cmprs_afi_mux.v 22.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*******************************************************************************
 * Module: cmprs_afi_mux
 * Date:2015-06-26  
 * Author: andrey     
 * Description: Writes comressor data from up to 4 channels to system memory over AXI_HP
 *
 * Copyright (c) 2015 <set up in Preferences-Verilog/VHDL Editor-Templates> .
 * cmprs_afi_mux.v is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 *  cmprs_afi_mux.v is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/> .
 *******************************************************************************/
`timescale 1ns/1ps

module  cmprs_afi_mux#(
24
    parameter CMPRS_AFIMUX_ADDR=                'h140, //TODO: assign valid address
25 26 27 28 29 30 31
    parameter CMPRS_AFIMUX_MASK=                'h3f0,
    parameter CMPRS_AFIMUX_EN=                  'h0, // enables (gl;obal and per-channel)
    parameter CMPRS_AFIMUX_RST=                 'h1, // per-channel resets
    parameter CMPRS_AFIMUX_MODE=                'h2, // per-channel select - which register to return as status
    parameter CMPRS_AFIMUX_STATUS_CNTRL=        'h4, // .. 'h7
    parameter CMPRS_AFIMUX_SA_LEN=              'h8, // .. 'hf

32
    parameter CMPRS_AFIMUX_STATUS_REG_ADDR=     'h20,  //Uses 4 locations TODO: assign valid address
33 34 35
    parameter CMPRS_AFIMUX_WIDTH =              26, // maximal for status: currently only works with 26)
    parameter CMPRS_AFIMUX_CYCBITS =            3,
    parameter AFI_MUX_BUF_LATENCY =             2  // buffers read latency from fifo_ren* to fifo_rdata* valid : 2 if no register layers are used
36 37 38 39 40 41 42 43 44 45 46 47
)(
    input                         rst,
    input                         mclk, // for command/status
    input                         hclk,   // global clock to run axi_hp @ 150MHz, shared by all compressor channels
    // programming interface
    input                   [7:0] cmd_ad,      // byte-serial command address/data (up to 6 bytes: AL-AH-D0-D1-D2-D3 
    input                         cmd_stb,     // strobe (with first byte) for the command a/d
    output                  [7:0] status_ad,   // status address/data - up to 5 bytes: A - {seq,status[1:0]} - status[2:9] - status[10:17] - status[18:25]
    output                        status_rq,   // input request to send status downstream
    input                         status_start, // Acknowledge of the first status packet byte (address)
    
    // compressor channel 0
48
    output                        fifo_rst0,      // reset FIFO (set read address to write, reset count)
49 50 51 52 53 54 55 56
    output                        fifo_ren0,
    input                  [63:0] fifo_rdata0,
//    input                         fifo_eof0,        // single rclk pulse signalling EOF
    output                        eof_written0,   // confirm frame written ofer AFI to the system memory (single rclk pulse)
    input                         fifo_flush0,    // EOF, need to output all what is in FIFO (Stays active until enough data chunks are read)
    input                  [7:0]  fifo_count0,     // number of 32-byte chunks in FIFO

    // compressor channel 1
57
    output                        fifo_rst1,      // reset FIFO (set read address to write, reset count)
58 59 60 61 62 63 64 65
    output                        fifo_ren1,
    input                  [63:0] fifo_rdata1,
//    input                         fifo_eof1,        // single rclk pulse signalling EOF
    output                        eof_written1,   // confirm frame written ofer AFI to the system memory (single rclk pulse)
    input                         fifo_flush1,    // EOF, need to output all what is in FIFO (Stays active until enough data chunks are read)
    input                  [7:0]  fifo_count1,     // number of 32-byte chunks in FIFO

    // compressor channel 2
66
    output                        fifo_rst2,      // reset FIFO (set read address to write, reset count)
67 68 69 70 71 72 73 74
    output                        fifo_ren2,
    input                  [63:0] fifo_rdata2,
//    input                         fifo_eof2,        // single rclk pulse signalling EOF
    output                        eof_written2,   // confirm frame written ofer AFI to the system memory (single rclk pulse)
    input                         fifo_flush2,    // EOF, need to output all what is in FIFO (Stays active until enough data chunks are read)
    input                  [7:0]  fifo_count2,     // number of 32-byte chunks in FIFO

    // compressor channel 3
75
    output                        fifo_rst3,      // reset FIFO (set read address to write, reset count)
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    output                        fifo_ren3,
    input                  [63:0] fifo_rdata3,
//    input                         fifo_eof3,        // single rclk pulse signalling EOF
    output                        eof_written3,   // confirm frame written ofer AFI to the system memory (single rclk pulse)
    input                         fifo_flush3,    // EOF, need to output all what is in FIFO (Stays active until enough data chunks are read)
    input                  [7:0]  fifo_count3,     // number of 32-byte chunks in FIFO
    
    // axi_hp signals write channel
    // write address
    output                 [31:0] afi_awaddr,
    output                        afi_awvalid,
    input                         afi_awready, // @SuppressThisWarning VEditor unused - used FIF0 level
    output                 [ 5:0] afi_awid,
    output                 [ 1:0] afi_awlock,
    output                 [ 3:0] afi_awcache,
    output                 [ 2:0] afi_awprot,
    output                 [ 3:0] afi_awlen,
    output                 [ 2:0] afi_awsize,
    output                 [ 1:0] afi_awburst,
    output                 [ 3:0] afi_awqos,
    // write data
    output                 [63:0] afi_wdata,
    output                        afi_wvalid,
    input                         afi_wready,  // @SuppressThisWarning VEditor unused - used FIF0 level
    output                 [ 5:0] afi_wid,
    output                        afi_wlast,
    output                 [ 7:0] afi_wstrb,
    // write response
    input                         afi_bvalid,
    output                        afi_bready,
    input                  [ 5:0] afi_bid,
    input                  [ 1:0] afi_bresp,    // @SuppressThisWarning VEditor unused
    // PL extra (non-AXI) signals
    input                  [ 7:0] afi_wcount,
    input                  [ 5:0] afi_wacount,
    output                        afi_wrissuecap1en
);
    reg         en;      // enable mux
114
    reg         en_d;    // or use it to reset all channels?
115
    reg   [3:0] en_chn;  // per-channel enable 
116 117 118
    
    wire [31:0] cmd_data;
    wire [ 3:0] cmd_a;
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    wire        cmd_we;
    wire        cmd_we_status_w;    
    wire        cmd_we_mode_w;    

    wire        cmd_we_sa_len_w;
    wire        cmd_we_en_w;    
    wire        cmd_we_rst_w; 

    reg [26:0] sa_len_d;
    reg  [2:0] sa_len_wa;
    reg  [3:0] rst_mclk;
    reg  [9:0] en_mclk;

    // hclk domain    
//    reg [26:0] sa_len_d;
//    reg  [2:0] sa_len_wa;
    wire       sa_len_we;
    wire       en_we;
    wire       en_rst;
    
    
       
141
    
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
//    reg   [2:0] cur_chn;          // 'b0xx - none, 'b1** - ** - channel number (should match fifo_ren*)
    reg   [1:0] cur_chn;           // 'b0xx - none, 'b1** - ** - channel number (should match fifo_ren*)
    reg   [7:0] left_to_eof[0:3];  // number of chunks left to end of frame
    reg   [3:0] fifo_flush_d;      // fifo_flush* delayed by 1 clk (to detect rising edge
    reg   [3:0] eof_stb;           // single-cycle pulse after fifo_flush is asserted
//    reg   [1:0] w64_cnt;           // count 64-bit words in a chunk
    reg   [8:0] counts_corr0[0:3]; // registers to hold corrected (decremented currently processed ones if any) fifo count values, MSB - needs flush
    reg   [8:0] counts_corr1[0:1]; // first arbitration level winning values
    reg   [8:0] counts_corr2;      // second arbitration level winning values
    
    reg   [1:0] winner1;           // 2 first level arbitration winners
    reg   [1:0] winner2;           // 2-bit second level arbitration winner
    
//    reg   [1:0] cur_chn;          // Can it be the same as cur_chn?
    wire  [7:0] fifo_count0_m1 = fifo_count0 - 1;
    wire  [7:0] fifo_count1_m1 = fifo_count1 - 1;
    wire  [7:0] fifo_count2_m1 = fifo_count2 - 1;
    wire  [7:0] fifo_count3_m1 = fifo_count3 - 1;
    // See if we need to bother - any channel needs flushing or has >= 4 of 32-byte chunks to transfer in a single AXI 16-burst 64 bit wide (latency = 4)
    wire        need_to_bother = |counts_corr2[8:2];
    reg         ready_to_start; // TBD: either idle or soon will finish the previous burst (include AFI FIFO level here too?)
    wire  [3:0] last_chunk_w;
164
    reg   [3:0] busy; // TODO: adjust number of bits. During continuous run busy is deasseted for 1 clock cycle
165 166 167 168 169 170
    wire        done_burst_w; // de-asset busy
    wire        pre_busy_w;
    reg         last_burst_in_frame;
//    reg   [1:0] wlen32; // 2 high bits of burst len (LSB are always 2'b11)
    
    reg   [3:0] wleft; // number of 64-bit words left to be sent - also used as awlen (valid @ awvalid)
171 172
    reg   [2:0] chunk_inc;              // how much to increment chunk pointer (1..4)

173
    reg [ 3:0] reset_pointers;         // per-channel - after chunk_start_hclk or chunk_len_hclk were written or  explicit fifo_rst*
174
    
175 176 177 178 179
    wire        ptr_resetting;          // pointers are being reset in cmprs_afi_mux_ptr module
    
    
    wire [26:0] chunk_addr;
    reg   [1:0] awvalid;
180 181 182 183 184 185
    reg         wvalid;
    reg         wlast;
    reg  [63:0] wdata;     // registered data from one of the 4 buffers
    wire        wdata_en;  // register enable for wdata
    wire  [1:0] wdata_sel; // source select for wdata
    reg   [3:0] fifo_ren;
186 187 188 189 190 191
    
    wire [26:0] chunk_ptr_rd;
    wire [ 3:0] chunk_ptr_ra;
    
    
    
192 193 194 195 196 197 198 199 200 201

    assign cmd_we_status_w = cmd_we && ((cmd_a & 'hc) ==       CMPRS_AFIMUX_STATUS_CNTRL);    
    assign cmd_we_mode_w =   cmd_we && (cmd_a ==               CMPRS_AFIMUX_MODE);    

    assign cmd_we_sa_len_w = cmd_we && ((cmd_a & 'h8) ==       CMPRS_AFIMUX_SA_LEN);
    assign cmd_we_en_w =     cmd_we && (cmd_a ==               CMPRS_AFIMUX_EN);    
    assign cmd_we_rst_w =    cmd_we && (cmd_a ==               CMPRS_AFIMUX_RST);    
    
    
    
202 203 204 205 206 207 208
    // use last_chunk_w to apply a special id to waddr and wdata and watch for it during readout
    // compose ID of channel number, frame bumber LSBs and last/not last chunk
    assign last_chunk_w[3:0] = {(left_to_eof[3]==1)?1'b1:1'b0,
                                (left_to_eof[2]==1)?1'b1:1'b0,
                                (left_to_eof[1]==1)?1'b1:1'b0,
                                (left_to_eof[0]==1)?1'b1:1'b0};
    
209 210 211 212
    assign pre_busy_w = !busy[0] && ready_to_start && need_to_bother && !ptr_resetting;
    assign done_burst_w = busy[0] && !(|wleft[3:1]);  // when wleft[3:0] == 0, busy is 0
    assign {fifo_rst3, fifo_rst2, fifo_rst1, fifo_rst0} = reset_pointers;
    assign {fifo_ren3, fifo_ren2, fifo_ren1, fifo_ren0} = fifo_ren;
213 214
    
    assign afi_awaddr =  {chunk_addr,5'b0};
215 216 217
    assign afi_awid =    {1'b0,wleft[3:2],last_burst_in_frame,cur_chn}; 
    assign afi_awvalid = awvalid[1];
    assign afi_awlen = {wleft[3:2],2'b11};
218 219 220 221 222 223 224 225 226 227 228 229 230
    assign afi_wdata = wdata;
    assign afi_bready = 1'b1; // always ready
    
// other fixed-value AFI signals
    assign afi_awlock =        2'h0;
    assign afi_awcache =       4'h3;
    assign afi_awprot =        3'h0;
    assign afi_awsize =        3'h3;
    assign afi_awburst =       2'h1;
    assign afi_awqos =         4'h0;
    assign afi_wstrb =         8'hff;
    assign afi_wrissuecap1en = 1'b0;
    
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    always @ (posedge mclk) begin
        if (cmd_we_sa_len_w) begin
            sa_len_d <= cmd_data[26:0];
            sa_len_wa <= cmd_a[2:0];
        end
        if (cmd_we_en_w)  en_mclk <=  cmd_data[9:0];
        if (cmd_we_rst_w) rst_mclk <= cmd_data[3:0];
    end

    always @ (posedge hclk) begin
        reset_pointers <= (en && !en_d)? 4'hf : (en_rst ? rst_mclk : 4'h0);
        if (en_we && en_mclk[1]) en_chn[0] <= en_mclk[0];
        if (en_we && en_mclk[3]) en_chn[1] <= en_mclk[2];
        if (en_we && en_mclk[5]) en_chn[2] <= en_mclk[4];
        if (en_we && en_mclk[7]) en_chn[3] <= en_mclk[6];
        if (en_we && en_mclk[9]) en <=        en_mclk[8];
    end

249 250
    
    always @ (posedge hclk) begin
251 252
        en_d <= en;
    
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
        ready_to_start <= en && // ready to strta a burst
                          !afi_wacount[5] && !(&afi_wacount[4:1]) &&  // >=2 free 
                          !afi_wcount[7] &&  !(&afi_wcount[6:3]);     // >=8 free (4 would be enough too)
    
        fifo_flush_d <= {fifo_flush3,fifo_flush2,fifo_flush1,fifo_flush0};
        eof_stb <= {fifo_flush3 & ~fifo_flush_d[3],
                    fifo_flush2 & ~fifo_flush_d[2],
                    fifo_flush1 & ~fifo_flush_d[1],
                    fifo_flush0 & ~fifo_flush_d[0]};
                    
        // TODO: change &w64_cnt[1:0] so left_to_eof[*] will be updated earlier and valid at pre_busy_w       
        // Done, updating at the first (not last) word of 4
        if (eof_stb[0])                      left_to_eof[0] <= fifo_count0 - (fifo_ren0 & (&wleft[1:0]));
        else if (fifo_ren0 & (&wleft[1:0]))  left_to_eof[0] <= left_to_eof[0] - 1;
    
        if (eof_stb[1])                      left_to_eof[1] <= fifo_count1 - (fifo_ren1 & (&wleft[1:0]));
        else if (fifo_ren1 & (&wleft[1:0]))  left_to_eof[1] <= left_to_eof[1] - 1;
    
        if (eof_stb[2])                      left_to_eof[2] <= fifo_count2 - (fifo_ren2 & (&wleft[1:0]));
        else if (fifo_ren2 & (&wleft[1:0]))  left_to_eof[2] <= left_to_eof[2] - 1;
    
        if (eof_stb[3])                      left_to_eof[3] <= fifo_count3 - (fifo_ren3 & (&wleft[1:0]));
        else if (fifo_ren3 & (&wleft[1:0]))  left_to_eof[3] <= left_to_eof[3] - 1;
    
        // Calculate corrected values decrementing currently served channel (if any) values by 1 (latency 1 clk)
        
        if      ((fifo_count0 == 0) || !en_chn[0]) counts_corr0[0] <= 0;
        else if (fifo_ren[0])                      counts_corr0[0] <= (fifo_count0_m1 == 0)? 0 : {fifo_flush0,fifo_count0_m1};
        else                                       counts_corr0[0] <= {fifo_flush0,fifo_count0};

        if      ((fifo_count1 == 0) || !en_chn[1]) counts_corr0[1] <= 0;
        else if (fifo_ren[1])                      counts_corr0[1] <= (fifo_count1_m1 == 0)? 0 : {fifo_flush1,fifo_count1_m1};
        else                                       counts_corr0[1] <= {fifo_flush1,fifo_count1};

        if      ((fifo_count2 == 0) || !en_chn[2]) counts_corr0[2] <= 0;
        else if (fifo_ren[2])                      counts_corr0[2] <= (fifo_count2_m1 == 0)? 0 : {fifo_flush2,fifo_count2_m1};
        else                                       counts_corr0[2] <= {fifo_flush2,fifo_count2};

        if      ((fifo_count3 == 0) || !en_chn[3]) counts_corr0[3] <= 0;
        else if (fifo_ren[3])                      counts_corr0[3] <= (fifo_count3_m1 == 0)? 0 : {fifo_flush3,fifo_count3_m1};
        else                                       counts_corr0[3] <= {fifo_flush3,fifo_count3};

        // 2-level arbitration
        // first arbitration level (latency 2 clk)
        if (counts_corr0[1] > counts_corr0[0]) begin
            counts_corr1[0] <= counts_corr0[1];
            winner1[0] <=      1;
        end else begin
            counts_corr1[0] <= counts_corr0[0];
            winner1[0] <=      0;
        end

        if (counts_corr0[3] > counts_corr0[2]) begin
            counts_corr1[1] <= counts_corr0[3];
            winner1[1] <=      1;
        end else begin
            counts_corr1[1] <= counts_corr0[2];
            winner1[1] <=      0;
        end
        
        // second arbitration level (latency 3 clk)
        if (counts_corr1[1] > counts_corr1[0]) begin
            counts_corr2 <= counts_corr1[1];
            winner2 <=      {1'b1,winner1[1]};
        end else begin
            counts_corr2 <= counts_corr1[0];
            winner2 <=      {1'b0,winner1[0]};
        end
        //ready_to_start need_to_bother
        //done_burst
        if      (!en)          busy <= 0;
324 325
        else if (pre_busy_w)   busy <= {busy[2:0],1'b1};
        else if (done_burst_w) busy <= 0; // {busy[2:0],1'b0};
326 327 328 329
        
        if      (!en)        wleft <= 0;
        else if (pre_busy_w) wleft <= {(|counts_corr2[7:2])? 2'b11 : left_to_eof[winner2][1:0], 2'b11};
        else if (wleft != 0) wleft <= wleft - 1;
330
        
331 332 333 334 335 336 337 338 339 340 341 342

        if      (!en)        wvalid <= 0;
        else if (pre_busy_w) wvalid <= 1;
        else if (wlast)      wvalid <= 0; // should be after pre_busy_w as both can happen simultaneously

        if      (!en)          fifo_ren <= 0;
        else if (pre_busy_w)   fifo_ren <= {(winner2 == 3) ?1'b1:1'b0,
                                            (winner2 == 2) ?1'b1:1'b0,
                                            (winner2 == 1) ?1'b1:1'b0,
                                            (winner2 == 0) ?1'b1:1'b0};
        else if (wlast)        fifo_ren <= 0;
        
343 344
        awvalid <= {awvalid[0],pre_busy_w}; // no need to wait for afi_awready, will use fifo levels to enable pre_busy_w
        
345 346 347 348 349 350
        if (pre_busy_w)  begin
            cur_chn <= winner2;
            last_burst_in_frame <= last_chunk_w[winner2];
        end
        
        wlast <= done_burst_w; // when wleft==4'h1
351

352 353
        // wdata register mux
        if (wdata_en) wdata <= wdata_sel[1]?(wdata_sel[1]?fifo_rdata3:fifo_rdata2):(wdata_sel[1]?fifo_rdata1:fifo_rdata0);
354 355 356 357

        if (pre_busy_w) chunk_inc <= (|counts_corr2[7:2])?
                                       3'h4 :
                                       ({1'b0,left_to_eof[winner2][1:0]} + 3'h1);
358 359 360 361 362 363 364 365 366 367
        
    end

    // delay write channel controls signal to match data latency. wid bits will be optimized (6 -> 3)    
    dly_16 #(
        .WIDTH(8)
    ) afi_wx_i (
        .clk       (hclk), // input
        .rst       (!en),  // input
        .dly       (AFI_MUX_BUF_LATENCY), // input[3:0] will delay by AFI_MUX_BUF_LATENCY+1 (normally 3) 
368
        .din       ({    wvalid,     wlast, afi_awid}), // input[0:0] 
369 370 371 372 373 374 375 376 377 378 379 380
        .dout      ({afi_wvalid, afi_wlast, afi_wid}) // output[0:0] 
    );

    dly_16 #(
        .WIDTH(3)
    ) afi_wdata_i (
        .clk       (hclk), // input
        .rst       (!en),  // input
        .dly       (AFI_MUX_BUF_LATENCY-1), // input[3:0] will delay by AFI_MUX_BUF_LATENCY+1 (normally 3) 
        .din       ({wvalid, cur_chn}), // input[0:0] 
        .dout      ({wdata_en,wdata_sel}) // output[0:0] 
    );
381
    
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
    cmd_deser #(
        .ADDR       (CMPRS_AFIMUX_ADDR),
        .ADDR_MASK  (CMPRS_AFIMUX_MASK),
        .NUM_CYCLES (6),
        .ADDR_WIDTH (4),
        .DATA_WIDTH (32)
    ) cmd_deser_32bit_i (
        .rst        (rst),      // input
        .clk        (mclk),     // input
        .ad         (cmd_ad),   // input[7:0] 
        .stb        (cmd_stb),  // input
        .addr       (cmd_a),    // output[3:0] 
        .data       (cmd_data), // output[31:0] 
        .we         (cmd_we)    // output
    );
    
    
399 400 401 402
    wire [26:0] chunk_ptr_rd01[0:1];

    cmprs_afi_mux_ptr cmprs_afi_mux_ptr_i (
        .hclk                (hclk),                // input
403 404 405
        .sa_len_di           (sa_len_d[26:0]),      // input[26:0] 
        .sa_len_wa           (sa_len_wa[2:0]),      // input[2:0] 
        .sa_len_we           (sa_len_we),           // input
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
        .en                  (en),                  // input
        .reset_pointers      (reset_pointers),      // input[3:0] 
        .pre_busy_w          (pre_busy_w),          // input
        .winner_channel      (winner2),             // input[1:0] 
        .need_to_bother      (need_to_bother),      // input
        .chunk_inc           (chunk_inc),           // input[2:0] 
        .last_burst_in_frame (last_burst_in_frame), // input
        .busy                (busy),                // input[3:0] 
        .ptr_resetting       (ptr_resetting),       // output
        .chunk_addr          (chunk_addr),          // output[26:0] reg 
        .chunk_ptr_ra        (chunk_ptr_ra[2:0]),   // input[2:0] 
        .chunk_ptr_rd        (chunk_ptr_rd01[0])    // output[26:0] 
    );
    assign chunk_ptr_rd=chunk_ptr_ra[3]?chunk_ptr_rd01[1]:chunk_ptr_rd01[0];
    cmprs_afi_mux_ptr_wresp cmprs_afi_mux_ptr_wresp_i (
        .hclk                (hclk),                // input
422 423 424
        .length_di           (sa_len_d[26:0]),      // input[26:0] 
        .length_wa           (sa_len_wa[1:0]),      // input[1:0] 
        .length_we           (sa_len_we & sa_len_wa[2]), // input
425 426 427 428 429 430 431 432 433
        .en                  (en),                  // input
        .reset_pointers      (reset_pointers),      // input[3:0] 
        .chunk_ptr_ra        (chunk_ptr_ra[2:0]),   // input[2:0] 
        .chunk_ptr_rd        (chunk_ptr_rd01[1]),   // output[26:0] 
        .eof_written         ({eof_written3,eof_written2,eof_written1,eof_written0}), // output[3:0] reg 
        .afi_bvalid          (afi_bvalid),          // input
        .afi_bready          (afi_bready),          // output
        .afi_bid             (afi_bid)              // input[5:0] 
    );
434

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
    /* Instance template for module cmprs_afi_mux_status */
    cmprs_afi_mux_status #(
        .CMPRS_AFIMUX_STATUS_REG_ADDR (CMPRS_AFIMUX_STATUS_REG_ADDR),
        .CMPRS_AFIMUX_WIDTH(CMPRS_AFIMUX_WIDTH),
        .CMPRS_AFIMUX_CYCBITS(CMPRS_AFIMUX_CYCBITS)
    ) cmprs_afi_mux_status_i (
        .rst          (rst), // input
        .hclk         (hclk), // input
        .mclk         (mclk), // input
        .cmd_data     (cmd_data[15:0]), // input[15:0] 
        .cmd_a        (cmd_a[1:0]), // input[1:0] 
        .status_we    (cmd_we_status_w), // input
        .mode_we      (cmd_we_mode_w), // input
        .status_ad    (status_ad), // output[7:0] 
        .status_rq    (status_rq), // output
        .status_start (status_start), // input
        .en           (en), // input
        .chunk_ptr_ra (chunk_ptr_ra), // output[3:0] reg 
        .chunk_ptr_rd (chunk_ptr_rd[CMPRS_AFIMUX_WIDTH-1:0]) // input[25:0] 
    );
    pulse_cross_clock sa_len_we_i (.rst(rst), .src_clk(mclk), .dst_clk(hclk), .in_pulse(cmd_we_sa_len_w), .out_pulse(sa_len_we),.busy());
    pulse_cross_clock en_we_i     (.rst(rst), .src_clk(mclk), .dst_clk(hclk), .in_pulse(cmd_we_en_w),     .out_pulse(en_we),    .busy());
    pulse_cross_clock en_rst_i    (.rst(rst), .src_clk(mclk), .dst_clk(hclk), .in_pulse(cmd_we_rst_w),    .out_pulse(en_rst),.busy());
458 459

endmodule