sens_parallel12.v 26.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*******************************************************************************
 * Module: sens_parallel12
 * Date:2015-05-10  
 * Author: andrey     
 * Description: Sensor interface with 12-bit for parallel bus
 *
 * Copyright (c) 2015 <set up in Preferences-Verilog/VHDL Editor-Templates> .
 * sens_parallel12.v is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 *  sens_parallel12.v is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/> .
 *******************************************************************************/
`timescale 1ns/1ps

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
module  sens_parallel12 #(
    parameter SENSIO_ADDR =        'h330,
    parameter SENSIO_ADDR_MASK =   'h3f8,
    parameter SENSIO_CTRL =        'h0,
    parameter SENSIO_STATUS =      'h1,
    parameter SENSIO_JTAG =        'h2,
    parameter SENSIO_WIDTH =       'h3, // 1.. 2^16, 0 - use HACT
    parameter SENSIO_DELAYS =      'h4,
    parameter SENSIO_STATUS_REG =  'h31,

    parameter SENS_JTAG_PGMEN =    8,
    parameter SENS_JTAG_PROG =     6,
    parameter SENS_JTAG_TCK =      4,
    parameter SENS_JTAG_TMS =      2,
    parameter SENS_JTAG_TDI =      0,
    
    parameter SENS_CTRL_MRST=      0,  //  1: 0
    parameter SENS_CTRL_ARST=      2,  //  3: 2
    parameter SENS_CTRL_ARO=       4,  //  5: 4
    parameter SENS_CTRL_RST_MMCM=  6,  //  7: 6
    parameter SENS_CTRL_EXT_CLK=   8,  //  9: 8
    parameter SENS_CTRL_LD_DLY=   10,  // 10
    parameter SENS_CTRL_QUADRANTS=12,  // 17:12, enable - 20
    
    parameter LINE_WIDTH_BITS =   16,
    
    parameter IODELAY_GRP ="IODELAY_SENSOR", // may need different for different channels?
    parameter integer IDELAY_VALUE = 0,
    parameter integer PXD_DRIVE = 12,
    parameter PXD_IBUF_LOW_PWR = "TRUE",
    parameter PXD_IOSTANDARD = "DEFAULT",
    parameter PXD_SLEW = "SLOW",
    parameter real REFCLK_FREQUENCY = 300.0,
    parameter HIGH_PERFORMANCE_MODE = "FALSE",
    
    parameter PHASE_WIDTH=      8,      // number of bits for te phase counter (depends on divisors)
    parameter PCLK_PERIOD =     10.000,  // input period in ns, 0..100.000 - MANDATORY, resolution down to 1 ps
    parameter BANDWIDTH =       "OPTIMIZED",  //"OPTIMIZED", "HIGH","LOW"

    parameter CLKFBOUT_MULT_SENSOR =   8,  // 100 MHz --> 800 MHz
    parameter CLKFBOUT_PHASE_SENSOR =  0.000,  // CLOCK FEEDBACK phase in degrees (3 significant digits, -360.000...+360.000)
    parameter IPCLK_PHASE =           0.000,
    parameter IPCLK2X_PHASE =         0.000,
    

    parameter DIVCLK_DIVIDE =         1,            // Integer 1..106. Divides all outputs with respect to CLKIN
    parameter REF_JITTER1   =         0.010,        // Expectet jitter on CLKIN1 (0.000..0.999)
    parameter REF_JITTER2   =         0.010,
    parameter SS_EN         =         "FALSE",      // Enables Spread Spectrum mode
    parameter SS_MODE       =         "CENTER_HIGH",//"CENTER_HIGH","CENTER_LOW","DOWN_HIGH","DOWN_LOW"
    parameter SS_MOD_PERIOD =         10000        // integer 4000-40000 - SS modulation period in ns
    
)(
76
    input         rst,
77 78 79 80
    input         pclk,   // global clock input, pixel rate (96MHz for MT9P006)
    output        ipclk,  // re-generated sensor output clock (regional clock to drive external fifo) 
    output        ipclk2x,// twice frequency regenerated sensor clock (possibly to run external fifo)
//    input         pclk2x, // maybe not needed here
81 82 83 84 85 86
    // sensor pads excluding i2c
    input         vact,
    input         hact, //output in fillfactory mode
    inout         bpf,  // output in fillfactory mode
    inout  [11:0] pxd, //actually only 2 LSBs are inouts
    inout         mrst,
87
    inout         senspgm,    // SENSPGM I/O pin
88
    
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    inout         arst,
    inout         aro,
    output        dclk,
    // output
    output [11:0] pxd_out,
    output        vact_out, 
    output        hact_out, 

    // JTAG to program 10359
//    input          xpgmen,     // enable programming mode for external FPGA
//    input          xfpgaprog,  // PROG_B to be sent to an external FPGA
//    output         xfpgadone,  // state of the MRST pin ("DONE" pin on external FPGA)
//    input          xfpgatck,   // TCK to be sent to external FPGA
//    input          xfpgatms,   // TMS to be sent to external FPGA
//    input          xfpgatdi,   // TDI to be sent to external FPGA
//    output         xfpgatdo,   // TDO read from external FPGA
//    output         senspgmin,    
106 107
    
    // programming interface
Andrey Filippov's avatar
Andrey Filippov committed
108
    input         mclk,     // global clock, half DDR3 clock, synchronizes all I/O through the command port
109 110 111 112 113 114 115
    input   [7:0] cmd_ad,      // byte-serial command address/data (up to 6 bytes: AL-AH-D0-D1-D2-D3 
    input         cmd_stb,     // strobe (with first byte) for the command a/d
    output  [7:0] status_ad,   // status address/data - up to 5 bytes: A - {seq,status[1:0]} - status[2:9] - status[10:17] - status[18:25]
    output        status_rq,   // input request to send status downstream
    input         status_start // Acknowledge of the first status packet byte (address)
);

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
//    wire tdi,tdo,done,tms,tck,ten;
    wire ibpf;
    wire ipclk_pre, ipclk2x_pre;
//    wire ipclk, ipclk2x;
    
    reg  [31:0] data_r; 
    reg   [3:0] set_idelay;
    reg         set_ctrl_r;
    reg         set_status_r;
    reg   [1:0] set_width_r; // to make double-cycle subtract
    reg         set_jtag_r;
    
    reg [LINE_WIDTH_BITS-1:0] line_width_m1;  // regenerated HACT duration; 
    reg                       line_width_internal; // use regenetrated ( 0 - use HACT as is)
    reg [LINE_WIDTH_BITS-1:0] hact_cntr;
    
//    reg         set_quad; // [1:0] - px, [3:2] - HACT, [5:4] - VACT,
    wire        clk_fb;
    
    wire  [2:0] set_pxd_delay;
    wire        set_other_delay;
    
    wire        ps_rdy;
    wire  [7:0] ps_out;      
    wire        locked_pxd_mmcm;
    wire        clkin_pxd_stopped_mmcm;
    wire        clkfb_pxd_stopped_mmcm;
    
    // programmed resets to the sensor 
    reg         iaro  = 0;
    reg         iarst = 0;
    reg         imrst = 0;
    reg         rst_mmcm=1; // rst and command - en/dis 
    reg  [5:0]  quadrants=0;
    reg         ld_idelay=0;
    reg         sel_ext_clk=0; // select clock source from the sensor (0 - use internal clock - to sesnor)



    wire [14:0] status;
    
    wire        cmd_we;
    wire  [2:0] cmd_a;
    wire [31:0] cmd_data;
    
    wire           xfpgadone;  // state of the MRST pin ("DONE" pin on external FPGA)
    wire           xfpgatdo;   // TDO read from external FPGA
    wire           senspgmin;    

    reg            xpgmen=0;     // enable programming mode for external FPGA
    reg            xfpgaprog=0;  // PROG_B to be sent to an external FPGA
    reg            xfpgatck=0;   // TCK to be sent to external FPGA
    reg            xfpgatms=0;   // TMS to be sent to external FPGA
    reg            xfpgatdi=0;   // TDI to be sent to external FPGA
    wire           hact_ext;     // received hact signal
    reg            hact_ext_r;   // received hact signal, delayed by 1 clock
    reg            hact_r;       // received or regenerated hact  
    
    assign set_pxd_delay =   set_idelay[2:0];
    assign set_other_delay = set_idelay[3];
    assign status = {locked_pxd_mmcm,clkin_pxd_stopped_mmcm,clkfb_pxd_stopped_mmcm,xfpgadone,ps_rdy, ps_out,xfpgatdo,senspgmin};
    assign hact_out = hact_r;
    
    always @(posedge rst or posedge mclk) begin
        if      (rst)     data_r <= 0;
        else if (cmd_we)  data_r <= cmd_data;
        if      (rst)     set_idelay <= 0;
        else   set_idelay <=  {4{cmd_we}} & {(cmd_a==(SENSIO_DELAYS+3))?1'b1:1'b0,
                                             (cmd_a==(SENSIO_DELAYS+2))?1'b1:1'b0,
                                             (cmd_a==(SENSIO_DELAYS+1))?1'b1:1'b0,
                                             (cmd_a==(SENSIO_DELAYS+0))?1'b1:1'b0};
        if (rst) set_status_r <=0;
        else     set_status_r <= cmd_we && (cmd_a== SENSIO_STATUS);                             
        if (rst) set_ctrl_r <=0;
        else     set_ctrl_r <= cmd_we && (cmd_a== SENSIO_CTRL);                             
        if (rst) set_jtag_r <=0;
        else     set_jtag_r <= cmd_we && (cmd_a== SENSIO_JTAG);
        
        if      (rst)                                       xpgmen <= 0;
        else if (set_jtag_r && data_r[SENS_JTAG_PGMEN + 1]) xpgmen <= data_r[SENS_JTAG_PGMEN]; 

        if      (rst)                                       xfpgaprog <= 0;
        else if (set_jtag_r && data_r[SENS_JTAG_PROG + 1])  xfpgaprog <= data_r[SENS_JTAG_PROG]; 
                                     
        if      (rst)                                       xfpgatck <= 0;
        else if (set_jtag_r && data_r[SENS_JTAG_TCK + 1])   xfpgatck <= data_r[SENS_JTAG_TCK]; 

        if      (rst)                                       xfpgatms <= 0;
        else if (set_jtag_r && data_r[SENS_JTAG_TMS + 1])   xfpgatms <= data_r[SENS_JTAG_TMS]; 

        if      (rst)                                       xfpgatdi <= 0;
        else if (set_jtag_r && data_r[SENS_JTAG_TDI + 1])   xfpgatdi <= data_r[SENS_JTAG_TDI];
        
        if      (rst)                                           imrst <= 0;
        else if (set_ctrl_r && data_r[SENS_CTRL_MRST + 1])      imrst <= data_r[SENS_CTRL_MRST]; 
         
        if      (rst)                                           iarst <= 0;
        else if (set_ctrl_r && data_r[SENS_CTRL_ARST + 1])      iarst <= data_r[SENS_CTRL_ARST]; 
         
        if      (rst)                                           iaro <= 0;
        else if (set_ctrl_r && data_r[SENS_CTRL_MRST + 1])      iaro <= data_r[SENS_CTRL_ARO]; 
         
        if      (rst)                                           rst_mmcm <= 0;
        else if (set_ctrl_r && data_r[SENS_CTRL_RST_MMCM + 1])  rst_mmcm <= data_r[SENS_CTRL_RST_MMCM]; 
         
        if      (rst)                                           sel_ext_clk <= 0;
        else if (set_ctrl_r && data_r[SENS_CTRL_EXT_CLK + 1])   sel_ext_clk <= data_r[SENS_CTRL_EXT_CLK]; 
         
        if      (rst)                                           quadrants <= 0;
        else if (set_ctrl_r && data_r[SENS_CTRL_QUADRANTS + 8]) quadrants <= data_r[SENS_CTRL_QUADRANTS+:6]; 

        if  (rst) ld_idelay <= 0;
        else      ld_idelay <= set_ctrl_r && data_r[SENS_CTRL_LD_DLY]; 
        
        if  (rst) set_width_r <= 0;
        else      set_width_r <= {set_width_r[0],cmd_we && (cmd_a== SENSIO_WIDTH)}; 
        
        if      (rst)            line_width_m1 <= 0;
        else if (set_width_r[1]) line_width_m1 <= data_r[LINE_WIDTH_BITS-1:0] -1;
        
        if      (rst)            line_width_internal <= 0;
        else if (set_width_r[1]) line_width_internal <= ~ (|data_r[LINE_WIDTH_BITS:0]);
        
        // regenerate/propagate  HACT
        
        if (rst) hact_ext_r <= 1'b0;
        else     hact_ext_r <= hact_ext;
        
        if      (rst)                                                  hact_r <= 0;
        else if (hact_ext && !hact_ext_r)                              hact_r <= 1;
        else if (line_width_internal?(hact_cntr == 0):( hact_ext ==0)) hact_r <= 0; 
        
        if      (rst)                     hact_cntr <= 0;
        else if (hact_ext && !hact_ext_r) hact_cntr <= line_width_m1;
        else if (hact_r)                  hact_cntr <= hact_cntr - 1;
        
    end
    
/*
 Control programming of external FPGA on the sensor/sensor multiplexor board
 Mulptiplex status signals into a single line
 bits:
  9: 8 - 3 - set xpgmen,
       - 2 - reset xpgmen,  
       - 0, 1 - no changes to xpgmen
  7: 6 - 3 - set xfpgaprog,
       - 2 - reset xfpgaprog,  
       - 0, 1 - no changes to xfpgaprog
  5: 4 - 3 - set xfpgatck,
       - 2 - reset xfpgatck,  
       - 0, 1 - no changes to xfpgatck
  3: 2 - 3 - set xfpgatms,
       - 2 - reset xfpgatms,
       - 0, 1 - no changes to xfpgatms
  1: 0 - 3 - set xfpgatdi,
       - 2 - reset xfpgatdi,
       - 0, 1 - no changes to xfpgatdi
    parameter SENS_CTRL_MRST=      0,  //  1: 0
    parameter SENS_CTRL_ARST=      2,  //  3: 2
    parameter SENS_CTRL_ARO=       4,  //  5: 4
    parameter SENS_CTRL_RST_MMCM=  6,  //  7: 6
    parameter SENS_CTRL_EXT_CLK=   8,  //  9: 8
    parameter SENS_CTRL_LD_DLY=   10,  // 10
    parameter SENS_CTRL_QUADRANTS=12,  // 17:12, enable - 20
       
*/
    
    
    
    
    cmd_deser #(
        .ADDR        (SENSIO_ADDR),
        .ADDR_MASK   (SENSIO_ADDR_MASK),
        .NUM_CYCLES  (6),
        .ADDR_WIDTH  (3),
        .DATA_WIDTH  (32)
    ) cmd_deser_sens_io_i (
        .rst         (rst), // input
        .clk         (mclk), // input
        .ad          (cmd_ad), // input[7:0] 
        .stb         (cmd_stb), // input
        .addr        (cmd_a), // output[15:0] 
        .data        (cmd_data), // output[31:0] 
        .we          (cmd_we) // output
    );

    status_generate #(
        .STATUS_REG_ADDR(SENSIO_STATUS_REG),
        .PAYLOAD_BITS(15) // STATUS_PAYLOAD_BITS)
    ) status_generate_sens_io_i (
        .rst        (rst), // input
        .clk        (mclk), // input
        .we         (set_status_r), // input
        .wd         (data_r[7:0]), // input[7:0] 
        .status     (status), // input[25:0] 
        .ad         (status_ad), // output[7:0] 
        .rq         (status_rq), // output
        .start      (status_start) // input
    );
    
    
    
    
    // 2 lower PXD bits are multifunction (used for JTAG), instance them individually
    pxd_single #(
        .IODELAY_GRP           (IODELAY_GRP),
        .IDELAY_VALUE          (IDELAY_VALUE),
        .PXD_DRIVE             (PXD_DRIVE),
        .PXD_IBUF_LOW_PWR      (PXD_IBUF_LOW_PWR),
        .PXD_IOSTANDARD        (PXD_IOSTANDARD),
        .PXD_SLEW              (PXD_SLEW),
        .REFCLK_FREQUENCY      (REFCLK_FREQUENCY),
        .HIGH_PERFORMANCE_MODE (HIGH_PERFORMANCE_MODE)
    ) pxd_pxd0_i (
        .pxd            (pxd[0]),          // inout
        .pxd_out        (xfpgatdi),            // input
        .pxd_en         (xpgmen),            // input
        .pxd_async      (),             // output
        .pxd_in         (pxd_out[0]),      // output
        .ipclk          (ipclk),           // input
        .ipclk2x        (ipclk2x),         // input
        .rst            (rst),             // input
        .mclk           (mclk),            // input
        .dly_data       (data_r[7:0]),          // input[7:0] 
        .set_idelay     (set_pxd_delay[0]),// input
        .ld_idelay      (ld_idelay),       // input
        .quadrant       (quadrants[1:0])   // input[1:0] 
    );

    pxd_single #(
        .IODELAY_GRP           (IODELAY_GRP),
        .IDELAY_VALUE          (IDELAY_VALUE),
        .PXD_DRIVE             (PXD_DRIVE),
        .PXD_IBUF_LOW_PWR      (PXD_IBUF_LOW_PWR),
        .PXD_IOSTANDARD        (PXD_IOSTANDARD),
        .PXD_SLEW              (PXD_SLEW),
        .REFCLK_FREQUENCY      (REFCLK_FREQUENCY),
        .HIGH_PERFORMANCE_MODE (HIGH_PERFORMANCE_MODE)
    ) pxd_pxd1_i (
        .pxd            (pxd[1]),          // inout
        .pxd_out        (1'b0),            // input
        .pxd_en         (1'b0),            // input
        .pxd_async      (xfpgatdo),        // output
        .pxd_in         (pxd_out[1]),      // output
        .ipclk          (ipclk),           // input
        .ipclk2x        (ipclk2x),         // input
        .rst            (rst),             // input
        .mclk           (mclk),            // input
        .dly_data       (data_r[15:8]),          // input[7:0] 
        .set_idelay     (set_pxd_delay[0]),// input
        .ld_idelay      (ld_idelay),       // input
        .quadrant       (quadrants[1:0])   // input[1:0] 
    );
    // bits 2..11 are just PXD inputs, instance them all together
    generate
        genvar i;
        for (i=2; i < 12; i=i+1) begin: pxd_block
            pxd_single #(
                .IODELAY_GRP           (IODELAY_GRP),
                .IDELAY_VALUE          (IDELAY_VALUE),
                .PXD_DRIVE             (PXD_DRIVE),
                .PXD_IBUF_LOW_PWR      (PXD_IBUF_LOW_PWR),
                .PXD_IOSTANDARD        (PXD_IOSTANDARD),
                .PXD_SLEW              (PXD_SLEW),
                .REFCLK_FREQUENCY      (REFCLK_FREQUENCY),
                .HIGH_PERFORMANCE_MODE (HIGH_PERFORMANCE_MODE)
            ) pxd_pxd1_i (
                .pxd            (pxd[i]),          // inout
                .pxd_out        (1'b0),            // input
                .pxd_en         (1'b0),            // input
                .pxd_async      (),                // output
                .pxd_in         (pxd_out[i]),      // output
                .ipclk          (ipclk),           // input
                .ipclk2x        (ipclk2x),         // input
                .rst            (rst),             // input
                .mclk           (mclk),            // input
                .dly_data       (data_r[8*((i+2)&3)+:8]), // input[7:0] alternating bytes of 32-bit word
                .set_idelay     (set_pxd_delay[(i+2)>>2]),// input 0 for pxd[3:2], 1 for pxd[7:4], 2 for pxd [11:8]
                .ld_idelay      (ld_idelay),       // input
                .quadrant       (quadrants[1:0])   // input[1:0] 
            );
        end
    endgenerate
    
    pxd_single #(
        .IODELAY_GRP           (IODELAY_GRP),
        .IDELAY_VALUE          (IDELAY_VALUE),
        .PXD_DRIVE             (PXD_DRIVE),
        .PXD_IBUF_LOW_PWR      (PXD_IBUF_LOW_PWR),
        .PXD_IOSTANDARD        (PXD_IOSTANDARD),
        .PXD_SLEW              (PXD_SLEW),
        .REFCLK_FREQUENCY      (REFCLK_FREQUENCY),
        .HIGH_PERFORMANCE_MODE (HIGH_PERFORMANCE_MODE)
    ) pxd_hact_i (
        .pxd            (hact),          // inout
        .pxd_out        (1'b0),          // input
        .pxd_en         (1'b0),          // input
        .pxd_async      (),              // output
        .pxd_in         (hact_ext),      // output
        .ipclk          (ipclk),         // input
        .ipclk2x        (ipclk2x),       // input
        .rst            (rst),           // input
        .mclk           (mclk),          // input
        .dly_data       (data_r[7:0]),        // input[7:0] 
        .set_idelay     (set_other_delay),// input
        .ld_idelay      (ld_idelay),     // input
        .quadrant       (quadrants[3:2]) // input[1:0] 
    );
    
    pxd_single #(
        .IODELAY_GRP           (IODELAY_GRP),
        .IDELAY_VALUE          (IDELAY_VALUE),
        .PXD_DRIVE             (PXD_DRIVE),
        .PXD_IBUF_LOW_PWR      (PXD_IBUF_LOW_PWR),
        .PXD_IOSTANDARD        (PXD_IOSTANDARD),
        .PXD_SLEW              (PXD_SLEW),
        .REFCLK_FREQUENCY      (REFCLK_FREQUENCY),
        .HIGH_PERFORMANCE_MODE (HIGH_PERFORMANCE_MODE)
    ) pxd_vact_i (
        .pxd            (vact),          // inout
        .pxd_out        (1'b0),          // input
        .pxd_en         (1'b0),          // input
        .pxd_async      (),              // output
        .pxd_in         (vact_out),      // output
        .ipclk          (ipclk),         // input
        .ipclk2x        (ipclk2x),       // input
        .rst            (rst),           // input
        .mclk           (mclk),          // input
        .dly_data       (data_r[15:8]),  // input[7:0] 
        .set_idelay     (set_other_delay),// input
        .ld_idelay      (ld_idelay),     // input
        .quadrant       (quadrants[5:4]) // input[1:0] 
    );
    // receive clock from sensor
    pxd_clock #(
        .IODELAY_GRP           (IODELAY_GRP),
        .IDELAY_VALUE          (IDELAY_VALUE),
        .PXD_DRIVE             (PXD_DRIVE),
        .PXD_IBUF_LOW_PWR      (PXD_IBUF_LOW_PWR),
        .PXD_IOSTANDARD        (PXD_IOSTANDARD),
        .PXD_SLEW              (PXD_SLEW),
        .REFCLK_FREQUENCY      (REFCLK_FREQUENCY),
        .HIGH_PERFORMANCE_MODE (HIGH_PERFORMANCE_MODE)
    ) pxd_clock_i (
        .pxclk      (bpf),             // inout
        .pxclk_out  (1'b0),            // input
        .pxclk_en   (1'b0),            // input
        .pxclk_in   (ibpf),            // output
        .rst        (rst),             // input
        .mclk       (mclk),            // input
        .dly_data   (data_r[23:16]),   // input[7:0] 
        .set_idelay (set_other_delay), // input
        .ld_idelay  (ld_idelay)        // input
    );
    // generate dclk output
    oddr_ss #(
        .IOSTANDARD   (PXD_IOSTANDARD),
        .SLEW         (PXD_SLEW),
        .DDR_CLK_EDGE ("OPPOSITE_EDGE"),
        .INIT         (1'b0),
        .SRTYPE       ("SYNC")
    ) dclk_i (
        .clk   (pclk), // input
        .ce    (1'b1), // input
        .rst   (rst), // input
        .set   (1'b0), // input
        .din   (2'b01), // input[1:0] 
        .tin   (1'b0), // input
        .dq    (dclk) // output
    );

    // generate ARO/TCK
    iobuf #(
        .DRIVE        (PXD_DRIVE),
        .IBUF_LOW_PWR (PXD_IBUF_LOW_PWR),
        .IOSTANDARD   (PXD_IOSTANDARD),
        .SLEW         (PXD_SLEW)
    ) aro_tck_i (
        .O  (),                        // output - currently not used
        .IO (aro),                     // inout I/O pad
        .I  (xpgmen? xfpgatck : iaro), // input
        .T  (1'b0)                     // input - always on
    );

    // generate ARST/TMS
    iobuf #(
        .DRIVE        (PXD_DRIVE),
        .IBUF_LOW_PWR (PXD_IBUF_LOW_PWR),
        .IOSTANDARD   (PXD_IOSTANDARD),
        .SLEW         (PXD_SLEW)
    ) arst_tms_i (
        .O  (),                         // output - currently not used
        .IO (arst),                     // inout I/O pad
        .I  (xpgmen? xfpgatms : iarst), // input
        .T  (1'b0)                      // input - always on
    );
    
    // generate MRST/ receive DONE
    iobuf #(
        .DRIVE        (PXD_DRIVE),
        .IBUF_LOW_PWR (PXD_IBUF_LOW_PWR),
        .IOSTANDARD   (PXD_IOSTANDARD),
        .SLEW         (PXD_SLEW)
    ) mrst_done_i (
        .O  (xfpgadone),  // output - done from external FPGA
        .IO (mrst),       // inout I/O pad
        .I  (imrst),      // input
        .T  (xpgmen)      // input - disable when reading DONE
    );
    
    // Probe programmable/ control PROGRAM pin
    reg [1:0] xpgmen_d;
    reg force_senspgm=0;
    
    iobuf #(
        .DRIVE        (PXD_DRIVE),
        .IBUF_LOW_PWR (PXD_IBUF_LOW_PWR),
        .IOSTANDARD   (PXD_IOSTANDARD),
        .SLEW         (PXD_SLEW)
    ) senspgm_i (
        .O  (senspgmin),                         // output -senspgm pin state
        .IO (senspgm),                           // inout I/O pad
        .I  (xpgmen?(~xfpgaprog):force_senspgm), // input
        .T  (~(xpgmen || force_senspgm))         // input - disable when reading DONE
    );
    // pullup for mrst (used as input for "DONE") and senspgm (grounded on sesnor boards)
    mpullup i_mrst_pullup(mrst);
    mpullup i_senspgm_pullup(senspgm);
    always @ (posedge mclk or posedge rst) begin
        if      (rst)                  force_senspgm <= 0;
        else if (xpgmen_d[1:0]==2'b10) force_senspgm <= senspgmin;
        if      (rst) xpgmen_d <= 0;
        else          xpgmen_d <= {xpgmen_d[0], xpgmen};
    end

    // generate phase-shifterd pixel clock (and 2x version) from either the internal clock (that is output to the sensor) or from the clock
    // received from the sensor (may need to reset MMCM after resetting sensor)
    mmcm_phase_cntr #(
        .PHASE_WIDTH         (PHASE_WIDTH),
        .CLKIN_PERIOD        (PCLK_PERIOD),
        .BANDWIDTH           (BANDWIDTH),
        .CLKFBOUT_MULT_F     (CLKFBOUT_MULT_SENSOR), //8
        .DIVCLK_DIVIDE       (DIVCLK_DIVIDE),
        .CLKFBOUT_PHASE      (CLKFBOUT_PHASE_SENSOR),
        .CLKOUT0_PHASE       (IPCLK_PHASE),
        .CLKOUT1_PHASE       (IPCLK2X_PHASE),
//        .CLKOUT2_PHASE          (0.000),
//        .CLKOUT3_PHASE          (0.000),
//        .CLKOUT4_PHASE          (0.000),
//        .CLKOUT5_PHASE          (0.000),
//        .CLKOUT6_PHASE          (0.000),
        .CLKFBOUT_USE_FINE_PS("FALSE"),
        .CLKOUT0_USE_FINE_PS ("TRUE"),
        .CLKOUT1_USE_FINE_PS ("TRUE"),
//        .CLKOUT2_USE_FINE_PS ("FALSE"),
//        .CLKOUT3_USE_FINE_PS ("FALSE"),
//        .CLKOUT4_USE_FINE_PS("FALSE"),
//        .CLKOUT5_USE_FINE_PS("FALSE"),
//        .CLKOUT6_USE_FINE_PS("FALSE"),
        .CLKOUT0_DIVIDE_F    (4.000),
        .CLKOUT1_DIVIDE      (8),
//        .CLKOUT2_DIVIDE      (1),
//        .CLKOUT3_DIVIDE      (1),
//        .CLKOUT4_DIVIDE(1),
//        .CLKOUT5_DIVIDE(1),
//        .CLKOUT6_DIVIDE(1),
        .COMPENSATION        ("ZHOLD"),
        .REF_JITTER1         (REF_JITTER1),
        .REF_JITTER2         (REF_JITTER2),
        .SS_EN               (SS_EN),
        .SS_MODE             (SS_MODE),
        .SS_MOD_PERIOD       (SS_MOD_PERIOD),
        .STARTUP_WAIT        ("FALSE")
    ) mmcm_phase_cntr_i (
        .clkin1              (pclk),            // input
        .clkin2              (ibpf),            // input
        .clkinsel            (sel_ext_clk),     // input
        .clkfbin             (clk_fb),          // input
        .rst                 (rst_mmcm),        // input
        .pwrdwn              (1'b0),            // input
        .psclk               (mclk),            // input
        .ps_we               (set_other_delay), // input
        .ps_din              (data_r[31:24]),   // input[7:0] 
        .ps_ready            (ps_rdy),          // output
        .ps_dout             (ps_out),          // output[7:0] reg 
        .clkout0             (ipclk_pre),       // output
        .clkout1             (ipclk2x_pre),     // output
        .clkout2(), // output
        .clkout3(), // output
        .clkout4(), // output
        .clkout5(), // output
        .clkout6(), // output
        .clkout0b(), // output
        .clkout1b(), // output
        .clkout2b(), // output
        .clkout3b(), // output
        .clkfbout            (clk_fb), // output
        .clkfboutb(), // output
        .locked              (locked_pxd_mmcm),
        .clkin_stopped       (clkin_pxd_stopped_mmcm), // output
        .clkfb_stopped       (clkfb_pxd_stopped_mmcm) // output
         // output
    );

BUFR ipclk_bufr_i   (.O(ipclk),   .CE(), .CLR(), .I(ipclk_pre));
BUFR ipclk2x_bufr_i (.O(ipclk2x), .CE(), .CLR(), .I(ipclk2x_pre));

623 624 625

endmodule