mult_saxi_wr_pointers.v 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*!
 * <b>Module:</b>mult_saxi_wr_pointers
 * @file mult_saxi_wr_pointers.v
 * @date 2015-07-10  
 * @author Andrey Filippov     
 *
 * @brief Process pointers for mult_saxi_wr
 *
 * @copyright Copyright (c) 2015 Elphel, Inc .
 *
 * <b>License:</b>
12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 * mult_saxi_wr_pointers.v is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 *  mult_saxi_wr_pointers.v is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/> .
25 26 27 28 29 30
 *
 * Additional permission under GNU GPL version 3 section 7:
 * If you modify this Program, or any covered work, by linking or combining it
 * with independent modules provided by the FPGA vendor only (this permission
 * does not extend to any 3-rd party modules, "soft cores" or macros) under
 * different license terms solely for the purpose of generating binary "bitstream"
31
 * files and/or simulating the code, the copyright holders of this Program give
32 33
 * you the right to distribute the covered work without those independent modules
 * as long as the source code for them is available from the FPGA vendor free of
Andrey Filippov's avatar
Andrey Filippov committed
34
 * charge, and there is no dependence on any encrypted modules for simulating of
35 36 37
 * the combined code. This permission applies to you if the distributed code
 * contains all the components and scripts required to completely simulate it
 * with at least one of the Free Software programs.
38
 */
39 40 41 42 43 44 45 46 47
`timescale 1ns/1ps

module  mult_saxi_wr_pointers#(
    parameter MULT_SAXI_BSLOG0 =          4,     // number of bits to represent burst size (4 - b.s. = 16, 0 - b.s = 1)
    parameter MULT_SAXI_BSLOG1 =          4,
    parameter MULT_SAXI_BSLOG2 =          4,
    parameter MULT_SAXI_BSLOG3 =          4
)(
    input                         mclk,             // system clock
48
    input                         mrst,             //
49
    input                         aclk,             // global clock to run s_axi (@150MHz?)
50
    input                         arst,             //
51 52 53 54
    input                   [3:0] chn_en_mclk,      // enable this channle ( 0 - reset)
    input                  [29:0] sa_len_di,        // input data to write pointers address/data
    input                  [ 2:0] sa_len_wa,        // channel address to write sa/lengths
    input                         sa_len_we,        // write enable sa/length data
55
    input                         irq_log_we,       // write log2 of number of written dwords to generate interrupt 
56 57 58 59 60 61
    input                  [ 1:0] chn,              // selected channel number, valid with start
    input                         start,            // start address generation/pointer increment
    output                        busy,             // suspend new accesses (check latencies)
    // provide address and burst length for AXI @aclk, will stay until ackn
    output reg             [29:0] axi_addr,
    output reg              [3:0] axi_len,
62
    // write data to external pointer memory (to be read out by PIO) @ aclk
63 64 65
    // alternatively - read out directly from ptr_ram?
    output                 [29:0] pntr_wd, // @aclk
    output                  [1:0] pntr_wa,
66 67
    output                        pntr_we,
    output                  [3:0] irqs             // @mclk, single-clock pulses to generate channel interrupts   
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
);
    reg   [3:0] chn_en_mclk_r;
    reg   [3:0] chn_en_aclk;
    wire        rst =      !(|chn_en_mclk);    // just for simulation
    wire        rst_aclk = !(|chn_en_aclk);    // just for simulation
    wire  [3:0] chn_wr_mclk = {(sa_len_wa[2:1]==3),(sa_len_wa[2:1]==2),(sa_len_wa[2:1]==1),(sa_len_wa[2:1]==0)};
    wire  [3:0] rst_pntr_mclk =  (chn_en_mclk & ~chn_en_mclk_r) | (sa_len_we ? chn_wr_mclk : 4'b0);
    wire  [3:0] rst_pntr_aclk;
    wire        start_resetting_w;
    reg   [1:0] resetting;              // resetting chunk_pointer and eof_pointer
    reg         busy_r;
    reg   [3:0] reset_rq;               // request to reset pointers when ready
    reg   [3:0] reset_rq_pri;           // one-hot reset rq 
    wire  [1:0] reset_rq_enc;           // encoded reset_rq_pri
    wire        en_aclk = |chn_en_aclk;
    reg   [1:0] chn_r;                  // registered channel being processed (or reset)
    reg   [1:0] seq;                    // 1-hot sequence of address generation
    wire [29:0] sa_len_ram_out;
86 87 88 89
    reg   [4:0] irq_log_r;
    wire [29:0] irq_log_decoded_w;
    reg         gen_irq; 
    reg   [3:0] irqs_aclk;
90 91 92 93 94 95 96
    wire [29:0] ptr_ram_out;
    wire  [2:0] sa_len_ra;
    reg         ptr_we;                 // write to the pointer memory
    reg  [29:0] ptr_inc;                // incremented pointer
    reg  [30:0] ptr_rollover;
    reg   [4:0] burst_size;             // ROM
    wire [29:0] ptr_wd;
97
    reg         arst_d;                 //delayed version of arst
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    
    assign reset_rq_enc = {reset_rq_pri[3] | reset_rq_pri[2],
                           reset_rq_pri[3] | reset_rq_pri[1]};
    
    assign start_resetting_w = en_aclk && !busy_r && !resetting[0] && (|reset_rq);
    assign busy = busy_r; //?
    assign ptr_wd = resetting[1] ? 30'b0 : (ptr_rollover[30]? ptr_inc : ptr_rollover[29:0]);
    
    assign pntr_wd = ptr_wd;
    assign pntr_we = ptr_we;
    assign pntr_wa = chn_r;
    
    assign sa_len_ra = {chn_r,seq[1]};
    always @ (posedge mclk) begin
        chn_en_mclk_r <= chn_en_mclk;
    end
    
//  8x30 RAM for address/length    
    reg  [29:0] sa_len_ram[0:7];           // start chunk/num cunks in a buffer (write port @mclk)
117 118
//  4*5 RAM to store number of dword conters that need to chnage to generate interrupt    
    reg  [4:0] irq_log_ram[0:3];
119
    always @ (posedge mclk) begin
120 121
        if (sa_len_we)  sa_len_ram[sa_len_wa] <=       sa_len_di;
        if (irq_log_we) irq_log_ram[sa_len_wa[1:0]] <= sa_len_di[4:0];
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    end
    assign sa_len_ram_out = sa_len_ram[sa_len_ra];
// 4 x 30 RAM for current pointers
    reg  [29:0] ptr_ram[0:3];           // start chunk/num cunks in a buffer (write port @mclk)
    always @ (posedge aclk) begin
        if (ptr_we) ptr_ram[chn_r] <= ptr_wd; 
    end
    assign ptr_ram_out = ptr_ram[chn_r];

    always @ (posedge aclk) if (start) case (chn) // small ROM
        'h0 : burst_size <= 1 << MULT_SAXI_BSLOG0;
        'h1 : burst_size <= 1 << MULT_SAXI_BSLOG1;
        'h2 : burst_size <= 1 << MULT_SAXI_BSLOG2;
        'h3 : burst_size <= 1 << MULT_SAXI_BSLOG3;
    endcase
    
    always @ (posedge aclk) begin
        chn_en_aclk <= chn_en_mclk;
140 141 142 143 144 145
        arst_d <= arst; // probably not needed?
        
        if (arst) reset_rq <= ~0; // or ~0 ? Add auto reset after
//        else      reset_rq <= {4{arst_d}} | rst_pntr_aclk | (reset_rq  & ~({4{resetting[0] &~ resetting[1]}} & reset_rq_pri));
        else      reset_rq <= rst_pntr_aclk | (reset_rq  & ~({4{resetting[0] &~ resetting[1]}} & reset_rq_pri));
                
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
        if (start_resetting_w)  reset_rq_pri <= {reset_rq[3] & ~(|reset_rq[2:0]),
                                                 reset_rq[2] & ~(|reset_rq[1:0]),
                                                 reset_rq[1] &     ~reset_rq[0],
                                                 reset_rq[0]};
        if (rst_aclk) resetting <= 0;
        else          resetting <= {resetting[0], start_resetting_w | (resetting[0] & ~resetting[1])};
        
        if (rst_aclk)                        busy_r <= 0;
        else if (start_resetting_w || start) busy_r <= 1;
        else if (ptr_we)                     busy_r <= 0;

        if (rst_aclk)                        seq <= 0;
        else                                 seq <= {seq[0],start};
        
        if (resetting == 2'b1)               chn_r[1:0] <= reset_rq_enc; // during reset pointers
        else if (start)                      chn_r[1:0] <= chn;          // during normal address generation
        
        if (seq[0]) axi_addr <= sa_len_ram_out + ptr_ram_out;
        if (seq[0]) case (chn_r) // small ROM
            'h0 : axi_len <= (1 << MULT_SAXI_BSLOG0) - 1;
            'h1 : axi_len <= (1 << MULT_SAXI_BSLOG1) - 1;
            'h2 : axi_len <= (1 << MULT_SAXI_BSLOG2) - 1;
            'h3 : axi_len <= (1 << MULT_SAXI_BSLOG3) - 1;
        endcase
        
        if (seq[0]) ptr_inc <= ptr_ram_out + burst_size;

        if (seq[1]) ptr_rollover <= {1'b0, ptr_inc} -sa_len_ram_out; //sa_len_ram_out is now length
        
        ptr_we <= resetting[0] || seq[1];
        
177 178 179
        if (seq[0]) irq_log_r <= irq_log_ram[chn_r];
        gen_irq <= seq[1] && (|((ptr_inc ^ ptr_ram_out) & irq_log_decoded_w));
        irqs_aclk <= gen_irq? {chn_r[1] & chn_r[0], chn_r[1] & ~chn_r[0], ~chn_r[1] & chn_r[0], ~chn_r[1] & ~chn_r[0]}:4'b0; 
180 181 182
        // add one extra register layer here?
    
    end
183 184 185 186 187 188
    generate
        genvar i;
            for (i = 0; i < 30; i = i+1) begin: decoder_block
                assign irq_log_decoded_w[i] = i >= irq_log_r;
            end
    endgenerate
189 190 191 192 193
    pulse_cross_clock #(.EXTRA_DLY(1)) rst_pntr_aclk0_i (.rst(rst), .src_clk(mclk), .dst_clk(aclk), .in_pulse(rst_pntr_mclk[0]), .out_pulse(rst_pntr_aclk[0]),.busy());
    pulse_cross_clock #(.EXTRA_DLY(1)) rst_pntr_aclk1_i (.rst(rst), .src_clk(mclk), .dst_clk(aclk), .in_pulse(rst_pntr_mclk[1]), .out_pulse(rst_pntr_aclk[1]),.busy());
    pulse_cross_clock #(.EXTRA_DLY(1)) rst_pntr_aclk2_i (.rst(rst), .src_clk(mclk), .dst_clk(aclk), .in_pulse(rst_pntr_mclk[2]), .out_pulse(rst_pntr_aclk[2]),.busy());
    pulse_cross_clock #(.EXTRA_DLY(1)) rst_pntr_aclk3_i (.rst(rst), .src_clk(mclk), .dst_clk(aclk), .in_pulse(rst_pntr_mclk[3]), .out_pulse(rst_pntr_aclk[3]),.busy());

194 195 196 197 198 199
    pulse_cross_clock irqs0_i (.rst(rst_aclk), .src_clk(aclk), .dst_clk(mclk), .in_pulse(irqs_aclk[0]), .out_pulse(irqs[0]),.busy());
    pulse_cross_clock irqs1_i (.rst(rst_aclk), .src_clk(aclk), .dst_clk(mclk), .in_pulse(irqs_aclk[1]), .out_pulse(irqs[1]),.busy());
    pulse_cross_clock irqs2_i (.rst(rst_aclk), .src_clk(aclk), .dst_clk(mclk), .in_pulse(irqs_aclk[2]), .out_pulse(irqs[2]),.busy());
    pulse_cross_clock irqs3_i (.rst(rst_aclk), .src_clk(aclk), .dst_clk(mclk), .in_pulse(irqs_aclk[3]), .out_pulse(irqs[3]),.busy());


200 201
endmodule