:0] cwl; // CAS write latency: // 3'b000 5CK ( tCK >= 2.5ns) // 3'b001 6CK (1.875ns <= tCK < 2.5ns) // 3'b010 7CK (1.5ns <= tCK < 1.875ns) // 3'b011 8CK (1.25ns <= tCK < 1.5ns) // 3'b100 9CK (1.071ns <= tCK < 1.25ns) // 3'b101 10CK (0.938ns <= tCK < 1.071ns) // 3'b11x reserved begin ddr3_mr2 = { 3'h2, {ADDRESS_NUMBER-11{1'b0}}, rtt_wr[1:0], // MR2.10_9 1'b0, // MR2.8 srt, // MR2.7 asr, // MR2.6 cwl[2:0], // MR2.5_3 3'b0}; // MR2.2_0 end endfunction function [ADDRESS_NUMBER+2:0] ddr3_mr3; input mpr; // MPR mode: 0 - normal, 1 - dataflow from MPR input [1:0] mpr_rf; // MPR read function: // 2'b00: predefined pattern 0101... // 2'b1x, 2'bx1 - reserved begin ddr3_mr3 = { 3'h3, {ADDRESS_NUMBER-3{1'b0}}, mpr, // MR3.2 mpr_rf[1:0]}; // MR3.1_0 end endfunction task axi_set_same_delays; input [7:0] dq_idelay; input [7:0] dq_odelay; input [7:0] dqs_idelay; input [7:0] dqs_odelay; input [7:0] dm_odelay; input [7:0] cmda_odelay; begin $display("SET DELAYS(0x%x,0x%x,0x%x,0x%x,0x%x,0x%x) @ %t", dq_idelay,dq_odelay,dqs_idelay,dqs_odelay,dm_odelay,cmda_odelay,$time); axi_set_dq_idelay(dq_idelay); axi_set_dq_odelay(dq_odelay); axi_set_dqs_idelay(dqs_idelay); axi_set_dqs_odelay(dqs_odelay); axi_set_dm_odelay(dm_odelay); axi_set_cmda_odelay(cmda_odelay); end endtask task axi_set_dq_idelay; input [7:0] delay; begin $display("SET DQ IDELAY=0x%x @ %t",delay,$time); axi_set_multiple_delays(LD_DLY_LANE0_IDELAY, 8, delay); axi_set_multiple_delays(LD_DLY_LANE1_IDELAY, 8, delay); write_contol_register(DLY_SET,0); // set all delays end endtask task axi_set_dq_odelay; input [7:0] delay; begin $display("SET DQ ODELAY=0x%x @ %t",delay,$time); axi_set_multiple_delays(LD_DLY_LANE0_ODELAY, 8, delay); axi_set_multiple_delays(LD_DLY_LANE1_ODELAY, 8, delay); write_contol_register(DLY_SET,0); // set all delays end endtask task axi_set_dqs_idelay; input [7:0] delay; begin $display("SET DQS IDELAY=0x%x @ %t",delay,$time); axi_set_multiple_delays(LD_DLY_LANE0_IDELAY + 8, 0, delay); axi_set_multiple_delays(LD_DLY_LANE1_IDELAY + 8, 0, delay); write_contol_register(DLY_SET,0); // set all delays end endtask task axi_set_dqs_odelay; input [7:0] delay; begin $display("SET DQS ODELAY=0x%x @ %t",delay,$time); axi_set_multiple_delays(LD_DLY_LANE0_ODELAY + 8, 0, delay); axi_set_multiple_delays(LD_DLY_LANE1_ODELAY + 8, 0, delay); write_contol_register(DLY_SET,0); // set all delays end endtask task axi_set_dm_odelay; input [7:0] delay; begin $display("SET DQM IDELAY=0x%x @ %t",delay,$time); axi_set_multiple_delays(LD_DLY_LANE0_ODELAY + 9, 0, delay); axi_set_multiple_delays(LD_DLY_LANE1_ODELAY + 9, 0, delay); write_contol_register(DLY_SET,0); // set all delays end endtask task axi_set_cmda_odelay; input [7:0] delay; begin $display("SET COMMAND and ADDRESS ODELAY=0x%x @ %t",delay,$time); axi_set_multiple_delays(LD_DLY_CMDA, 32, delay); write_contol_register(DLY_SET,0); // set all delays end endtask task axi_set_multiple_delays; input [29:0] reg_addr; input integer number; input [7:0] delay; integer i; begin for (i=0;i