huffman393.v 17.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
** -----------------------------------------------------------------------------**
** huffman333.v
**
** Huffman encoder for JPEG compressorrdy
**
** Copyright (C) 2002-20015 Elphelk, Inc
**
** -----------------------------------------------------------------------------**
**  huffman393 is free software - hardware description language (HDL) code.
** 
**  This program is free software: you can redistribute it and/or modify
**  it under the terms of the GNU General Public License as published by
**  the Free Software Foundation, either version 3 of the License, or
**  (at your option) any later version.
**
**  This program is distributed in the hope that it will be useful,
**  but WITHOUT ANY WARRANTY; without even the implied warranty of
**  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
**  GNU General Public License for more details.
**
**  You should have received a copy of the GNU General Public License
**  along with this program.  If not, see <http://www.gnu.org/licenses/>.
** -----------------------------------------------------------------------------**
**
*/
// 01/22/2004 - extended flush until ready (modified stuffer.v too)
module huffman393    (
    input             xclk,            // pixel clock, sync to incoming data
    input             xclk2x,          // twice frequency - uses negedge inside
    input             en,              // will reset if ==0 (sync to xclk)
32 33 34 35 36 37 38 39 40 41 42 43

    input             mclk,         // system clock to write tables
    input             tser_we,      // enable write to a  table
    input             tser_a_not_d, // address/not data distributed to submodules
    input      [ 7:0] tser_d,       // byte-wide serialized tables address/data to submodules
    
//    input             sclk,            // clock to write tables (NOW posgedge) AF2015
//    input             twe,             // enable write to a table - now the following will be valid ant negedge sclk
//    input       [8:0] ta,              // [8:0]  table address
//    input      [15:0] tdi,             // [15:0] table data in
    
    
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    input      [15:0] di,              // [15:0]    specially RLL prepared 16-bit data (to FIFO) (sync to xclk)
    input             ds,              // di valid strobe  (sync to xclk)
    input             rdy,             // receiver (bit stuffer) is ready to accept data
    output reg [15:0] do,              // [15:0]    output data
    output reg [ 3:0] dl,              // [3:0] data length (4'h0 is 'h16)
    output reg        dv,              // output data valid
    output reg        flush,           // last block done - flush the rest bits
    output reg        last_block,
    output reg        test_lbw,
    output            gotLastBlock);   // last block done - flush the rest bits
/*
  huffman i_huffman  (.pclk(clk),      // pixel clock
                      .clk(clk2x),     // twice frequency - uses negedge inside
                      .en(cmprs_en),      // enable (0 resets counter) sync to .pclk(clk)
                      .twe(twhe),      // enable write to a table
                      .ta(ta[8:0]),      // [8:0]  table address
                      .tdi(di[15:0]),      // [23:0] table data in (8 LSBs - quantization data, [13:9] zigzag address
                      .di(enc_do[15:0]),      // [15:0]   specially RLL prepared 16-bit data (to FIFO)
                      .ds(enc_dv),      // di valid strobe
                      .rdy(stuffer_rdy),      // receiver (bit stuffer) is ready to accept data
                      .do(huff_do),      // [15:0]   output data
                      .dl(huff_dl),      // [3:0]   output width (0==16)
                      .dv(huff_dv),      // output data bvalid
                     .flush(flush),
                     .last_block(last_block),
                     .test_lbw(),
                     .gotLastBlock(test_lbw));   // last block done - flush the rest bits

                     
*/

    wire   [31:0] tables_out; // Only [19:0] are used
    reg    [15:0] hcode_latch;    // table output huffman code (1..16 bits)
    reg    [ 3:0] hlen_latch;        // table - code length only 4 LSBs are used
    reg    [ 7:0] haddr_r;    // index in huffman table    
    wire   [ 7:0] haddr_next;

    reg    [ 7:0] haddr70_latch;
    reg           haddr8_latch;
    wire   [ 8:0] haddr = {haddr8_latch,haddr70_latch};    // index in huffman table     (after latches)
     
    wire   [15:0] fifo_o;
    reg           stuffer_was_rdy;
    reg           tables_re_latch;
    wire          read_next;    // assigned depending on steps (each other cycle for normal codes, each for special 00/F0

    reg     [5:0] steps;
// first stage registers 
    reg     [5:0] rll;    // 2 MSBs - counter to send "f0" codes

// replacing SRL16 with FD as SRL has longer output delay from clock 
    reg     [3:0] rll1;
    reg     [3:0] rll2;
    reg           typeDC;
    reg           typeAC;
    reg    [11:0] sval;    // signed input value

    wire    [1:0] code_typ0;    // valid at steps[0]
    reg           tbsel_YC0;    // valid at steps[0] - 0 -Y table, 1 - CbCr
    reg     [1:0] code_typ1;
    reg     [1:0] code_typ2;
    reg           code_typ3;
    reg           code_typ4;
    reg           tbsel_YC1;
    reg           tbsel_YC2;
    reg           tbsel_YC3;

    reg    [15:0] out_bits;    // bits to send
    reg     [3:0] out_len;        // length of bits to send (4'h0 means 16)
    wire          fifo_or_full;    // fifo output register full read_next
    wire          will_read;
    wire   [10:0] var_do;
    wire    [3:0] var_dl;
    wire    [3:0] var_dl_late;

    reg           dv0;

    reg           eob;
    wire          gotDC;
    wire          gotAC;
    wire          gotRLL;
    wire          gotEOB;
    wire          gotLastWord;
    wire          gotColor;

    wire          want_read; // as will_read, but w/o fifo status
    reg           ready_to_flush;    // read the last data from fifo
    reg           en2x; // en sync to xclk2x;


    wire          pre_dv;
    wire   [15:0] pre_bits;
    wire   [ 3:0] pre_len;

138
//    reg           twe_d; // table write enable (twe) delayed by 1 clock
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

    always @ (negedge xclk2x) en2x <= en;
    
    assign gotDC=         fifo_o[15] &&  fifo_o[14];
    assign gotAC=         fifo_o[15] && !fifo_o[14];
    assign gotRLL=        !fifo_o[15] && !fifo_o[12];
    assign gotEOB=        !fifo_o[15] &&  fifo_o[12];
    assign gotLastBlock=  fifo_o[15] &&  fifo_o[14] && fifo_o[12];
    assign gotLastWord=  !fifo_o[14] &&  fifo_o[12];    // (AC or RLL) and last bit set
    assign gotColor= fifo_o[13];

    always @(negedge xclk2x) stuffer_was_rdy <= !en2x || rdy; // stuffer ready shoud be on if !en (move to register?)for now]
    reg           stuffer_was_rdy_early_latch;
    wire          want_read_early;
/*    
  LD  i_stuffer_was_rdy_early (.Q(stuffer_was_rdy_early_latch),.G(xclk2x),.D(!en2x || rdy));
  LD  i_tables_re (.Q(tables_re_latch),.G(xclk2x),.D(en2x && rdy));
*/  
    always @* if (xclk2x) stuffer_was_rdy_early_latch <= !en2x || rdy;
    always @* if (xclk2x) tables_re_latch <= en2x && rdy;
   


    assign read_next= en2x && ((!steps[0] && !rll[5]) || eob ) && fifo_or_full; // fifo will never have data after the last block...
    assign will_read= stuffer_was_rdy && fifo_or_full && en2x && ((!steps[0] && !rll[5]) || eob ); // fifo will never have data after the last block...
    assign want_read= stuffer_was_rdy && ((!steps[0] && !rll[5]) || eob ); // for FIFO
    assign want_read_early= stuffer_was_rdy_early_latch && ((!steps[0] && !rll[5]) || eob ); // for FIFO

    always @ (negedge xclk2x) if (stuffer_was_rdy) begin
        eob <= read_next && gotEOB;// will be 1 only during step[0]

        if (!en2x) steps[5:0]    <= 'b0;
        else     steps[5:0]    <= {steps[4] && code_typ4, // will be skipped for codes 00/F0
                                   steps[3:0],
                                   (read_next && !(gotRLL && (fifo_o[5:4]==2'b00))) || rll[5] }; // will not start if it was <16, waiting for AC
    end
    always @ (negedge xclk2x)    begin
        last_block <= en2x && (last_block?(!flush):(stuffer_was_rdy && will_read && gotLastBlock));
        ready_to_flush <= en2x && (ready_to_flush?(!flush):(stuffer_was_rdy && last_block &&  will_read && gotLastWord));
        test_lbw <= en2x && last_block &&  gotLastWord;
// did not work if flush was just after not ready?
        flush    <= en2x &&( flush?(!rdy):(rdy && stuffer_was_rdy && ready_to_flush && !(|steps)) );
    end


    always @ (negedge xclk2x) if (will_read) begin
        typeDC               <= gotDC;
        typeAC               <= gotAC;
        sval[11:0]           <= fifo_o[11:0];
        if (gotDC) tbsel_YC0 <= gotColor;
    end
  

    always @ (negedge xclk2x) if (stuffer_was_rdy) begin
        if (!en2x || (read_next && gotAC) || (steps[0] && typeAC))             rll[5:4] <= 2'b0;
        else if (read_next && gotRLL)                                          rll[5:4] <= fifo_o[5:4];
        else if (rll[5:4]!=2'b00)                                              rll[5:4] <= rll[5:4]-1;
        
        if (!en2x || (read_next && !gotAC && !gotRLL) || (steps[0] && typeAC)) rll[3:0] <= 4'b0;
        else if (read_next && gotRLL)                                          rll[3:0] <= fifo_o[3:0];
    end

    assign code_typ0={typeDC || (!eob && (rll[5:4]==2'b0)),
                      typeDC || (!eob && (rll[5:4]!=2'b0))};

    assign haddr_next[7:0] = code_typ2[1]?
                                        (code_typ2[0]?{var_dl[3:0],4'hf}:       // DC (reusing the spare cells of the AC table)
                                                      {rll2[3:0],var_dl[3:0]}): // AC normal code
                                        (code_typ2[0]?8'hf0:                    //skip 16 zeros code
                                                      8'h00);                   //skip to end of block code

    always @ (negedge xclk2x) if (stuffer_was_rdy && steps[2]) begin    // may be just if (stuffer_was_rdy)
        haddr_r[7:0]    <= haddr_next[7:0];
    end
/*  
  LD  i_haddr_8 (.Q(haddr[8]),.G(xclk2x),.D(stuffer_was_rdy?tbsel_YC2:tbsel_YC3));
  LD  i_haddr_7 (.Q(haddr[7]),.G(xclk2x),.D((stuffer_was_rdy && steps[2])?haddr_next[7]:haddr_r[7]));
  LD  i_haddr_6 (.Q(haddr[6]),.G(xclk2x),.D((stuffer_was_rdy && steps[2])?haddr_next[6]:haddr_r[6]));
  LD  i_haddr_5 (.Q(haddr[5]),.G(xclk2x),.D((stuffer_was_rdy && steps[2])?haddr_next[5]:haddr_r[5]));
  LD  i_haddr_4 (.Q(haddr[4]),.G(xclk2x),.D((stuffer_was_rdy && steps[2])?haddr_next[4]:haddr_r[4]));
  LD  i_haddr_3 (.Q(haddr[3]),.G(xclk2x),.D((stuffer_was_rdy && steps[2])?haddr_next[3]:haddr_r[3]));
  LD  i_haddr_2 (.Q(haddr[2]),.G(xclk2x),.D((stuffer_was_rdy && steps[2])?haddr_next[2]:haddr_r[2]));
  LD  i_haddr_1 (.Q(haddr[1]),.G(xclk2x),.D((stuffer_was_rdy && steps[2])?haddr_next[1]:haddr_r[1]));
  LD  i_haddr_0 (.Q(haddr[0]),.G(xclk2x),.D((stuffer_was_rdy && steps[2])?haddr_next[0]:haddr_r[0]));
*/
//     wire   [ 8:0] haddr = {haddr8_latch,haddr70_latch};    // index in huffman table     (after latches)
    always @* if (xclk2x) begin
        if (stuffer_was_rdy) haddr8_latch <= tbsel_YC2;
        else                 haddr8_latch <= tbsel_YC3;
    end

    always @* if (xclk2x) begin
        if (stuffer_was_rdy && steps[2]) haddr70_latch <= haddr_next;
        else                             haddr70_latch <= haddr_r;
    end


    assign pre_dv =         steps[4] || (steps[5] && (var_dl_late[3:0]!=4'b0));
    assign pre_bits[15:0]    = steps[5]?{5'b0,var_do[10:0]}:     hcode_latch[15:0];
    assign pre_len [ 3:0]    = steps[5]?      var_dl_late[ 3:0]: hlen_latch  [3:0];

    always @ (negedge xclk2x) if (stuffer_was_rdy) begin
        dv0            <= pre_dv;
        out_bits[15:0] <= pre_bits[15:0];
        out_len [ 3:0] <= pre_len [ 3:0];
    end
    
    always @ (negedge xclk2x) if (!en2x || rdy) begin
        dv       <= stuffer_was_rdy? pre_dv:dv0;
        do[15:0] <= stuffer_was_rdy? pre_bits[15:0]:out_bits[15:0];
        dl[ 3:0] <= stuffer_was_rdy? pre_len [ 3:0]:out_len [ 3:0];
    end



// "Extract shift registers" in synthesis should be off! FD has lower output delay than SRL16
    always @ (negedge xclk2x) if (stuffer_was_rdy) begin
        code_typ1[1:0] <= code_typ0[1:0];
        code_typ2[1:0] <= code_typ1[1:0];
        code_typ3      <= code_typ2[1];
        code_typ4      <= code_typ3;
        rll1[3:0]      <= rll[3:0];
        rll2[3:0]      <= rll1[3:0];
        tbsel_YC1      <= tbsel_YC0;
        tbsel_YC2      <= tbsel_YC1;
        tbsel_YC3      <= tbsel_YC2;
    end
  /*
  LD_1 i_hlen3  (.Q( hlen_latch[ 3]),.G(xclk2x),.D(tables_out[19]));  
  LD_1 i_hlen2  (.Q( hlen_latch[ 2]),.G(xclk2x),.D(tables_out[18]));  
  LD_1 i_hlen1  (.Q( hlen_latch[ 1]),.G(xclk2x),.D(tables_out[17]));  
  LD_1 i_hlen0  (.Q( hlen_latch[ 0]),.G(xclk2x),.D(tables_out[16]));  
  LD_1 i_hcode15(.Q(hcode_latch[15]),.G(xclk2x),.D(tables_out[15]));  
  LD_1 i_hcode14(.Q(hcode_latch[14]),.G(xclk2x),.D(tables_out[14]));  
  LD_1 i_hcode13(.Q(hcode_latch[13]),.G(xclk2x),.D(tables_out[13]));  
  LD_1 i_hcode12(.Q(hcode_latch[12]),.G(xclk2x),.D(tables_out[12]));  
  LD_1 i_hcode11(.Q(hcode_latch[11]),.G(xclk2x),.D(tables_out[11]));  
  LD_1 i_hcode10(.Q(hcode_latch[10]),.G(xclk2x),.D(tables_out[10]));  
  LD_1 i_hcode9 (.Q(hcode_latch[ 9]),.G(xclk2x),.D(tables_out[ 9]));  
  LD_1 i_hcode8 (.Q(hcode_latch[ 8]),.G(xclk2x),.D(tables_out[ 8]));  
  LD_1 i_hcode7 (.Q(hcode_latch[ 7]),.G(xclk2x),.D(tables_out[ 7]));  
  LD_1 i_hcode6 (.Q(hcode_latch[ 6]),.G(xclk2x),.D(tables_out[ 6]));  
  LD_1 i_hcode5 (.Q(hcode_latch[ 5]),.G(xclk2x),.D(tables_out[ 5]));  
  LD_1 i_hcode4 (.Q(hcode_latch[ 4]),.G(xclk2x),.D(tables_out[ 4]));  
  LD_1 i_hcode3 (.Q(hcode_latch[ 3]),.G(xclk2x),.D(tables_out[ 3]));  
  LD_1 i_hcode2 (.Q(hcode_latch[ 2]),.G(xclk2x),.D(tables_out[ 2]));  
  LD_1 i_hcode1 (.Q(hcode_latch[ 1]),.G(xclk2x),.D(tables_out[ 1]));  
  LD_1 i_hcode0 (.Q(hcode_latch[ 0]),.G(xclk2x),.D(tables_out[ 0]));  
*/  
    always @* if (~xclk2x) hlen_latch <=  tables_out[19:16];
    always @* if (~xclk2x) hcode_latch <= tables_out[15:0];
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    
    wire          twe;
    wire  [15:0]  tdi;
    wire  [22:0]  ta;
    
  
     table_ad_receive #(
        .MODE_16_BITS (1),
        .NUM_CHN      (1)
    ) table_ad_receive_i (
        .clk       (mclk),              // input
        .a_not_d   (tser_a_not_d),      // input
        .ser_d     (tser_d),            // input[7:0] 
        .dv        (tser_we),           // input
        .ta        (ta),                // output[22:0] 
        .td        (tdi),               // output[15:0] 
306
        .twe       (twe)                // output
307 308
    );
  
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
  

    huff_fifo393 i_huff_fifo (
        .xclk(xclk), // input
        .xclk2x(xclk2x), // input
        .en(en), // input
        .di(di[15:0]), // input[15:0] data in (sync to xclk)
        .ds(ds), // input din valid (sync to xclk)
        .want_read(want_read), // input
        .want_read_early(want_read_early), // input
        .dav(fifo_or_full), // output reg FIFO output register has data 
        .q_latch(fifo_o[15:0])); // output[15:0] reg data (will add extra buffering if needed)

    varlen_encode393 i_varlen_encode(
        .clk      (xclk2x),           // input
        .en       (stuffer_was_rdy),  // input  will enable registers. 0 - freeze
        .start    (steps[0]),         // input
        .d        (sval[11:0]),       // input[11:0] 12-bit signed
        .l        (var_dl[ 3:0]),     // output[3:0] reg code length
        .l_late   (var_dl_late[3:0]), // output[3:0] reg
        .q        (var_do[10:0]));    // output[10:0] reg code
                                        
//   always @ (negedge xclk2x) twe_d <= twe;
332
//   always @ (posedge   sclk) twe_d <= twe;
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
/*   
   RAMB16_S18_S36 i_htab (
                          .DOA(),           // Port A 16-bit Data Output
                          .DOPA(),          // Port A 2-bit Parity Output
                          .ADDRA({ta[8:0],twe_d}),  // Port A 10-bit Address Input
                          .CLKA(!xclk2x),      // Port A Clock
                          .DIA(tdi[15:0]),  // Port A 16-bit Data Input
                          .DIPA(2'b0),      // Port A 2-bit parity Input
                          .ENA(1'b1),       // Port A RAM Enable Input
                          .SSRA(1'b0),      // Port A Synchronous Set/Reset Input
                          .WEA(twe | twe_d),// Port A Write Enable Input

                          .DOB({unused[11:0],tables_out[19:0]}),      // Port B 32-bit Data Output
                          .DOPB(),          // Port B 4-bit Parity Output
                          .ADDRB(haddr[8:0]),  // Port B 9-bit Address Input
                          .CLKB(xclk2x),       // Port B Clock
                          .DIB(32'b0),      // Port B 32-bit Data Input
                          .DIPB(4'b0),      // Port-B 4-bit parity Input
                          .ENB(tables_re_latch),  // PortB RAM Enable Input
                          .SSRB(1'b0),      // Port B Synchronous Set/Reset Input
                          .WEB(1'b0)        // Port B Write Enable Input
   );
*/

    ram18_var_w_var_r #(
        .REGISTERS(0),
        .LOG2WIDTH_WR(4),
        .LOG2WIDTH_RD(5),
        .DUMMY(0)
    ) i_htab (
        .rclk(xclk2x), // input
        .raddr(haddr[8:0]), // input[8:0] 
        .ren(tables_re_latch), // input
        .regen(1'b1), // input
//        .data_out({unused[11:0],tables_out[19:0]}), // output[31:0] 
        .data_out(tables_out), // output[31:0] 
369
        .wclk(mclk), // input
370 371 372 373
//        .waddr({ta[8:0],twe_d}), // input[9:0] 
//        .we(twe | twe_d), // input
        .waddr(ta[9:0]), // input[9:0] 
        .we   (twe), // input
374 375 376 377 378
        .web(4'hf), // input[3:0] 
        .data_in(tdi[15:0]) // input[15:0] 
    );
endmodule