/*******************************************************************************
* Module: mult_saxi_wr
* Date:2015-07-08
* Author: Andrey Filippov
* Description: send data from up to 4 sources to the system memory over S_AXI.
* Each source should have a 32-bit wide buffer running at the same clock (mclk).
* Buffer should contain at least burst size (4,8,16,32,64 bytes)
* Burst size parameter-configurable (per-port)
*
* Copyright (c) 2015 Elphel, Inc .
* mult_saxi_wr.v is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* mult_saxi_wr.v is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* Additional permission under GNU GPL version 3 section 7:
* If you modify this Program, or any covered work, by linking or combining it
* with independent modules provided by the FPGA vendor only (this permission
* does not extend to any 3-rd party modules, "soft cores" or macros) under
* different license terms solely for the purpose of generating binary "bitstream"
* files and/or simulating the code, the copyright holders of this Program give
* you the right to distribute the covered work without those independent modules
* as long as the source code for them is available from the FPGA vendor free of
* charge, and there is no dependence on any encrypted modules for simulating of
* the combined code. This permission applies to you if the distributed code
* contains all the components and scripts required to completely simulate it
* with at least one of the Free Software programs.
*******************************************************************************/
`timescale 1ns/1ps
module mult_saxi_wr #(
parameter MULT_SAXI_ADDR = 'h730, // ..'h737
parameter MULT_SAXI_CNTRL_ADDR = 'h738, // ..'h739
parameter MULT_SAXI_STATUS_REG = 'h34, //..'h37 uses 4 consecutive locations
parameter MULT_SAXI_HALF_BRAM = 1, // 0 - use full 36Kb BRAM for the buffer, 1 - use just half
parameter MULT_SAXI_BSLOG0 = 4, // number of bits to represent burst size (4 - b.s. = 16, 0 - b.s = 1)
parameter MULT_SAXI_BSLOG1 = 4,
parameter MULT_SAXI_BSLOG2 = 4,
parameter MULT_SAXI_BSLOG3 = 4,
parameter MULT_SAXI_MASK = 'h7f8, // 4 address/length pairs. In bytes, but lower bits are set to 0?
parameter MULT_SAXI_CNTRL_MASK = 'h7fe, // mode and status - 2 locations
parameter MULT_SAXI_AWCACHE = 4'h3, //..7 cache mode (4 bits, default 4'h3)
parameter MULT_SAXI_ADV_WR = 4, // number of clock cycles before end of write to genearte adv_wr_done
parameter MULT_SAXI_ADV_RD = 3 // number of clock cycles before end of write to genearte adv_wr_done
) (
// input rst, // global reset
input mclk, // system clock
input aclk, // global clock to run s_axi (@150MHz?)
input mrst, // @mclk sync reset
input arst, // @aclk sync reset
// command interface
input [7:0] cmd_ad, // byte-serial command address/data (up to 6 bytes: AL-AH-D0-D1-D2-D3
input cmd_stb, // strobe (with first byte) for the command a/d
output [7:0] status_ad, // status address/data - up to 5 bytes: A - {seq,status[1:0]} - status[2:9] - status[10:17] - status[18:25]
output status_rq, // input request to send status downstream
input status_start, // Acknowledge of the first status packet byte (address)
output en_chn0, // @mclk enable channel 0 input FIFO ( 0 - reset)
input has_burst0, // channel has at least 1 burst (should go down immediately after read_burst0 if no more data)
output read_burst0, // request to read a burst of data from channel 0
input [31:0] data_in_chn0, // data read from channel 0 (with some latency)
input pre_valid_chn0,// data valid (same latency)
output en_chn1, // @mclk enable channel 1 input FIFO ( 0 - reset)
input has_burst1, // channel has at least 1 burst (should go down immediately after read_burst0 if no more data)
output read_burst1, // request to read a burst of data from channel 0
input [31:0] data_in_chn1, // data read from channel 0 (with some latency)
input pre_valid_chn1,// data valid (same latency)
output en_chn2, // @mclk enable channel 2 input FIFO ( 0 - reset)
input has_burst2, // channel has at least 1 burst (should go down immediately after read_burst0 if no more data)
output read_burst2, // request to read a burst of data from channel 0
input [31:0] data_in_chn2, // data read from channel 0 (with some latency)
input pre_valid_chn2,// data valid (same latency)
output en_chn3, // @mclk enable channel 3 input FIFO ( 0 - reset)
input has_burst3, // channel has at least 1 burst (should go down immediately after read_burst0 if no more data)
output read_burst3, // request to read a burst of data from channel 0
input [31:0] data_in_chn3, // data read from channel 0 (with some latency)
input pre_valid_chn3,// data valid (same latency)
// S_AXI inerface w/o read channel
// write address
output [31:0] saxi_awaddr, // AXI PS Slave GP0 AWADDR[31:0], input
output saxi_awvalid, // AXI PS Slave GP0 AWVALID, input
input saxi_awready, // AXI PS Slave GP0 AWREADY, output
output [5:0] saxi_awid, // AXI PS Slave GP0 AWID[5:0], input
output [1:0] saxi_awlock, // AXI PS Slave GP0 AWLOCK[1:0], input
output [ 3:0] saxi_awcache, // AXI PS Slave GP0 AWCACHE[3:0], input
output [ 2:0] saxi_awprot, // AXI PS Slave GP0 AWPROT[2:0], input
output [ 3:0] saxi_awlen, // AXI PS Slave GP0 AWLEN[3:0], input
output [ 1:0] saxi_awsize, // AXI PS Slave GP0 AWSIZE[1:0], input
output [ 1:0] saxi_awburst, // AXI PS Slave GP0 AWBURST[1:0], input
output [ 3:0] saxi_awqos, // AXI PS Slave GP0 AWQOS[3:0], input
// write data
output [31:0] saxi_wdata, // AXI PS Slave GP0 WDATA[31:0], input
output saxi_wvalid, // AXI PS Slave GP0 WVALID, input
input saxi_wready, // AXI PS Slave GP0 WREADY, output
output [ 5:0] saxi_wid, // AXI PS Slave GP0 WID[5:0], input
output saxi_wlast, // AXI PS Slave GP0 WLAST, input
output [ 3:0] saxi_wstrb, // AXI PS Slave GP0 WSTRB[3:0], input
// write response Not used - may add guaranteed address (as for the histogram)?
input saxi_bvalid, // AXI PS Slave GP0 BVALID, output // @SuppressThisWarning VEditor unused
output saxi_bready, // AXI PS Slave GP0 BREADY, input
input [ 5:0] saxi_bid, // AXI PS Slave GP0 BID[5:0], output //TODO: Update range !!! // @SuppressThisWarning VEditor unused
input [ 1:0] saxi_bresp // AXI PS Slave GP0 BRESP[1:0], output // @SuppressThisWarning VEditor unused
);
// parameter MULT_SAXI_BSLOG0 = 4, // number of bits to represent burst size (4 - b.s. = 16, 0 - b.s = 1)
// localparam BURSTS_CAP0= (MULT_SAXI_HALF_BRAM ? 'h400 : 'h800 ) / MULT_SAXI_BURST0 / 4;
localparam BRAM_A_WDTH = MULT_SAXI_HALF_BRAM?9:10;
localparam CHN_A_WDTH = BRAM_A_WDTH - 2;
wire [3:0] en_chn_mclk;
wire [3:0] run_chn_mclk;
reg [7:0] mode_reg;
wire en_mclk= |en_chn_mclk; // at least one channel enabled
reg [3:0] en_chn_aclk;
wire en_aclk= |en_chn_aclk; // at least one channel enabled
wire [3:0] rq_wr;
wire [3:0] grant_wr;
wire [4 * CHN_A_WDTH - 1:0] wa_chn;
wire [3:0] adv_wr_done; // outputs grant_wr for short bursts, or several clocks before end of wr
wire [3:0] rq_out_chn;
wire [4 * CHN_A_WDTH - 1:0] ra_chn;
wire [3:0] pre_re;
reg en_we_arb; // @mclk should be reset by we_grant
wire we_grant; // @mclk
wire [1:0] we_cur_chn; // @mclk
wire [127:0] data_in;
wire [3:0] pre_valid;
reg [3:0] valid;
reg [BRAM_A_WDTH-1:0] buf_wa; // multiplexed buffer write address
reg [31:0] buf_wd; // multiplexed buffer write data
reg buf_we; // multiplexed buffer write enable
wire [3:0] grant_rd;
wire grant_rd_any;
wire en_out_arb;
wire [1:0] re_cur_chn;
reg [BRAM_A_WDTH-1:0] buf_ra; // multiplexed buffer write address
wire [31:0] inter_buf_data; // multiplexed buffer write data
reg [2:0] buf_re; // multiplexed buffer write enable
wire fifo_half_full; // output FIFO saxi_wdata is half full (stop writing to)
wire fifo_nempty; // output FIFO saxi_wdata is not empty (can read)
wire [3:0] wdata_busy_chn; // output data busy (ends early to start next arbitration)
wire [3:0] first_re; // reading first word in a burst from the buffer
wire [3:0] last_re; // reading first word in a burst from the buffer
wire [3:0] cmd_a;
wire [31:0] cmd_data;
wire we_ctrl;
wire cmd_we_sa_len;
assign saxi_bready=1'b1;
assign {en_chn3, en_chn2, en_chn1, en_chn0} = en_chn_mclk;
assign {read_burst3, read_burst2, read_burst1, read_burst0} = grant_wr; // single clock pulse
assign data_in = {data_in_chn3, data_in_chn2, data_in_chn1, data_in_chn0};
assign pre_valid = {pre_valid_chn3, pre_valid_chn2, pre_valid_chn1, pre_valid_chn0};
assign en_chn_mclk = mode_reg[3:0];
assign run_chn_mclk = mode_reg[7:4];
always @ (posedge mclk) begin
if (mrst) mode_reg <= 0;
else if (we_ctrl && !cmd_a[0]) mode_reg <= cmd_data[7:0];
end
// Arbiter requests on copying from one of teh input channels to the internal buffer
mult_saxi_wr_chn #(
.MULT_SAXI_HALF_BRAM (MULT_SAXI_HALF_BRAM),
.MULT_SAXI_BSLOG (MULT_SAXI_BSLOG0),
.MULT_SAXI_ADV_WR (MULT_SAXI_ADV_WR),
.MULT_SAXI_ADV_RD (MULT_SAXI_ADV_RD)
) mult_saxi_wr_sub0_i (
.mclk (mclk), // input
.aclk (aclk), // input
.en (en_chn_mclk[0]), // input
.has_burst (has_burst0), // input
.valid (valid[0]), // input
.rq_wr (rq_wr[0]), // output
.grant_wr (grant_wr[0]), // input
.wa (wa_chn[0 * CHN_A_WDTH +: CHN_A_WDTH]), // output[7:0]
.adv_wr_done (adv_wr_done[0]), // output
.rq_out (rq_out_chn[0]), // output reg
.grant_out (grant_rd[0]), // input
.fifo_half_full(fifo_half_full), // input
.ra (ra_chn[0* CHN_A_WDTH +: CHN_A_WDTH]), // output[7:0]
.pre_re (pre_re[0]), // output
.first_re (first_re[0]), // output reg // 1 clock later than pre_re
.last_re (last_re[0]), // output reg // 1 clock later than pre_re
.wdata_busy (wdata_busy_chn[0]) // output reg
);
mult_saxi_wr_chn #(
.MULT_SAXI_HALF_BRAM (MULT_SAXI_HALF_BRAM),
.MULT_SAXI_BSLOG (MULT_SAXI_BSLOG1),
.MULT_SAXI_ADV_WR (MULT_SAXI_ADV_WR),
.MULT_SAXI_ADV_RD (MULT_SAXI_ADV_RD)
) mult_saxi_wr_sub1_i (
.mclk (mclk), // input
.aclk (aclk), // input
.en (en_chn_mclk[1]), // input
.has_burst (has_burst1), // input
.valid (valid[1]), // input
.rq_wr (rq_wr[1]), // output
.grant_wr (grant_wr[1]), // input
.wa (wa_chn[1 * CHN_A_WDTH +: CHN_A_WDTH]), // output[7:0]
.adv_wr_done (adv_wr_done[1]), // output
.rq_out (rq_out_chn[1]), // output reg
.grant_out (grant_rd[1]), // input
.fifo_half_full(fifo_half_full), // input
.ra (ra_chn[1* CHN_A_WDTH +: CHN_A_WDTH]), // output[7:0]
.pre_re (pre_re[1]), // output
.first_re (first_re[1]), // output reg // 1 clock later than pre_re
.last_re (last_re[1]), // output reg // 1 clock later than pre_re
.wdata_busy (wdata_busy_chn[1]) // output reg
);
mult_saxi_wr_chn #(
.MULT_SAXI_HALF_BRAM (MULT_SAXI_HALF_BRAM),
.MULT_SAXI_BSLOG (MULT_SAXI_BSLOG2),
.MULT_SAXI_ADV_WR (MULT_SAXI_ADV_WR),
.MULT_SAXI_ADV_RD (MULT_SAXI_ADV_RD)
) mult_saxi_wr_sub2_i (
.mclk (mclk), // input
.aclk (aclk), // input
.en (en_chn_mclk[2]), // input
.has_burst (has_burst2), // input
.valid (valid[2]), // input
.rq_wr (rq_wr[2]), // output
.grant_wr (grant_wr[2]), // input
.wa (wa_chn[2 * CHN_A_WDTH +: CHN_A_WDTH]), // output[7:0]
.adv_wr_done (adv_wr_done[2]), // output
.rq_out (rq_out_chn[2]), // output reg
.grant_out (grant_rd[2]), // input
.fifo_half_full(fifo_half_full), // input
.ra (ra_chn[2* CHN_A_WDTH +: CHN_A_WDTH]), // output[7:0]
.pre_re (pre_re[2]), // output
.first_re (first_re[2]), // output reg // 1 clock later than pre_re
.last_re (last_re[2]), // output reg // 1 clock later than pre_re
.wdata_busy (wdata_busy_chn[2]) // output reg
);
mult_saxi_wr_chn #(
.MULT_SAXI_HALF_BRAM (MULT_SAXI_HALF_BRAM),
.MULT_SAXI_BSLOG (MULT_SAXI_BSLOG3),
.MULT_SAXI_ADV_WR (MULT_SAXI_ADV_WR),
.MULT_SAXI_ADV_RD (MULT_SAXI_ADV_RD)
) mult_saxi_wr_sub3_i (
.mclk (mclk), // input
.aclk (aclk), // input
.en (en_chn_mclk[3]), // input
.has_burst (has_burst3), // input
.valid (valid[3]), // input
.rq_wr (rq_wr[3]), // output
.grant_wr (grant_wr[3]), // input
.wa (wa_chn[3 * CHN_A_WDTH +: CHN_A_WDTH]), // output[7:0]
.adv_wr_done (adv_wr_done[3]), // output
.rq_out (rq_out_chn[3]), // output reg
.grant_out (grant_rd[3]), // input
.fifo_half_full(fifo_half_full), // input
.ra (ra_chn[3* CHN_A_WDTH +: CHN_A_WDTH]), // output[7:0]
.pre_re (pre_re[3]), // output
.first_re (first_re[3]), // output reg // 1 clock later than pre_re
.last_re (last_re[3]), // output reg // 1 clock later than pre_re
.wdata_busy (wdata_busy_chn[3]) // output reg
);
round_robin #(
.FIXED_PRIORITY (0), // 0 - round-robin, 1 - fixed channel priority (0 - highest)
.BITS (2) // number of bits to encode channel number (1 << BITS) - number of inputs
) round_robin_mclk_i (
.clk (mclk), // input
.srst (!en_mclk), // input sync. reset - needed to reset current channel output
.rq (rq_wr & run_chn_mclk), // input[3:0]
.en (en_we_arb), // input enable to grant highest priority request (should be reset by grant out)
.grant (we_grant), // output stays on until reset by !en
.chn (we_cur_chn), // output[1:0]
.grant_chn (grant_wr) // output[3:0] 1-hot grant output per-channel, single-clock pulse
);
// multiplex channel data to a common buffer
wire pre_pre_buf_we;
reg pre_buf_we;
reg [1:0] chn_wr;
assign pre_pre_buf_we = pre_valid[we_cur_chn];
always @ (posedge mclk) begin
// Use advanced 'valid' signal (from the input channel external buffers) to copy we_cur_chn
// to chn_wr - that allows to start arbitration (that will result in modification of the we_cur_chn)
// early, before write operation to the buffer (using channel for multiplexing and address MSB)
// is finished.
valid <= pre_valid;
pre_buf_we <= pre_pre_buf_we;
buf_we <= pre_buf_we; // valid[we_cur_chn];
if (pre_pre_buf_we && !pre_buf_we) chn_wr <= we_cur_chn; // to re-start arbitration early
// multiplex address and data
buf_wa <= {chn_wr, wa_chn[chn_wr * CHN_A_WDTH +: CHN_A_WDTH]};
buf_wd <= data_in[chn_wr* 32 +: 32];
// early re-enable arbitration (en_we_arb)
if (!en_mclk || adv_wr_done[chn_wr]) en_we_arb <= 1;
else if (we_grant) en_we_arb <= 0;
// else if
end
// Buffer output to S_AXI (will need a smaller FIFO
reg [1:0] chn_rd;
reg [1:0] chn_rd_data; // channel valid with read data
reg pre_first_rd_valid; // first inter_buf_data in a burst will be valid next cycle
reg [1:0] is_last_rd; // [1] accompanies last inter_buf_data in a burst (to generate wlast)
wire [1:0] chn_fifo_out; // channel number out from fifo (for wid)
// wire is_last_fifo_out; // last data word out from fifo (for wlast)
always @ (posedge aclk) begin
en_chn_aclk <=en_chn_mclk;
chn_rd <= re_cur_chn; // delay by 1 clock (to increase overlap)
buf_ra <= {chn_rd, ra_chn[chn_rd* CHN_A_WDTH +: CHN_A_WDTH]};
buf_re <= {buf_re[1:0], pre_re[chn_rd]};
pre_first_rd_valid <= first_re[chn_rd];
is_last_rd <= {is_last_rd[0], last_re[chn_rd]};
if (pre_first_rd_valid) chn_rd_data <= chn_rd; // extend to later time to use as wid with overlapping requests
// in parallel - read channel parameters (address, length, pointer)
end
round_robin #(
.FIXED_PRIORITY (0), // 0 - round-robin, 1 - fixed channel priority (0 - highest)
.BITS (2) // number of bits to encode channel number (1 << BITS) - number of inputs
) round_robin_aclk_i (
.clk (aclk), // input
.srst (!en_aclk), // input sync. reset - needed to reset current channel output
.rq (rq_out_chn), // input[3:0]
.en (en_out_arb), // input enable to grant highest priority request (should be reset by grant out)
.grant (grant_rd_any), // output stays on until reset by !en
.chn (re_cur_chn), // output[1:0]
.grant_chn (grant_rd) // output[3:0] 1-hot grant output per-channel, single-clock pulse
);
// Process address, length and current pointers (all in 32-bit words). Pointers are updated once per burst (parameter defined per each channel)
wire axi_ptr_busy; //
wire [29:0] axi_addr; //
wire [ 3:0] axi_len;
assign saxi_awaddr = {axi_addr,2'b0};
assign saxi_awlen = axi_len;
assign saxi_awlock= 2'h0; // AXI PS Slave GP0 AWLOCK[1:0], input
assign saxi_awcache= MULT_SAXI_AWCACHE; // awcache_mode; // 4'h3; // AXI PS Slave GP0 AWCACHE[3:0], input
assign saxi_awprot= 3'h0; // AXI PS Slave GP0 AWPROT[2:0], input
assign saxi_awsize= 2'h2; // 4 bytes; AXI PS Slave GP0 AWSIZE[1:0], input
assign saxi_awburst= 2'h1; // Increment address bursts AXI PS Slave GP0 AWBURST[1:0], input
assign saxi_awqos= 4'h0; // AXI PS Slave GP0 AWQOS[3:0], input
wire [29:0] pntr_wd; // @aclk, re-clock and write to status
wire [1:0] pntr_wa;
wire pntr_we;
mult_saxi_wr_pointers #(
.MULT_SAXI_BSLOG0 (MULT_SAXI_BSLOG0),
.MULT_SAXI_BSLOG1 (MULT_SAXI_BSLOG1),
.MULT_SAXI_BSLOG2 (MULT_SAXI_BSLOG2),
.MULT_SAXI_BSLOG3 (MULT_SAXI_BSLOG3)
) mult_saxi_wr_pointers_i (
.mclk (mclk), // input
.aclk (aclk), // input
.chn_en_mclk (en_chn_mclk), // input[3:0]
.sa_len_di (cmd_data[29:0]), // input[29:0]
.sa_len_wa (cmd_a[2:0]), // input[2:0]
.sa_len_we (cmd_we_sa_len), // input
.chn (re_cur_chn), // input[1:0]
.start (grant_rd_any), // input make sure 1 cycle
.busy (axi_ptr_busy), // output OR this busy with write data channel busy for en_out_arb
.axi_addr (axi_addr), // output[29:0] reg valid 2 cycles after start of grant_rd_any
.axi_len (axi_len), // output[3:0] reg
.pntr_wd (pntr_wd), // output[29:0]
.pntr_wa (pntr_wa), // output[1:0]
.pntr_we (pntr_we) // output
);
// interface axi_aw channel
reg awvalid; //
reg [2:0] aw_seq;
// wire aw_busy; // use to control en_out_arb = !(aw_busy || );
reg [1:0] chn_out;
always @ (posedge aclk) begin
if (!en_aclk) aw_seq <= 0;
else aw_seq <= {aw_seq[1:0], grant_rd_any};
if (!en_aclk) awvalid <= 0;
else if (aw_seq[0]) awvalid <= 1;
else if (saxi_awready) awvalid <= 0;
if (grant_rd_any) chn_out <= re_cur_chn;
end
// assign aw_busy = axi_ptr_busy | awvalid;
assign saxi_awvalid = awvalid;
assign saxi_awid = {4'b0, chn_out};
assign en_out_arb = !(axi_ptr_busy || awvalid || (|wdata_busy_chn));
wire fifo_re;
assign fifo_re= saxi_wvalid && saxi_wready;
// s_axi write channel
// Small extra FIFO to tolerate ram_var_w_var_r latency
// assign fifo_re= saxi_wvalid && saxi_wready;
assign saxi_wid={4'b0, chn_fifo_out};
assign saxi_wvalid = en_aclk && fifo_nempty;
assign saxi_wstrb = 4'hf; // All bytes
always @ (posedge aclk) begin
end
fifo_same_clock #(
.DATA_WIDTH(35),
.DATA_DEPTH(4)
) fifo_same_clock_i (
.rst (1'b0), // rst), // input
.clk (aclk), // input
.sync_rst (!en_aclk || arst), // input
.we (buf_re[2]), // input
.re (fifo_re), // input
.data_in ({chn_rd_data,is_last_rd[1],inter_buf_data}), // input[31:0]
.data_out ({chn_fifo_out,saxi_wlast, saxi_wdata}), // output[31:0]
.nempty (fifo_nempty), // output
.half_full (fifo_half_full) // output reg
);
generate
if (MULT_SAXI_HALF_BRAM)
ram18_var_w_var_r #(
.REGISTERS(1),
.LOG2WIDTH_WR(5),
.LOG2WIDTH_RD(5),
.DUMMY(0)
) ram_var_w_var_r_i (
.rclk (aclk), // input
.raddr (buf_ra[8:0]), // input[9:0]
.ren (buf_re[0]), // input
.regen (buf_re[1]), // input
.data_out (inter_buf_data), // output[31:0]
.wclk (mclk), // input
.waddr (buf_wa[8:0]), // input[9:0]
.we (buf_we), // input
.web (4'hf), // input[7:0]
.data_in (buf_wd) // input[31:0]
);
else
ram_var_w_var_r #(
.REGISTERS(1),
.LOG2WIDTH_WR(5),
.LOG2WIDTH_RD(5),
.DUMMY(0)
) ram_var_w_var_r_i (
.rclk (aclk), // input
.raddr ({buf_ra[BRAM_A_WDTH-1],buf_ra[8:0]}), // input[9:0]
.ren (buf_re[0]), // input
.regen (buf_re[1]), // input
.data_out (inter_buf_data), // output[31:0]
.wclk (mclk), // input
.waddr ({buf_wa[BRAM_A_WDTH-1],buf_wa[8:0]}), // input[9:0]
.we (buf_we), // input
.web (8'hff), // input[7:0]
.data_in (buf_wd) // input[31:0]
);
endgenerate
cmd_deser #(
.ADDR (MULT_SAXI_ADDR),
.ADDR_MASK (MULT_SAXI_MASK),
.NUM_CYCLES (6),
.ADDR_WIDTH (4),
.DATA_WIDTH (32),
.ADDR1 (MULT_SAXI_CNTRL_ADDR),
.ADDR_MASK1 (MULT_SAXI_CNTRL_MASK),
.ADDR2 (0),
.ADDR_MASK2 (0)
) cmd_deser_sens_i2c_i (
.rst (1'b0), //rst), // input
.clk (mclk), // input
.srst (mrst), // input
.ad (cmd_ad), // input[7:0]
.stb (cmd_stb), // input
.addr (cmd_a), // output[3:0]
.data (cmd_data), // output[31:0]
.we ({cmd_we_sa_len,we_ctrl}) // output
);
// now - converting all to parallel (TODO: use RAM for multi-word status data)
reg [29:0] status_pntr0;
reg [29:0] status_pntr1;
reg [29:0] status_pntr2;
reg [29:0] status_pntr3;
wire pntr_we_mclk;
wire [128:0] status_data;
reg status_tgl;
assign status_data = {2'b0, status_pntr3, 2'b0, status_pntr2, 2'b0, status_pntr1, 2'b0, status_pntr0, status_tgl};
always @ (posedge mclk) begin
if (!en_mclk) status_tgl <= 0;
else if (pntr_we_mclk) status_tgl <= ~status_tgl;
if (pntr_we_mclk && (pntr_wa == 2'h0)) status_pntr0 <= pntr_wd;
if (pntr_we_mclk && (pntr_wa == 2'h1)) status_pntr1 <= pntr_wd;
if (pntr_we_mclk && (pntr_wa == 2'h2)) status_pntr2 <= pntr_wd;
if (pntr_we_mclk && (pntr_wa == 2'h3)) status_pntr3 <= pntr_wd;
end
pulse_cross_clock status_wr_i (.rst(arst), .src_clk(aclk), .dst_clk(mclk), .in_pulse(pntr_we), .out_pulse(pntr_we_mclk),.busy());
status_generate #(
.STATUS_REG_ADDR (MULT_SAXI_STATUS_REG+4), // not used
.PAYLOAD_BITS (0),
.REGISTER_STATUS (1),
.EXTRA_WORDS (4),
.EXTRA_REG_ADDR (MULT_SAXI_STATUS_REG)
) status_generate_i (
.rst (1'b0), //rst), // input
.clk (mclk), // input
.srst (mrst), // input
.we (we_ctrl && cmd_a[0]), // input
.wd (cmd_data[7:0]), // input[7:0]
.status (status_data), // input[128:0]
.ad (status_ad), // output[7:0]
.rq (status_rq), // output
.start (status_start) // input
);
endmodule