x393_sensor.py 104 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
from __future__ import division
from __future__ import print_function

'''
# Copyright (C) 2015, Elphel.inc.
# Class to control 10393 sensor-to-memory channel (including histograms)  
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http:#www.gnu.org/licenses/>.

@author:     Andrey Filippov
@copyright:  2015 Elphel, Inc.
@license:    GPLv3.0+
@contact:    andrey@elphel.coml
@deffield    updated: Updated
'''
__author__ = "Andrey Filippov"
__copyright__ = "Copyright 2015, Elphel, Inc."
__license__ = "GPL"
__version__ = "3.0+"
__maintainer__ = "Andrey Filippov"
__email__ = "andrey@elphel.com"
__status__ = "Development"
#import sys
#import pickle
35 36
import struct

37 38 39 40 41
from x393_mem                import X393Mem
import x393_axi_control_status

import x393_utils

42
import time
43
import vrlg
44
import x393_mcntrl
45 46 47
#import x393_sens_cmprs
SENSOR_INTERFACE_PARALLEL = "PAR12"
SENSOR_INTERFACE_HISPI =    "HISPI"
48

49 50 51 52 53 54
class X393Sensor(object):
    DRY_MODE= True # True
    DEBUG_MODE=1
    x393_mem=None
    x393_axi_tasks=None #x393X393AxiControlStatus
    x393_utils=None
55

56 57 58 59 60 61 62
    verbose=1
    def __init__(self, debug_mode=1,dry_mode=True, saveFileName=None):
        self.DEBUG_MODE=  debug_mode
        self.DRY_MODE=    dry_mode
        self.x393_mem=            X393Mem(debug_mode,dry_mode)
        self.x393_axi_tasks=      x393_axi_control_status.X393AxiControlStatus(debug_mode,dry_mode)
        self.x393_utils=          x393_utils.X393Utils(debug_mode,dry_mode, saveFileName) # should not overwrite save file path
63
        
64 65 66 67
        try:
            self.verbose=vrlg.VERBOSE
        except:
            pass
68 69 70 71 72
    def getSensorInterfaceType(self):
        """
        Get sensor interface type by reading status register 0xfe that is set to 0 for parallel and 1 for HiSPi
        @return "PAR12" or "HISPI"
        """
73
        if  self.DRY_MODE is True:
74
            return SENSOR_INTERFACE_PARALLEL
75 76
        return (SENSOR_INTERFACE_PARALLEL, SENSOR_INTERFACE_HISPI)[self.x393_axi_tasks.read_status(address=0xfe)] # "PAR12" , "HISPI"
        
77 78 79 80 81 82
    def program_status_sensor_i2c( self,
                                   num_sensor,
                                   mode,     # input [1:0] mode;
                                   seq_num): # input [5:0] seq_num;
        """
        Set status generation mode for selected sensor port i2c control
83
        @param num_sensor - number of the sensor port (0..3) or all
84 85 86 87
        @param mode -       status generation mode:
                                  0: disable status generation,
                                  1: single status request,
                                  2: auto status, keep specified seq number,
88
                                  3: auto, inc sequence number 
89 90
        @param seq_number - 6-bit sequence number of the status message to be sent
        """
91 92 93 94 95 96 97 98 99
        try:
            if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function
                for num_sensor in range(4):
                    self.program_status_sensor_i2c (num_sensor = num_sensor,
                                                    mode =       mode,
                                                    seq_num =    seq_num)
                return
        except:
            pass
100

101
        self.x393_axi_tasks.program_status (vrlg.SENSOR_GROUP_ADDR  + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSI2C_CTRL_RADDR,
102 103 104 105 106 107 108 109 110 111
                             vrlg.SENSI2C_STATUS,
                             mode,
                             seq_num)# //MCONTR_PHY_STATUS_REG_ADDR=          'h0,

    def program_status_sensor_io( self,
                                  num_sensor,
                                  mode,     # input [1:0] mode;
                                  seq_num): # input [5:0] seq_num;
        """
        Set status generation mode for selected sensor port io subsystem
112
        @param num_sensor - number of the sensor port (0..3) or all
113 114 115 116
        @param mode -       status generation mode:
                                  0: disable status generation,
                                  1: single status request,
                                  2: auto status, keep specified seq number,
117
                                  3: auto, inc sequence number 
118 119
        @param seq_number - 6-bit sequence number of the status message to be sent
        """
120 121 122 123 124 125 126 127 128
        try:
            if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function
                for num_sensor in range(4):
                    self.program_status_sensor_io (num_sensor = num_sensor,
                                                   mode =       mode,
                                                   seq_num =    seq_num)
                return
        except:
            pass
129 130 131 132 133 134

        self.x393_axi_tasks.program_status (
                             vrlg.SENSOR_GROUP_ADDR  + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSIO_RADDR,
                             vrlg.SENSIO_STATUS,
                             mode,
                             seq_num)# //MCONTR_PHY_STATUS_REG_ADDR=          'h0,
135
        
136
    def get_status_sensor_io ( self,
137
                              num_sensor="All"):
138 139 140
        """
        Read sensor_io status word (no sync)
        @param num_sensor - number of the sensor port (0..3)
141
        @return sensor_io status
142
        """
143 144 145 146
        try:
            if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function
                rslt = []
                for num_sensor in range(4):
147
                    rslt.append(self.get_status_sensor_io (num_sensor = num_sensor))
148 149 150
                return rslt
        except:
            pass
151 152 153 154
        return self.x393_axi_tasks.read_status(
                    address=(vrlg.SENSI2C_STATUS_REG_BASE + num_sensor * vrlg.SENSI2C_STATUS_REG_INC + vrlg.SENSIO_STATUS_REG_REL))       

    def print_status_sensor_io (self,
155
                                num_sensor="All"):
156 157 158 159
        """
        Print sensor_io status word (no sync)
        @param num_sensor - number of the sensor port (0..3)
        """
160 161 162 163 164 165 166 167
        try:
            if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function
                for num_sensor in range(4):
                    print ("\n ==== Sensor %d"%(num_sensor))
                    self.print_status_sensor_io (num_sensor = num_sensor)
                return
        except:
            pass
168 169
        status= self.get_status_sensor_io(num_sensor)
        print ("print_status_sensor_io(%d):"%(num_sensor))
170
#last_in_line_1cyc_mclk, dout_valid_1cyc_mclk
171
        """ 
172 173 174 175 176 177 178
        print ("   last_in_line_1cyc_mclk = %d"%((status>>23) & 1))        
        print ("   dout_valid_1cyc_mclk =   %d"%((status>>22) & 1))        
        print ("   alive_hist0_gr =         %d"%((status>>21) & 1))        
        print ("   alive_hist0_rq =         %d"%((status>>20) & 1))        
        print ("   sof_out_mclk =           %d"%((status>>19) & 1))        
        print ("   eof_mclk =               %d"%((status>>18) & 1))        
        print ("   sof_mclk =               %d"%((status>>17) & 1))        
179 180
        print ("   sol_mclk =               %d"%((status>>16) & 1))
        """
181
        """
182 183 184 185 186 187
        #Folowing 5 bits may be just temporarily available        
        print ("   irst =                   %d"%((status>>20) & 1))
        print ("async_prst_with_sens_mrst = %d"%((status>>19) & 1))
        print ("   imrst =                  %d"%((status>>18) & 1))
        print ("   rst_mmcm =               %d"%((status>>17) & 1))
        print ("   pxd_out_pre[1] =         %d"%((status>>16) & 1))
188 189 190
        """
        
        print ("   shifted TDO              %d"%((status>>16) & 0xff))
191
        
192 193
        print ("   vact_alive =             %d"%((status>>15) & 1))
        print ("   hact_ext_alive =         %d"%((status>>14) & 1))
194
#        print ("   hact_alive =             %d"%((status>>13) & 1))
195
        print ("   hact_run =               %d"%((status>>13) & 1))
196 197 198
        print ("   locked_pxd_mmcm =        %d"%((status>>12) & 1))
        print ("   clkin_pxd_stopped_mmcm = %d"%((status>>11) & 1))
        print ("   clkfb_pxd_stopped_mmcm = %d"%((status>>10) & 1))
199 200
        print ("   xfpgadone =              %d"%((status>> 9) & 1))
        print ("   ps_rdy =                 %d"%((status>> 8) & 1))
201 202 203 204 205 206
        print ("   ps_out =                 %d"%((status>> 0)  & 0xff))
        print ("   xfpgatdo =               %d"%((status>>25) & 1))
        print ("   senspgmin =              %d"%((status>>24) & 1))
        print ("   seq =                    %d"%((status>>26) & 0x3f))
#vact_alive, hact_ext_alive, hact_alive
    def get_status_sensor_i2c ( self,
207
                              num_sensor="All"):
208 209 210 211 212
        """
        Read sensor_i2c status word (no sync)
        @param num_sensor - number of the sensor port (0..3)
        @return sesnor_io status
        """
213 214 215 216 217 218 219 220
        try:
            if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function
                rslt = []
                for num_sensor in range(4):
                    rslt.append(self.get_status_sensor_i2c (num_sensor = num_sensor))
                return rslt
        except:
            pass
221 222 223 224
        return self.x393_axi_tasks.read_status(
                    address=(vrlg.SENSI2C_STATUS_REG_BASE + num_sensor * vrlg.SENSI2C_STATUS_REG_INC + vrlg.SENSI2C_STATUS_REG_REL))       

    def print_status_sensor_i2c (self,
225
                                num_sensor="All"):
226 227 228 229
        """
        Print sensor_i2c status word (no sync)
        @param num_sensor - number of the sensor port (0..3)
        """
230 231 232 233 234 235 236 237
        try:
            if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function
                for num_sensor in range(4):
                    print ("\n ==== Sensor %d"%(num_sensor))
                    self.print_status_sensor_i2c (num_sensor = num_sensor)
                return
        except:
            pass
238 239
        status= self.get_status_sensor_i2c(num_sensor)
        print ("print_status_sensor_i2c(%d):"%(num_sensor))
240 241 242 243 244 245 246 247
        print ("   reset_on =               %d"%((status>>17) & 1))
        print ("   req_clr =                %d"%((status>>16) & 1))
        print ("   frame_num =              %d"%((status>>12) & 0xf))
        print ("   alive_fs =               %d"%((status>>11) & 1))
        print ("   busy =                   %d"%((status>>10) & 1))
        print ("   i2c_fifo_lsb =           %d"%((status>> 9) & 1))
        print ("   i2c_fifo_nempty =        %d"%((status>> 8) & 1))
        print ("   i2c_fifo_dout =          %d"%((status>> 0) & 0xff))
248 249 250 251
        
        print ("   sda_in =                 %d"%((status>>25) & 1))
        print ("   scl_in =                 %d"%((status>>24) & 1))
        print ("   seq =                    %d"%((status>>26) & 0x3f))
252 253 254

# Functions used by sensor-related tasks
    def func_sensor_mode (self,
255 256 257 258
                          hist_en =   None,
                          hist_nrst = None, 
                          chn_en =    None, 
                          bits16 =    None):
259 260 261 262 263 264 265 266 267 268 269
        """
        Combine parameters into sensor mode control word
        @param hist_en -   bit mask to enable histogram sub-modules, when 0 - disable after processing
                           the started frame
        @param hist_nrst - bit mask to immediately reset histogram sub-module (if 0) 
        @param chn_en    - enable sensor channel (False - reset) 
        @param bits16)   - True - 16 bpp mode, false - 8 bpp mode (bypass gamma). Gamma-processed data
                           is still used for histograms
        @return: sensor mode control word
        """
        rslt = 0;
270
        if (not hist_en is None) and (not hist_nrst is None):
271 272 273 274 275 276 277 278 279
            rslt |= (hist_en & 0xf) <<   vrlg.SENSOR_HIST_EN_BITS
            rslt |= (hist_nrst & 0xf) << vrlg.SENSOR_HIST_NRST_BITS
            rslt |= 1 << vrlg.SENSOR_HIST_BITS_SET;
        if not chn_en is None:    
            rslt |= ((0,1)[chn_en]) <<   vrlg.SENSOR_CHN_EN_BIT
            rslt |= 1 <<                 vrlg.SENSOR_CHN_EN_BIT_SET
        if not bits16 is None:    
            rslt |= ((0,1)[bits16]) <<   vrlg.SENSOR_16BIT_BIT
            rslt |= 1 <<                 vrlg.SENSOR_16BIT_BIT_SET
280 281 282 283 284
        return rslt
    
    def func_sensor_i2c_command (self,
                                 rst_cmd =   False,
                                 run_cmd =   None,
285 286 287
                                 active_sda = None, 
                                 early_release_0 = None,
                                 advance_FIFO = None,
288 289
                                 sda = None,
                                 scl = None,
290
                                 verbose = 1):
291 292 293
        """
        @param rst_cmd - reset all FIFO (takes 16 clock pulses), also - stops i2c until run command
        @param run_cmd - True - run i2c, False - stop i2c (needed before software i2c), None - no change
294 295 296
        @param active_sda - pull-up SDA line during second half of SCL=0, when needed and possible 
        @param early_release_0 -  release SDA=0 immediately after the end of SCL=1 (SDA hold will be provided by week pullup)
        @param advance_FIFO - advance i2c read FIFO
297 298
        @param sda - control SDA line (stopped mode only): I<nput>, L<ow> or 0, High or 1
        @param scl - control SCL line (stopped mode only): I<nput>, L<ow> or 0, High or 1
299 300 301
        @param verbose -          verbose level
        @return combined command word.
        active_sda and early_release_0 should be defined both to take effect (any of the None skips setting these parameters)
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
        """
        def parse_sda_scl(val):
            if val is None:
                return 0
            elif isinstance(val, (unicode,str)):
                if not val:
                    return 0
                if val[0] in "lL0":
                    return 1
                elif val[0] in "hH1":
                    return 2
                elif val[0] in "iI":
                    return 3
                else:
                    print("Unrecognized value for SDA/SCL: %s, should be in lL0hH1iI (or None/ empty string)"%(val))
                    return 0
            else:
                if val == 0:
                    return 1
                elif val == 1:
                    return 2
                else:
                    return 3
  
Andrey Filippov's avatar
Andrey Filippov committed
326
        if verbose>1:
327 328 329
            print ("func_sensor_i2c_command(): rst_cmd= ",rst_cmd,", run_cmd=",run_cmd,", active_sda = ",active_sda,", early_release_0 = ",early_release_0,
                   ", sda=",sda,", scl=",scl)
            
330 331 332 333 334
        rslt = 0
        rslt |= (0,1)[rst_cmd] << vrlg.SENSI2C_CMD_RESET
        if not run_cmd is None:
            rslt |= 1 <<                 vrlg.SENSI2C_CMD_RUN
            rslt |= (0,1)[run_cmd] <<    (vrlg.SENSI2C_CMD_RUN - vrlg.SENSI2C_CMD_RUN_PBITS)
335 336 337 338 339 340
        if (not active_sda is None) and (not early_release_0 is None):
            rslt |= (0,1)[early_release_0] << vrlg.SENSI2C_CMD_ACIVE_EARLY0
            rslt |= (0,1)[active_sda] << vrlg.SENSI2C_CMD_ACIVE_SDA
            rslt |= 1 <<                 vrlg.SENSI2C_CMD_ACIVE
        if advance_FIFO:
            rslt |= 1 << vrlg.SENSI2C_CMD_FIFO_RD
341 342 343 344
        rslt |= parse_sda_scl(sda) <<  vrlg.SENSI2C_CMD_SOFT_SDA  
        rslt |= parse_sda_scl(scl) <<  vrlg.SENSI2C_CMD_SOFT_SCL  
        if verbose>0:
            print (" => 0x%x"%(rslt))
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361

        return rslt        

    def func_sensor_i2c_table_reg_wr (self,
                                 slave_addr,
                                 rah,
                                 num_bytes, 
                                 bit_delay,
                                 verbose = 1):
        """
        @param slave_addr - 7-bit i2c slave address
        @param rah -        register address high byte (bits [15:8]) optionally used for register write commands
        @param num_bytes -  number of bytes to send (including register address bytes) 1..10 
        @param bit_delay -  number of mclk clock cycle in 1/4 of the SCL period
        @param verbose -    verbose level
        @return combined table data word.
        """  
362
        if verbose>1:
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
            print ("func_sensor_i2c_table_reg_wr(): slave_addr= ",slave_addr,", rah=",rah,", num_bytes = ",num_bytes,", bit_delay = ",bit_delay)
        rslt = 0
        rslt |= (slave_addr & ((1 << vrlg.SENSI2C_TBL_SA_BITS)   - 1)) << vrlg.SENSI2C_TBL_SA
        rslt |= (rah &        ((1 << vrlg.SENSI2C_TBL_RAH_BITS)  - 1)) << vrlg.SENSI2C_TBL_RAH
        rslt |= (num_bytes &  ((1 << vrlg.SENSI2C_TBL_NBWR_BITS) - 1)) << vrlg.SENSI2C_TBL_NBWR
        rslt |= (bit_delay &  ((1 << vrlg.SENSI2C_TBL_DLY_BITS)  - 1)) << vrlg.SENSI2C_TBL_DLY
        return rslt        

    def func_sensor_i2c_table_reg_rd (self,
                                 two_byte_addr,
                                 num_bytes_rd,
                                 bit_delay,
                                 verbose = 1):
        """
        @param two_byte_addr - Use a 2-byte register address for read command (False - single byte)
        @param num_bytes_rd -  Number of bytes to read (1..8)
        @param bit_delay -     number of mclk clock cycle in 1/4 of the SCL period
        @param verbose -       verbose level
        @return combined table data word.
        """  
        if verbose>0:
            print ("func_sensor_i2c_table_reg_rd(): two_byte_addr= ",two_byte_addr,", num_bytes_rd=",num_bytes_rd,", bit_delay = ",bit_delay)
        rslt = 0
        rslt |= 1 << vrlg.SENSI2C_TBL_RNWREG # this is read register command (0 - write register)
        if two_byte_addr > 1:
            two_byte_addr = 1
389
        rslt |= (0,1)[two_byte_addr]                                      << vrlg.SENSI2C_TBL_NABRD
390 391
        rslt |= (num_bytes_rd &  ((1 << vrlg.SENSI2C_TBL_NBRD_BITS) - 1)) << vrlg.SENSI2C_TBL_NBRD
        rslt |= (bit_delay &     ((1 << vrlg.SENSI2C_TBL_DLY_BITS)  - 1)) << vrlg.SENSI2C_TBL_DLY
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
        return rslt        

    def func_sensor_io_ctl (self,
                            mrst = None,
                            arst = None,
                            aro  = None,
                            mmcm_rst = None,
                            clk_sel = None,
                            set_delays = False,
                            quadrants = None):
        """
        Combine sensor I/O control parameters into a control word 
        @param mrst -  True - activate MRST signal (low), False - deactivate MRST (high), None - no change
        @param arst -  True - activate ARST signal (low), False - deactivate ARST (high), None - no change
        @param aro -   True - activate ARO signal (low), False - deactivate ARO (high), None - no change
        @param mmcm_rst - True - activate MMCM reset, False - deactivate MMCM reset, None - no change (needed after clock change/interruption)
        @param clk_sel - True - use pixel clock from the sensor, False - use internal clock (provided to the sensor), None - no chnage
        @param set_delays - (self-clearing) load all pre-programmed delays for the sensor pad inputs 
        @param quadrants -  90-degree shifts for data [1:0], hact [3:2] and vact [5:4] (6'h01), None - no change
        @return sensor i/o control word
        """
        rslt = 0
        if not mrst is None:
415
            rslt |= (3,2)[mrst] <<     vrlg.SENS_CTRL_MRST
416
        if not arst is None:
417
            rslt |= (3,2)[arst] <<     vrlg.SENS_CTRL_ARST
418
        if not aro is None:
419
            rslt |= (3,2)[aro]  <<     vrlg.SENS_CTRL_ARO
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
        if not mmcm_rst is None:
            rslt |= (2,3)[mmcm_rst] << vrlg.SENS_CTRL_RST_MMCM
        if not clk_sel is None:
            rslt |= (2,3)[clk_sel] <<  vrlg.SENS_CTRL_EXT_CLK
        rslt |= (0,1)[set_delays] <<   vrlg.SENS_CTRL_LD_DLY

        if not quadrants is None:
            rslt |= 1 <<  vrlg.SENS_CTRL_QUADRANTS_EN
            rslt |= (quadrants & ((1 << vrlg.SENS_CTRL_QUADRANTS_WIDTH) - 1)) <<  vrlg.SENS_CTRL_QUADRANTS
        return rslt

    def func_sensor_jtag_ctl(self,
                             pgmen = None,    # <2: keep PGMEN, 2 - PGMEN low (inactive),  3 - high (active) enable JTAG control
                             prog =  None,    # <2: keep prog, 2 - prog low (active),  3 - high (inactive) ("program" pin control)
                             tck =   None,    # <2: keep TCK,  2 - set TCK low,  3 - set TCK high
                             tms =   None,    # <2: keep TMS,  2 - set TMS low,  3 - set TMS high
                             tdi =   None):   # <2: keep TDI,  2 - set TDI low,  3 - set TDI high
        """
        JTAG interface for programming external sensor multiplexer using shared signal lines on the sensor ports
        @param pgmen - False PGMEN low (inactive),  True - high (active) enable JTAG control, None - keep previous value
        @param prog -  False prog low (active),  True - high (inactive) ("program" pin control), None - keep previous value
        @param tck =   False - set TCK low,  True - set TCK high, None - keep previous value
        @param tms =   False - set TMS low,  True - set TMS high, None - keep previous value
        @param tdi =   False - set TDI low,  True - set TDI high, None - keep previous value
        @return combined control word       
        """
        rslt = 0
        if not pgmen is None:
            rslt |= (2,3)[pgmen] << vrlg.SENS_JTAG_PGMEN
        if not prog is None:
            rslt |= (2,3)[prog] <<  vrlg.SENS_JTAG_PROG
        if not tck is None:
            rslt |= (2,3)[tck] <<   vrlg.SENS_JTAG_TCK
        if not tms is None:
            rslt |= (2,3)[tms] <<   vrlg.SENS_JTAG_TMS
        if not tdi is None:
            rslt |= (2,3)[tdi] <<   vrlg.SENS_JTAG_TDI
        return rslt

    def func_sensor_gamma_ctl(self,
460 461 462 463 464
                              bayer =      None,
                              table_page = None,
                              en_input =   None,
                              repet_mode = None, #  Normal mode, single trigger - just for debugging  TODO: re-assign?
                              trig =       False):
465 466 467 468 469 470 471 472 473
        """
        @param bayer - Bayer shift (0..3)
        @param table_page - Gamma table page
        @param en_input -   Enable input
        @param repet_mode - Repetitive (normal) mode. Set False for debugging, then use trig for single frame trigger
        @param trig       - single trigger (when repet_mode is False), debug feature
        @return combined control word
        """
        rslt = 0
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
        if not bayer is None:
            rslt |= (bayer & 3) <<       vrlg.SENS_GAMMA_MODE_BAYER
            rslt |=          1  <<       vrlg.SENS_GAMMA_MODE_BAYER_SET
            
        if not table_page is None:
            rslt |= (0,1)[table_page] << vrlg.SENS_GAMMA_MODE_PAGE
            rslt |=                1  << vrlg.SENS_GAMMA_MODE_PAGE_SET

        if not en_input is None:
            rslt |= (0,1)[en_input] <<   vrlg.SENS_GAMMA_MODE_EN
            rslt |=              1  <<   vrlg.SENS_GAMMA_MODE_EN_SET
            
        if not repet_mode is None:
            rslt |= (0,1)[repet_mode] << vrlg.SENS_GAMMA_MODE_REPET
            rslt |=                1  << vrlg.SENS_GAMMA_MODE_REPET_SET
            
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
        rslt |= (0,1)[trig] <<       vrlg.SENS_GAMMA_MODE_TRIG
        return rslt

    def func_status_addr_sensor_i2c(self,
                                    num_sensor):
        """
        @param num_sensor - sensor port number (0..3)
        @return status register address for i2c for selected sensor port
        """
        return (vrlg.SENSI2C_STATUS_REG_BASE + num_sensor * vrlg.SENSI2C_STATUS_REG_INC + vrlg.SENSI2C_STATUS_REG_REL);

    def func_status_addr_sensor_io(self,
                                    num_sensor):
        """
        @param num_sensor - sensor port number (0..3)
        @return status register address for I/O for selected sensor port
        """
        return (vrlg.SENSI2C_STATUS_REG_BASE + num_sensor * vrlg.SENSI2C_STATUS_REG_INC + vrlg.SENSIO_STATUS_REG_REL);
    
    def set_sensor_mode (self,
                         num_sensor,
511 512 513 514
                         hist_en =   None,
                         hist_nrst = None, 
                         chn_en =    None, 
                         bits16 =    None):
515 516 517 518 519 520 521 522 523 524
        """
        Set sensor mode
        @param num_sensor - sensor port number (0..3)
        @param hist_en -   bit mask to enable histogram sub-modules, when 0 - disable after processing
                           the started frame
        @param hist_nrst - bit mask to immediately reset histogram sub-module (if 0) 
        @param chn_en    - enable sensor channel (False - reset) 
        @param bits16)   - True - 16 bpp mode, false - 8 bpp mode (bypass gamma). Gamma-processed data
                           is still used for histograms
        """
525 526 527 528 529 530 531 532 533 534 535 536
        try:
            if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function
                for num_sensor in range(4):
                    self.set_sensor_mode (num_sensor = num_sensor,
                         hist_en = hist_en,
                         hist_nrst = hist_nrst, 
                         chn_en = chn_en, 
                         bits16 = bits16)
                return
        except:
            pass
        
537
        self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSOR_CTRL_RADDR,
538 539 540 541 542
                                                  self.func_sensor_mode(
                                                                   hist_en =   hist_en,
                                                                   hist_nrst = hist_nrst,
                                                                   chn_en =    chn_en,
                                                                   bits16 =    bits16))
543 544 545 546
        
        
        
        
547 548 549

    def set_sensor_i2c_command (self,
                                num_sensor,
550 551 552
                                rst_cmd =         False,
                                run_cmd =         None,
                                active_sda =      None, 
553
                                early_release_0 = None,
554 555 556 557
                                advance_FIFO =    None,
                                sda =             None,
                                scl =             None,
                                verbose =         1):
558
        """
559
        @param num_sensor - sensor port number (0..3) or all
560 561
        @param rst_cmd - reset all FIFO (takes 16 clock pulses), also - stops i2c until run command
        @param run_cmd - True - run i2c, False - stop i2c (needed before software i2c), None - no change
562 563 564
        @param active_sda - pull-up SDA line during second half of SCL=0, when needed and possible 
        @param early_release_0 -  release SDA=0 immediately after the end of SCL=1 (SDA hold will be provided by week pullup)
        @param advance_FIFO -     advance i2c read FIFO
565 566
        @param sda - control SDA line (stopped mode only): I<nput>, L<ow> or 0, High or 1
        @param scl - control SCL line (stopped mode only): I<nput>, L<ow> or 0, High or 1
567 568 569
        @param verbose -          verbose level
        active_sda and early_release_0 should be defined both to take effect (any of the None skips setting these parameters)

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
        """
        try:
            if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function
                for num_sensor in range(4):
                    self.set_sensor_i2c_command (num_sensor,
                                rst_cmd =         rst_cmd,
                                run_cmd =         run_cmd,
                                active_sda =      active_sda, 
                                early_release_0 = early_release_0,
                                advance_FIFO =    advance_FIFO,
                                sda =             sda,
                                scl =             scl,
                                verbose =         verbose)

                return
        except:
            pass
        
          
589
        self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSI2C_CTRL_RADDR,
590
                                                  self.func_sensor_i2c_command(
591 592 593 594 595
                                                       rst_cmd =         rst_cmd,
                                                       run_cmd =         run_cmd,
                                                       active_sda =      active_sda,
                                                       early_release_0 = early_release_0,
                                                       advance_FIFO =    advance_FIFO,
596 597
                                                       sda =             sda,
                                                       scl =             scl,
598
                                                       verbose =         verbose-1))
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652

    def set_sensor_i2c_table_reg_wr (self,
                                     num_sensor,
                                     page,
                                     slave_addr,
                                     rah,
                                     num_bytes, 
                                     bit_delay,
                                     verbose = 1):
        """
        Set table entry for a single index for register write
        @param num_sensor - sensor port number (0..3)
        @param page -       1 byte table index (later provided as high byte of the 32-bit command)
        @param slave_addr - 7-bit i2c slave address
        @param rah -        register address high byte (bits [15:8]) optionally used for register write commands
        @param num_bytes -  number of bytes to send (including register address bytes) 1..10 
        @param bit_delay -  number of mclk clock cycle in 1/4 of the SCL period
        @param verbose -    verbose level
        """
        ta = (1 << vrlg.SENSI2C_CMD_TABLE) | (1 << vrlg.SENSI2C_CMD_TAND) | (page & 0xff)
        td = (1 << vrlg.SENSI2C_CMD_TABLE) | self.func_sensor_i2c_table_reg_wr(
                                               slave_addr = slave_addr,
                                               rah =        rah,
                                               num_bytes =  num_bytes, 
                                               bit_delay =  bit_delay,
                                               verbose =    verbose) 

        self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSI2C_CTRL_RADDR, ta)
        self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSI2C_CTRL_RADDR, td)

    def set_sensor_i2c_table_reg_rd (self,
                                     num_sensor,
                                     page,
                                     two_byte_addr,
                                     num_bytes_rd,
                                     bit_delay,
                                     verbose = 1):
        """
        Set table entry for a single index for register write
        @param num_sensor -    sensor port number (0..3)
        @param page -          1 byte table index (later provided as high byte of the 32-bit command)
        @param two_byte_addr - Use a 2-byte register address for read command (False - single byte)
        @param num_bytes_rd -  Number of bytes to read (1..8)
        @param bit_delay -     number of mclk clock cycle in 1/4 of the SCL period
        @param verbose -       verbose level
        """
        ta = (1 << vrlg.SENSI2C_CMD_TABLE) | (1 << vrlg.SENSI2C_CMD_TAND) | (page & 0xff)
        td = (1 << vrlg.SENSI2C_CMD_TABLE) | self.func_sensor_i2c_table_reg_rd(
                                               two_byte_addr = two_byte_addr,
                                               num_bytes_rd = num_bytes_rd,
                                               bit_delay =  bit_delay,
                                               verbose =    verbose) 
        self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSI2C_CTRL_RADDR, ta)
        self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSI2C_CTRL_RADDR, td)
653 654
        if verbose > 1:
            print ("ta= 0x%x, td = 0x%x"%(ta,td))
655

656 657 658 659 660 661 662
    def write_sensor_reg16(self,
                           num_sensor,
                           reg_addr16,
                           reg_data16):
        """
        Write i2c register in immediate mode
        @param num_sensor - sensor port number (0..3), or "all" - same to all sensors
663 664
        @param reg_addr16 - 16-bit register address (page+low byte, for MT9P006 high byte is an 8-bit slave address = 0x90)
        @param reg_data16 - 16-bit data to write to sensor register
665 666 667 668 669 670
        """
        self.write_sensor_i2c (num_sensor = num_sensor,
                               rel_addr = True,
                               addr = 0,
                               data = ((reg_addr16 & 0xffff) << 16) | (reg_data16 & 0xffff) )

671 672 673 674 675 676 677
    def write_sensor_i2c (self,
                          num_sensor,
                          rel_addr,
                          addr,
                          data):
        """
        Write i2c command to the i2c command sequencer
678
        @param num_sensor - sensor port number (0..3), or "all" - same to all sensors
679 680
        @param rel_addr - True - relative frame address, False - absolute frame address
        @param addr - frame address (0..15)
681 682 683 684 685 686 687 688 689 690
        @param data - depends on context:
                      1 - register write: index page, 3 payload bytes. Payload bytes are used according to table and sent
                          after the slave address and optional high address byte other bytes are sent in descending order (LSB- last).
                          If less than 4 bytes are programmed in the table the high bytes (starting with the one from the table) are
                          skipped.
                          If more than 4 bytes are programmed in the table for the page (high byte), one or two next 32-bit words 
                          bypass the index table and all 4 bytes are considered payload ones. If less than 4 extra bytes are to be
                          sent for such extra word, only the lower bytes are sent.
                      2 - register read: index page, slave address (8-bit, with lower bit 0) and one or 2 address bytes (as programmed
                          in the table. Slave address is always in byte 2 (bits 23:16), byte1 (high register address) is skipped if
691
                          read address in the table is programmed to be a single-byte one    
692
        """
693 694 695 696 697 698 699 700 701 702
        try:
            if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function
                for num_sensor in range(4):
                    self.write_sensor_i2c (num_sensor = num_sensor,
                                           rel_addr =   rel_addr,
                                           addr =       addr,
                                           data =       data)
                return
        except:
            pass
703 704 705
        reg_addr =  (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC)
        reg_addr += ((vrlg.SENSI2C_ABS_RADDR,vrlg.SENSI2C_REL_RADDR)[rel_addr] )
        reg_addr += (addr & ~vrlg.SENSI2C_ADDR_MASK);
706
        self.x393_axi_tasks.write_control_register(reg_addr, data)
707 708 709

    def read_sensor_i2c (self,
                         num_sensor,
710 711
                         num_bytes = None,
                         verbose = 0):
712 713 714 715
        """
        Read sequence of bytes available
        @param num_sensor - sensor port number (0..3), or "all" - same to all sensors
        @param num_bytes - number of bytes to read (None - all in FIFO)
716
        @verbose - verbose level
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
        @return list of read bytes
        """
        ODDEVEN="ODDEVEN"
        DAV = "DAV"
        DATA = "DATA"
        def read_i2c_data(num_sensor):
            addr = vrlg.SENSI2C_STATUS_REG_BASE + num_sensor * vrlg.SENSI2C_STATUS_REG_INC + vrlg.SENSI2C_STATUS_REG_REL
            d = self.x393_axi_tasks.read_status(addr)
            return {ODDEVEN : (d >> 9) & 1, DAV : (d >> 8) & 1, DATA : d & 0xff}

        timeout = 1.0 # sec
        end_time = time.time() + timeout
        rslt = []
        while True:
            d = read_i2c_data(num_sensor)
            if not d[DAV]:
                if num_bytes is None:
                    break # no data available in FIFO and number of bytes is not specified
                while (time.time() < end_time) and (not d[DAV]): # wait for data available
                    d = read_i2c_data(num_sensor)
                if not d[DAV]:
                    break # no data available - timeout
            rslt.append(d[DATA])
            # advance to the next data byte
            oddeven = d[ODDEVEN]
            self. set_sensor_i2c_command (
                                num_sensor =   num_sensor,
                                advance_FIFO = True,
745
                                verbose =      verbose)
746 747 748 749 750 751 752
            # wait until odd/even bit reverses (no timeout here)
            while d[ODDEVEN] == oddeven:
                d = read_i2c_data(num_sensor)
            if len(rslt) == num_bytes:
                break # read all that was requested (num_bytes == None will not get here)
        return  rslt
            
753 754 755 756 757
    def print_sensor_i2c (self,
                          num_sensor,
                          reg_addr,
                          indx =  1,
                          sa7   = 0x48,
758
                          verbose = 1):
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
        """
        Read sequence of bytes available and print the result as a single hex number
        @param num_sensor - sensor port number (0..3), or "all" - same to all sensors
        @param reg_addr - register to read address 1/2 bytes (defined by previously set format)
        @param indx - i2c command index in 1 256-entry table (defines here i2c delay, number of address bytes and number of data bytes)
        @param sa7 - 7-bit i2c slave address
        @param verbose - verbose level
        """
        #clean up FIFO
        dl = self.read_sensor_i2c (num_sensor = num_sensor,
                                   num_bytes = None,
                                   verbose = verbose)
        if len(dl):
            d = 0
            for b in dl:
                d = (d << 8) | (b & 0xff)
            fmt="FIFO contained %d bytes i2c data = 0x%%0%dx"%(len(dl),len(dl*2))
            print (fmt%(d))    
        #create and send i2c command in ASAP mode:
        i2c_cmd = ((indx & 0xff) << 24) | (sa7 <<17) | (reg_addr & 0xffff)
        #write_sensor_i2c  0 1 0 0x91900004
        self.write_sensor_i2c(num_sensor = num_sensor,
                              rel_addr = 1,
                              addr = 0,
                              data = i2c_cmd)
        time.sleep(0.05) # We do not know how many bytes are expected, so just wait long enough and hope all bytes are in fifo already

        
        
        dl = self.read_sensor_i2c (num_sensor = num_sensor,
                                   num_bytes = None,
                                   verbose = verbose)
        if len(dl):
            d = 0
            for b in dl:
                d = (d << 8) | (b & 0xff)
795 796 797 798
            if verbose > 0:    
                fmt="i2c data[0x%02x:0x%x] = 0x%%0%dx"%(sa7,reg_addr,len(dl)*2)
                print (fmt%(d))    
        return d
799

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
    def set_sensor_flipXY(self,
                                  num_sensor,
                                  flip_x =  False,
                                  flip_y =  False,
                                  verbose = 1):
        """
        Set sensor horizontal and vertical mirror (flip)
        @param num_sensor - sensor number or "all"
        @param flip_x -  mirror image around vertical axis
        @param flip_y -  mirror image around horizontal axis
        @param verbose - verbose level
        """
        sensorType = self.getSensorInterfaceType()
        if flip_x is None:
            flip_x = False
        if flip_y is None:
            flip_y = False
            
        if sensorType == "PAR12":
            data = (0,0x8000)[flip_y] | (0,0x4000)[flip_x]  
            self.write_sensor_reg16 (num_sensor = num_sensor,
                                     reg_addr16 = 0x9020,
                                     reg_data16 = data)
        elif sensorType == "HISPI":
            data = (0,0x8000)[flip_y] | (0,0x4000)[flip_x] | 0x41  
            self.write_sensor_reg16 (num_sensor = num_sensor,
                                     reg_addr16 = 0x3040,
                                     reg_data16 = data)
        else:
            raise ("Unknown sensor type: %s"%(sensorType))

    def set_sensor_gains_exposure(self,
                                  num_sensor,
                                  gain_r =   None,
                                  gain_gr =  None,
                                  gain_gb =  None,
                                  gain_b =   None,
                                  exposure = None,
                                  verbose =  1):
        """
        Set sensor analog gains (raw register values) and
        exposure (in scan lines)
        @param num_sensor - sensor number or "all"
        @param gain_r -   RED gain
        @param gain_gr -  GREEN in red row gain
        @param gain_gb -  GREEN in blue row gain
        @param gain_b -   BLUE gain
        @param exposure - exposure time in scan lines
        @param verbose -  verbose level
        """
        sensorType = self.getSensorInterfaceType()
        if sensorType == "PAR12":
            if not gain_r is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
854
                                         reg_addr16 = 0x902d,
855 856 857 858 859 860 861 862 863 864 865
                                         reg_data16 = gain_r)
            if not gain_gr is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x902b,
                                         reg_data16 = gain_gr)
            if not gain_gb is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x902e,
                                         reg_data16 = gain_gb)
            if not gain_b is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
866
                                         reg_addr16 = 0x902c,
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
                                         reg_data16 = gain_b)
            if not exposure is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x9009,
                                         reg_data16 = exposure)
        elif sensorType == "HISPI":
            if not gain_r is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x208,
                                         reg_data16 = gain_r)
            if not gain_gr is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x206, # SMIA register
                                         reg_data16 = gain_gr)
            if not gain_gb is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x20c, # SMIA register
                                         reg_data16 = gain_gb)
            if not gain_b is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x20a, # SMIA register
                                         reg_data16 = gain_b)
            if not exposure is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x202, # SMIA register
                                         reg_data16 = exposure)
        else:
            raise ("Unknown sensor type: %s"%(sensorType))
                                     
896 897
    def set_sensor_io_ctl (self,
                           num_sensor,
898 899 900 901 902
                           mrst =       None,
                           arst =       None,
                           aro  =       None,
                           mmcm_rst =   None,
                           clk_sel =    None,
903
                           set_delays = False,
904
                           quadrants =  None):
905 906 907 908 909 910 911 912 913 914 915
        """
        Set sensor I/O controls, including I/O signals 
        @param num_sensor - sensor port number (0..3)
        @param mrst -  True - activate MRST signal (low), False - deactivate MRST (high), None - no change
        @param arst -  True - activate ARST signal (low), False - deactivate ARST (high), None - no change
        @param aro -   True - activate ARO signal (low), False - deactivate ARO (high), None - no change
        @param mmcm_rst - True - activate MMCM reset, False - deactivate MMCM reset, None - no change (needed after clock change/interruption)
        @param clk_sel - True - use pixel clock from the sensor, False - use internal clock (provided to the sensor), None - no chnage
        @param set_delays - (self-clearing) load all pre-programmed delays for the sensor pad inputs 
        @param quadrants -  90-degree shifts for data [1:0], hact [3:2] and vact [5:4] (6'h01), None - no change
        """
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
        try:
            if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function
                for num_sensor in range(4):
                    self.set_sensor_io_ctl (num_sensor,
                           mrst =       mrst,
                           arst =       arst,
                           aro  =       aro,
                           mmcm_rst =   mmcm_rst,
                           clk_sel =    clk_sel,
                           set_delays = set_delays,
                           quadrants =  quadrants)
                return
        except:
            pass

        
932 933 934 935 936 937 938 939
        data = self.func_sensor_io_ctl (
                    mrst =       mrst,
                    arst =       arst,
                    aro =        aro,
                    mmcm_rst =   mmcm_rst,
                    clk_sel =    clk_sel,
                    set_delays = set_delays,
                    quadrants =  quadrants)
940
        
941
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_CTRL;
942
        self.x393_axi_tasks.write_control_register(reg_addr, data)
943 944 945 946 947 948 949 950
# TODO: Make one for HiSPi (it is different)
    def set_sensor_io_dly_parallel (self,
                                    num_sensor,
                                    mmcm_phase,
                                    iclk_dly,
                                    vact_dly,
                                    hact_dly,
                                    pxd_dly):
951 952 953 954 955 956 957 958 959 960 961 962 963 964
        """
        Set sensor port input delays and mmcm phase
        @param num_sensor - sensor port number (0..3)
        @param mmcm_phase - MMCM clock phase
        @param iclk_dly - delay in the input clock line (3 LSB are not used)
        @param vact_dly - delay in the VACT line (3 LSB are not used)
        @param hact_dly - delay in the HACT line (3 LSB are not used)
        @param pxd_dly - list of data line delays (12 elements, 3 LSB are not used)                      
        """
        dlys=((pxd_dly[0] & 0xff) | ((pxd_dly[1] & 0xff) << 8) | ((pxd_dly[ 2] & 0xff) << 16) | ((pxd_dly[ 3] & 0xff) << 24),
              (pxd_dly[4] & 0xff) | ((pxd_dly[5] & 0xff) << 8) | ((pxd_dly[ 6] & 0xff) << 16) | ((pxd_dly[ 7] & 0xff) << 24),
              (pxd_dly[8] & 0xff) | ((pxd_dly[9] & 0xff) << 8) | ((pxd_dly[10] & 0xff) << 16) | ((pxd_dly[11] & 0xff) << 24),
              (hact_dly & 0xff) |   ((vact_dly & 0xff) <<   8) | ((iclk_dly & 0xff)    << 16) | ((mmcm_phase & 0xff) <<  24))                       
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_DELAYS;
965 966 967 968
        self.x393_axi_tasks.write_control_register(reg_addr + 0, dlys[0]) # {pxd3,       pxd2,  pxd1, pxd0}
        self.x393_axi_tasks.write_control_register(reg_addr + 1, dlys[1]) # {pxd7,       pxd6,  pxd5, pxd4}
        self.x393_axi_tasks.write_control_register(reg_addr + 2, dlys[2]) # {pxd11,      pxd10, pxd9, pxd8}
        self.x393_axi_tasks.write_control_register(reg_addr + 3, dlys[3]) # {mmcm_phase, bpf,   vact, hact}
969 970
        self.set_sensor_io_ctl (num_sensor = num_sensor,
                                set_delays = True)
971 972 973

    def set_sensor_io_dly_hispi (self,
                                    num_sensor,
974
                                    mmcm_phase = None, #24 steps in 3ns period
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
                                    lane0_dly =  None,
                                    lane1_dly =  None,
                                    lane2_dly =  None,
                                    lane3_dly =  None):
        """
        Set sensor port input delays and mmcm phase
        @param num_sensor - sensor port number (0..3) or all, 'A'
        @param mmcm_phase - MMCM clock phase
        @param lane0_dly - delay in the lane0 (3 LSB are not used) // All 4 lane delays should be set simultaneously
        @param lane1_dly - delay in the lane1 (3 LSB are not used)
        @param lane2_dly - delay in the lane2 (3 LSB are not used)
        @param lane3_dly - delay in the lane3 (3 LSB are not used))                      
        """
        try:
            if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function
                for num_sensor in range(4):
                    self.set_sensor_io_dly_hispi (num_sensor = num_sensor,
                                                  mmcm_phase = mmcm_phase,
                                                  lane0_dly =  lane0_dly,
                                                  lane1_dly =  lane1_dly,
                                                  lane2_dly =  lane2_dly,
                                                  lane3_dly =  lane3_dly)
                return
        except:
            pass
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_DELAYS
        try: # if any delay is None - do not set
            dlys=(lane0_dly & 0xff) | ((lane1_dly & 0xff) << 8) | ((lane2_dly & 0xff) << 16) | ((lane3_dly & 0xff) << 24)
            self.x393_axi_tasks.write_control_register(reg_addr + 2, dlys)
        except:
            pass                           
        if not mmcm_phase is None:
            self.x393_axi_tasks.write_control_register(reg_addr + 3, mmcm_phase & 0xff)
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
        
    def set_sensor_hispi_lanes(self,
                               num_sensor,
                               lane0 = 0,
                               lane1 = 1,
                               lane2 = 2,
                               lane3 = 3):
        """
        Set HiSPi sensor lane map (physical lane for each logical lane)
        @param num_sensor - sensor port number (0..3)
        @param lane0 - physical (input) lane number for logical (internal) lane 0
        @param lane1 - physical (input) lane number for logical (internal) lane 1
        @param lane2 - physical (input) lane number for logical (internal) lane 2
        @param lane3 - physical (input) lane number for logical (internal) lane 3
        """
        data = ((lane0 & 3) << 0 ) | ((lane1 & 3) << 2 ) | ((lane2 & 3) << 4 ) | ((lane3 & 3) << 6 )
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_DELAYS;
        self.x393_axi_tasks.write_control_register(reg_addr + 1, data)
1026

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
    def set_sensor_fifo_lag(self,
                            num_sensor,
                            fifo_lag = 7):
        """
        Set HiSPi sensor FIFO lag (when to start line output, ~= 1/2 FIFO size)
        @param num_sensor - sensor port number (0..3)
        @param fifo_lag - number of pixels to write to FIFO before starting output
        """
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_DELAYS;
        self.x393_axi_tasks.write_control_register(reg_addr + 0, fifo_lag)

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
    def set_sensor_io_jtag (self,
                            num_sensor,
                            pgmen = None,    # <2: keep PGMEN, 2 - PGMEN low (inactive),  3 - high (active) enable JTAG control
                            prog =  None,    # <2: keep prog, 2 - prog low (active),  3 - high (inactive) ("program" pin control)
                            tck =   None,    # <2: keep TCK,  2 - set TCK low,  3 - set TCK high
                            tms =   None,    # <2: keep TMS,  2 - set TMS low,  3 - set TMS high
                            tdi =   None):   # <2: keep TDI,  2 - set TDI low,  3 - set TDI high
        """
        JTAG interface for programming external sensor multiplexer using shared signal lines on the sensor ports
        @param num_sensor - sensor port number (0..3)
        @param pgmen - False PGMEN low (inactive),  True - high (active) enable JTAG control, None - keep previous value
        @param prog -  False prog low (active),  True - high (inactive) ("program" pin control), None - keep previous value
        @param tck =   False - set TCK low,  True - set TCK high, None - keep previous value
        @param tms =   False - set TMS low,  True - set TMS high, None - keep previous value
        @param tdi =   False - set TDI low,  True - set TDI high, None - keep previous value
        """
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_JTAG;
        data = self.func_sensor_jtag_ctl (
                            pgmen = pgmen,
                            prog =  prog,
                            tck =   tck,
                            tms =   tms,
                            tdi =   tdi)
1061
        self.x393_axi_tasks.write_control_register(reg_addr, data)
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199

#    def jtag_prep_status(self, chn):
#        seq_num = ((self.get_status_sensor_io(num_sensor = chn) >> 26) + 1) & 0x3f
#        self.program_status_sensor_io(num_sensor = num_sensor,
#                                      mode = 1,     # input [1:0] mode;
#                                      seq_num = seq_num) # input [5:0] seq_num;
#        return seq_num
     
    def jtag_get_tdo(self, chn):
        seq_num = ((self.get_status_sensor_io(num_sensor = chn) >> 26) + 1) & 0x3f
        self.program_status_sensor_io(num_sensor = chn,
                                      mode = 1,     # input [1:0] mode;
                                      seq_num = seq_num) # input [5:0] seq_num;
        
        for _ in range(10):
            stat = self.get_status_sensor_io(num_sensor = chn)
            if seq_num == ((stat >> 26) & 0x3f):
                break    
        else:
            print ("wait_sensio_status(): Failed to get seq_num== 0x%x, current is 0x%x"%(seq_num, (stat >> 26) & 0x3f))
        return (stat >> 25) & 1    


        
    def jtag_send(self, chn, tms, ln, d):
        i = ln & 7
        if (i == 0):
            i = 8
        d &= 0xff;
        r = 0
        while i > 0:
            self.set_sensor_io_jtag (num_sensor = chn,
                            pgmen = None,
                            prog =  None,
                            tck =   0, 
                            tms =   tms,
                            tdi =   ((d << 1) >> 8) & 1)
            d <<= 1
            r = (r << 1) + self.jtag_get_tdo(chn)
            self.set_sensor_io_jtag (num_sensor = chn,
                            pgmen = None,
                            prog =  None,
                            tck =   1, 
                            tms =   None,
                            tdi =   None)
            self.set_sensor_io_jtag (num_sensor = chn,
                            pgmen = None,
                            prog =  None,
                            tck =   0, 
                            tms =   None,
                            tdi =   None)
            i -= 1
        return r
        
    def jtag_write_bits (self,
                         chn,
                         buf,    # data to write
                         ln,     # number of bits to write
#                         check,  # compare readback data with previously written, abort on mismatch
                         last):   # output last bit with TMS=1
#                         prev = None): # if null - don't use 
        rbuf = []
        r = 0
        for d0 in buf:
            d=d0
            for _ in range(8):
                if ln >0:
                    self.set_sensor_io_jtag (num_sensor = chn,
                                    pgmen = None,
                                    prog =  None,
                                    tck =   0, 
                                    tms =   (0,1)[(ln == 1) and last],
                                    tdi =   ((d << 1) >> 8) & 1)
                    d <<= 1
                    r = (r << 1) + self.jtag_get_tdo(chn)
                    self.set_sensor_io_jtag (num_sensor = chn,
                                    pgmen = None,
                                    prog =  None,
                                    tck =   1, 
                                    tms =   None,
                                    tdi =   None)
                    self.set_sensor_io_jtag (num_sensor = chn,
                                    pgmen = None,
                                    prog =  None,
                                    tck =   0, 
                                    tms =   None,
                                    tdi =   None)
                else:
                    r <<= 1
                ln -= 1    
            rbuf.append(r & 0xff)
                
        return rbuf
    
    def jtag_set_pgm_mode(self,chn,en):
        self.set_sensor_io_jtag (num_sensor = chn,
                        pgmen = en,
                        prog =  None,
                        tck =   0, 
                        tms =   None,
                        tdi =   None)

    def jtag_set_pgm(self,chn,en):
        self.set_sensor_io_jtag (num_sensor = chn,
                        pgmen = None,
                        prog =  en,
                        tck =   0, 
                        tms =   None,
                        tdi =   None)
        
                
    def JTAG_openChannel (self, chn):
        self.jtag_set_pgm_mode (chn, 1);
        self.jtag_set_pgm      (chn, 1)
        self.jtag_set_pgm      (chn, 0)
        time.sleep        (0.01)
        self.jtag_send    (chn, 1, 5, 0 ) # set Test-Logic-Reset state
        self.jtag_send    (chn, 0, 1, 0 ) # set Run-Test-Idle state

    def JTAG_EXTEST     (self,  chn, buf, ln):
#        self.jtag_send(chn, 1, 5, 0   ) # step 1 - set Test-Logic-Reset state
#        self.jtag_send(chn, 0, 1, 0   ) # step 2 - set Run-Test-Idle state
        self.jtag_send(chn, 1, 2, 0   ) # step 3 - set SELECT-IR state
        self.jtag_send(chn, 0, 2, 0   ) # step 4 - set SHIFT-IR state
        self.jtag_send(chn, 0, 5, 0xf0) # step 5 - start of EXTEST
        self.jtag_send(chn, 1, 1, 0   ) # step 6 - finish EXTEST
        self.jtag_send(chn, 1, 2, 0   ) # step 7 - set SELECT-DR state
        self.jtag_send(chn, 0, 2, 0   ) # step 8 - set CAPTURE-DR state

        rbuf = self.jtag_write_bits (chn = chn,
                                     buf = buf,    # data to write
                                     ln =  ln,     # number of bytes to write
                                     last = 1)
        self.jtag_send(chn, 1, 1, 0   ) #step 9 - set UPDATE-DR state
        return rbuf
        
        

1200 1201 1202 1203 1204 1205 1206 1207 1208
# /dev/sfpgabscan0
    def readbscan(self, filename):
        ffs=struct.pack("B",0xff)*97
        with open(filename,'r+') as jtag:
            jtag.write(ffs)
            jtag.seek (0,0)
            boundary= jtag.read(97)
        return boundary    
            
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
    def checkSclSda(self, chn, verbose = 1):
        '''
        Check which board is connected to the sensor board
        @param chn - sensor port number (0..3)
        @param verbose - if >0, print debug output
        @return - name of the FPGA-based board detected, "sensor" (grounded pad 7) or "" if none detected
        '''
        def print_i2c(chn):
            self.program_status_sensor_i2c(num_sensor = chn, mode = 1, seq_num = 0)
            status= self.get_status_sensor_i2c(num_sensor = chn)            
            sda_in =(status>>25) & 1
            scl_in =(status>>24) & 1
            print ("chn = %d, scl = %d, sda = %d"%(chn,scl_in, sda_in))
1222
            
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
        def print_bv(chn, boundary, value, key):    
            self.program_status_sensor_i2c(num_sensor = chn, mode = 1, seq_num = 0)
            status= self.get_status_sensor_i2c(num_sensor = chn)            
            sda_in =(status>>25) & 1
            scl_in =(status>>24) & 1
            print ("%d: sda = %d, bit number SDA = %d, pin value SDA = %d"%(key, sda_in, value['sda'], (((ord(boundary[value['sda'] >> 3]) >> (7 -(value['sda'] & 7))) &1)) ))
            print ("%d: scl = %d, bit number SCL = %d, pin value SCL = %d"%(key, scl_in, value['scl'], (((ord(boundary[value['scl'] >> 3]) >> (7 -(value['scl'] & 7))) &1)) ))

            
        boards = [{'model':'10347', 'scl': 241,'sda': 199},  #// E4, C1
                  {'model':'10359', 'scl': 280,'sda': 296}]  #// H6, J5
        bscan_path=('/dev/sfpgabscan%d'%(chn))
        self. program_status_sensor_io(num_sensor = chn, mode = 1, seq_num = 0)
        status = self.get_status_sensor_io(num_sensor=chn)
        senspgmin = (status >> 24) & 1
        if not senspgmin:
            print ("Some sensor board is connected to port # %d, not FPGA"%(chn))
            return "sensor"
       
        test = [1]*len(boards)
        #Stop hardware i2c controller
        self.set_sensor_i2c_command(num_sensor = chn,    run_cmd = False)
        #Set SCL=0, SDA=0 and read values:
        self.set_sensor_i2c_command(num_sensor = chn,    sda = 0,  scl = 0)
        if verbose > 0:
            print_i2c(chn = chn)
        boundary = self.readbscan(bscan_path)
        for key, value in enumerate(boards):
            test[key] &= ((((ord(boundary[value['sda'] >> 3]) >> (7 -(value['sda'] & 7))) &1) == 0) and
                          (((ord(boundary[value['scl'] >> 3]) >> (7 -(value['scl'] & 7))) &1) == 0))
            if verbose >0:
                print_bv(chn=chn, boundary = boundary, value = value, key=key)
        #Set SCL=1, SDA=0 and read values:
        self.set_sensor_i2c_command(num_sensor = chn,    sda = 0,  scl = 1)
        boundary = self.readbscan(bscan_path)
        for key, value in enumerate(boards):
            test[key] &= ((((ord(boundary[value['sda'] >> 3]) >> (7 -(value['sda'] & 7))) &1) == 0) and
                          (((ord(boundary[value['scl'] >> 3]) >> (7 -(value['scl'] & 7))) &1) == 1))
            if verbose >0:
                print_bv(chn=chn, boundary = boundary, value = value, key=key)
        #Set SCL=0, SDA=1 and read values:
        self.set_sensor_i2c_command(num_sensor = chn,    sda = 1,  scl = 0)
        boundary = self.readbscan(bscan_path)
        for key, value in enumerate(boards):
            test[key] &= ((((ord(boundary[value['sda'] >> 3]) >> (7 -(value['sda'] & 7))) &1) == 1) and
                          (((ord(boundary[value['scl'] >> 3]) >> (7 -(value['scl'] & 7))) &1) == 0))
            if verbose >0:
                print_bv(chn=chn, boundary = boundary, value = value, key=key)
        #Set SCL=1, SDA=1 and read values:
        self.set_sensor_i2c_command(num_sensor = chn,    sda = 1,  scl = 1)
        boundary = self.readbscan(bscan_path)
        for key, value in enumerate(boards):
            test[key] &= ((((ord(boundary[value['sda'] >> 3]) >> (7 -(value['sda'] & 7))) &1) == 1) and
                          (((ord(boundary[value['scl'] >> 3]) >> (7 -(value['scl'] & 7))) &1) == 1))
            if verbose >0:
                print_bv(chn=chn, boundary = boundary, value = value, key=key)
        for key, value in enumerate(boards):
            if test[key]:
                if verbose >0:
                    print ("Detected FPGA-based board :%s"%(value['model']))
                return value['model']
        return ""
            
                
1287
    """
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
   def set_sensor_i2c_command (self,
                                num_sensor,
                                rst_cmd =         False,
                                run_cmd =         None,
                                active_sda =      None, 
                                early_release_0 = None,
                                advance_FIFO =    None,
                                sda =             None,
                                scl =             None,
                                verbose =         1):
        @param num_sensor - sensor port number (0..3)
        @param rst_cmd - reset all FIFO (takes 16 clock pulses), also - stops i2c until run command
        @param run_cmd - True - run i2c, False - stop i2c (needed before software i2c), None - no change
        @param active_sda - pull-up SDA line during second half of SCL=0, when needed and possible 
        @param early_release_0 -  release SDA=0 immediately after the end of SCL=1 (SDA hold will be provided by week pullup)
        @param advance_FIFO -     advance i2c read FIFO
        @param sda - control SDA line (stopped mode only): I<nput>, L<ow> or 0, High or 1
        @param scl - control SCL line (stopped mode only): I<nput>, L<ow> or 0, High or 1
        @param verbose -          verbose level
        active_sda and early_release_0 should be defined both to take effect (any of the None skips setting these parameters)
    def program_status_sensor_i2c( self,
                                   num_sensor,
                                   mode,     # input [1:0] mode;
                                   seq_num): # input [5:0] seq_num;

    def print_status_sensor_i2c (self,
                                num_sensor="All"):
        Print sensor_i2c status word (no sync)
        @param num_sensor - number of the sensor port (0..3)
        try:
            if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function
                for num_sensor in range(4):
                    print ("\n ==== Sensor %d"%(num_sensor))
                    self.print_status_sensor_i2c (num_sensor = num_sensor)
                return
        except:
            pass
        status= self.get_status_sensor_i2c(num_sensor)
        print ("print_status_sensor_i2c(%d):"%(num_sensor))
        print ("   reset_on =               %d"%((status>> 7) & 1))
        print ("   req_clr =                %d"%((status>> 6) & 1))
        print ("   alive_fs =               %d"%((status>> 5) & 1))
        
        print ("   busy =                   %d"%((status>> 4) & 1))
        print ("   frame_num =              %d"%((status>> 0)  & 0xf))
        print ("   sda_in =                 %d"%((status>>25) & 1))
        print ("   scl_in =                 %d"%((status>>24) & 1))
        print ("   seq =                    %d"%((status>>26) & 0x3f))
    
    
set_sensor_mode 0 0 0 1 0
set_sensor_mode 1 0 0 1 0
set_sensor_mode 2 0 0 1 0
set_sensor_mode 3 0 0 1 0
program_status_sensor_io all 1 0
print_status_sensor_io all



python
1348
import struct
1349
import time
1350 1351 1352
def readbscan(filename):
    ffs=struct.pack("B",0xff)*97
    with open(filename,'r+') as jtag:
1353
        #time.sleep(5)
1354
        jtag.write(ffs)
1355
        #time.sleep(5)
1356
        jtag.seek (0,0)
1357
        #time.sleep(5)
1358
        boundary= jtag.read(97)
1359
        #time.sleep(5)
1360
    return boundary
1361 1362
    
b = readbscan('/dev/sfpgabscan1')    
1363 1364 1365 1366 1367 1368
        
$boards=array (
                '0' => array ('model' => '10347', 'scl' =>241,'sda' => 199),  // E4, C1
                '1' => array ('model' => '10359', 'scl' =>280,'sda' => 296)   // H6, J5

);
Andrey Filippov's avatar
Andrey Filippov committed
1369 1370
#cd /usr/local/verilog/; test_mcntrl.py -x @hargs
cd /usr/local/verilog/; test_mcntrl.py @hargs
1371 1372 1373 1374
setupSensorsPower "PAR12"
measure_all "*DI"
program_status_sensor_io all 1 0
print_status_sensor_io all
1375 1376
setSensorClock

Andrey Filippov's avatar
Andrey Filippov committed
1377 1378 1379 1380 1381
checkSclSda 1

cat /usr/local/verilog/x359.bit > /dev/sfpgaconfjtag1


1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
#jtag_set_pgm_mode 0 1
#jtag_set_pgm_mode 1 1
#jtag_set_pgm_mode 2 1
#jtag_set_pgm_mode 3 1

#set_sensor_mode 0 0 0 1 0
#set_sensor_mode 1 0 0 1 0
#set_sensor_mode 2 0 0 1 0
#set_sensor_mode 3 0 0 1 0
set_sensor_io_ctl 1 0 #turn mrst off to enable clocked signal (and to read done!) TODO: Add to the driver

program_status_sensor_io all 1 0
print_status_sensor_io 1 # all
1395

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459

set_sensor_io_ctl (self,

                           num_sensor,
                           mrst =       None,
                           arst =       None,
                           aro  =       None,
                           mmcm_rst =   None,
                           clk_sel =    None,
                           set_delays = False,
                           quadrants =  None):



set_sensor_io_jtag 1 None None None None 0        
program_status_sensor_io all 1 0          
print_status_sensor_io 1                  
get_status_sensor_io 1                  

x393 +0.001s--> set_sensor_io_jtag 1 None None None None 0        
x393 +0.001s--> program_status_sensor_io all 1 0
x393 +0.002s--> print_status_sensor_io 1 # all
print_status_sensor_io(1):
   irst =                   0
async_prst_with_sens_mrst = 0
   imrst =                  1
   rst_mmcm =               0
   pxd_out_pre[1] =         0
   vact_alive =             0
   hact_ext_alive =         0
   hact_run =               0
   locked_pxd_mmcm =        1
   clkin_pxd_stopped_mmcm = 0
   clkfb_pxd_stopped_mmcm = 0
   xfpgadone =              1
   ps_rdy =                 1
   ps_out =                 0
   xfpgatdo =               0
   senspgmin =              1
   seq =                    0
x393 +0.001s--> set_sensor_io_jtag 1 None None None None 1        
x393 +0.001s--> program_status_sensor_io all 1 0
x393 +0.002s--> print_status_sensor_io 1 # all
print_status_sensor_io(1):
   irst =                   0
async_prst_with_sens_mrst = 0
   imrst =                  1
   rst_mmcm =               0
   pxd_out_pre[1] =         1
   vact_alive =             0
   hact_ext_alive =         0
   hact_run =               0
   locked_pxd_mmcm =        1
   clkin_pxd_stopped_mmcm = 0
   clkfb_pxd_stopped_mmcm = 0
   xfpgadone =              1
   ps_rdy =                 1
   ps_out =                 0
   xfpgatdo =               1
   senspgmin =              1
   seq =                    0


#setSensorClock(self, freq_MHz = 24.0, iface = "2V5_LVDS", quiet = 0)
1460 1461
>>> b = readbscan('/dev/sfpgabscan0')
>>> b
1462 1463 1464
b = '\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00$\x82\x12I\t\x00\x80\x02\x00@\x00\x04\x00\x00@\x00\x00\x00\x00\x00@\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00 \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
b = '\xff\xff\xff\xff\xff\xff\xff\xff\xf7\xff\xdb}\xed\xb6\xf6\xff\x7f\xfd\xff\xbf\xff\xfb\xff\xff\xbf\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xfb\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xdf\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xf0'
b = '\xff\xff\xff\xff\xff\xff\xff\xff\xf7\xff\xdb}\xed\xb6\xf6\xff\x7f\xfd\xff\xbf\xff\xfb\xff\xff\xbf\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xfb\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xdf\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xf0'
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499

a='ffffffffff7fffffffffffffffffffffffffffffffffffffbfffffffffffffffffffff7fff7ffffffbffffffffffffffffffffffffffffffffffffffffdffffffffffffffffffffff6dfffffffffffffffedf7fdbfedff7ffff6fffeffffffbff0'
al = []
for i in range(len(a)/2):
    al.append(int('0x'+a[2*i:2*i+2],0))
    
bl = []
for i in b:
    bl.append(ord(i))

for i,x in enumerate(zip(al,bl)):
    print ("%02x %02x %02x"%(i,x[0],x[1]))
    

fwrite returned 97<br/>
Boundary:
ffffffffff7fffffffffffffffffffffffffffffffffffffbfffffffffffffffffffffffff7ffffffbffffffffffffffffffffffffffffffffffffffffdffffffffffffffffffffff6dfffffffffffffffedf7fdbfedff7ffff6fffeffffffbff0

fwrite returned 97<br/>
Boundary:
ffffffffff7fffffffffffffffffffffffffffffffffffffbfffffffffffffffffffff7ffffffffffbffffffffffffffffffffffffffffffffffffffffdffffffffffffffffffffff6dfffffffffffffffedf7fdbfedff7ffff6fffeffffffbff0

fwrite returned 97<br/>
Boundary:
ffffffffff7fffffffffffffffffffffffffffffffffffffbffffffffffffffffffffffffffffffffbffffffffffffffffffffffffffffffffffffffffdffffffffffffffffffffff6dfffffffffffffffedf7fdbfedff7ffff6fffeffffffbff0





>>> b1 = readbscan('/dev/sfpgabscan0')
>>> b1
'\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xf0'

'\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00$\x82\x12I\t\x00\x80\x02\x00@\x00\x04\x00\x00@\x00\x00\x00\x00\x00@\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00 \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
1500
cd /sys/kernel/debug/dynamic_debug
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
root@elphel393:/sys/kernel/debug/dynamic_debug# cat control | grep fpga
drivers/elphel/fpgajtag353.c:655 [fpgajtag]fpga_jtag_lseek =_ "fpga_jtag_lseek, fsize= 0x%x\012"
drivers/elphel/fpgajtag353.c:679 [fpgajtag]fpga_jtag_lseek =_ "fpga_jtag_lseek, file->f_pos= 0x%x\012"
drivers/elphel/fpgajtag353.c:1405 [fpgajtag]fpga_jtag_init =_ "elphel test %s: MAJOR %d"
drivers/elphel/fpgajtag353.c:751 [fpgajtag]wait_sensio_status =_ "seq_num = %d received after %d wait cycles"
drivers/elphel/fpgajtag353.c:764 [fpgajtag]set_pgm_mode =_ "set_pgm_mode (%d,%d)\012"
drivers/elphel/fpgajtag353.c:789 [fpgajtag]set_pgm =_ "set_pgm (%d,%d)\012"
drivers/elphel/fpgajtag353.c:851 [fpgajtag]jtag_send =_ "jtag_send(0x%x, 0x%x, 0x%x, 0x%x)\015\012"
drivers/elphel/fpgajtag353.c:950 [fpgajtag]jtag_write_bits =_ "jtag_write_bits(0x%x, 0x%x, 0x%x, 0x%x, 0x%x)\015\012"
drivers/elphel/fpgajtag353.c:1096 [fpgajtag]JTAG_configure =_ "JTAG_configure: chn=%x,  wp=0x%x, rp=0x%x, len=0x%x\015\012"
drivers/elphel/fpgajtag353.c:1211 [fpgajtag]JTAG_openChannel =_ "JTAG_openChannel (%d)\012"
drivers/elphel/fpgajtag353.c:367 [fpgajtag]fpga_jtag_open =_ "fpga_jtag_open: minor=%x, channel=%x, buf=%p\015\012"
drivers/elphel/fpgajtag353.c:440 [fpgajtag]fpga_jtag_open =_ "fpga_jtag_open: chn=%x, JTAG_channels[chn].sizew=%x, JTAG_channels[chn].sizer=%x\015\012"
drivers/elphel/fpgajtag353.c:441 [fpgajtag]fpga_jtag_open =_ "fpga_jtag_open: chn=%x, JTAG_channels[chn].bitsw=%x, JTAG_channels[chn].bitsr=%x\015\012"
drivers/elphel/fpgajtag353.c:446 [fpgajtag]fpga_jtag_open =_ "fpga_jtag_open: inode->i_size=%x, chn=%x\015\012"
drivers/elphel/fpgajtag353.c:1231 [fpgajtag]JTAG_resetChannel =_ "JTAG_resetChannel (%d)\012"
drivers/elphel/fpgajtag353.c:1342 [fpgajtag]JTAG_CAPTURE =_ "\012"
drivers/elphel/fpgajtag353.c:1347 [fpgajtag]JTAG_CAPTURE =_ "\012"
drivers/elphel/fpgajtag353.c:1344 [fpgajtag]JTAG_CAPTURE =_ "%3x "
drivers/elphel/fpgajtag353.c:1345 [fpgajtag]JTAG_CAPTURE =_ "\012"
drivers/elphel/fpgajtag353.c:456 [fpgajtag]fpga_jtag_release =_ "fpga_jtag_release: p=%x,chn=%x,  wp=0x%x, rp=0x%x\015\012"
drivers/elphel/fpgajtag353.c:497 [fpgajtag]fpga_jtag_release =_ "fpga_jtag_release:  done\015\012"
drivers/elphel/fpgajtag353.c:509 [fpgajtag]fpga_jtag_write =_ "fpga_jtag_write: p=%x,chn=%x, buf address=%lx count=%lx *offs=%lx, wp=%lx,size=0x%x\015\012"
drivers/elphel/fpgajtag353.c:562 [fpgajtag]fpga_jtag_write =_ "fpga_jtag_write end: p=%x,chn=%x, buf address=%lx count=%lx *offs=%lx, wp=%lx,size=0x%x\015\012"
drivers/elphel/fpgajtag353.c:574 [fpgajtag]fpga_jtag_read =_ "fpga_jtag_read: p=%x,chn=%x, buf address=%lx count=%lx *offs=%lx, rp=%lx,size=0x%x\015\012"
drivers/elphel/fpgajtag353.c:601 [fpgajtag]fpga_jtag_read =_ "fpga_jtag_read_01: p=%x,chn=%x, buf address=%lx count=%lx *offs=%lx, rp=%lx,size=0x%x\015\012"
drivers/elphel/fpgajtag353.c:624 [fpgajtag]fpga_jtag_read =_ "fpga_jtag_read_01: p=%x,chn=%x, buf address=%lx count=%lx *offs=%lx, rp=%lx,size=0x%x\015\012"
drivers/elphel/fpgajtag353.c:635 [fpgajtag]fpga_jtag_read =_ "fpga_jtag_read_end: p=%x,chn=%x, buf address=%lx count=%lx *offs=%lx, rp=%lx,size=0x%x, mode=%x\015\012"
drivers/elphel/fpgajtag353.c:1416 [fpgajtag]fpga_jtag_exit =_ "unregistering driver"

root@elphel393:/sys/kernel/debug/dynamic_debug# echo 'file drivers/elphel/fpgajtag353.c +p' > control

Andrey Filippov's avatar
Andrey Filippov committed
1533
afpgaconfjtag       jtagraw             memory_bandwidth    mtd4ro              ram2                stderr              tty18               tty30               tty43               tty56               ttyS1
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
block               kmem                mmcblk0             mtdblock0           ram3                stdin               tty19               tty31               tty44               tty57               ttyS2
char                kmsg                mmcblk0p1           mtdblock1           random              stdout              tty2                tty32               tty45               tty58               ttyS3
console             log                 mmcblk0p2           mtdblock2           rtc0                tty                 tty20               tty33               tty46               tty59               ubi_ctrl
cpu_dma_latency     loop-control        mtab                mtdblock3           sfpgabscan0         tty0                tty21               tty34               tty47               tty6                urandom
disk                loop0               mtd0                mtdblock4           sfpgabscan1         tty1                tty22               tty35               tty48               tty60               vcs
fd                  loop1               mtd0ro              network_latency     sfpgabscan2         tty10               tty23               tty36               tty49               tty61               vcs1
fpgaconfjtag        loop2               mtd1                network_throughput  sfpgabscan3         tty11               tty24               tty37               tty5                tty62               vcsa
fpgaresetjtag       loop3               mtd1ro              null                sfpgaconfjtag       tty12               tty25               tty38               tty50               tty63               vcsa1
full                loop4               mtd2                psaux               sfpgaconfjtag0      tty13               tty26               tty39               tty51               tty7                watchdog
i2c-0               loop5               mtd2ro              ptmx                sfpgaconfjtag1      tty14               tty27               tty4                tty52               tty8                watchdog0
iio:device0         loop6               mtd3                pts                 sfpgaconfjtag2      tty15               tty28               tty40               tty53               tty9                xdevcfg
initctl             loop7               mtd3ro              ram0                sfpgaconfjtag3      tty16               tty29               tty41               tty54               ttyPS0              zero
input               mem                 mtd4                ram1                shm                 tty17               tty3                tty42               tty55               ttyS0
   
    
   fseek ($jtag,0);
   $boundary= fread($jtag, 97);
   fclose($jtag);
  return $boundary;
    
    
    
            packedData=struct.pack(self.ENDIAN+"L",data)
            d=struct.unpack(self.ENDIAN+"L",packedData)[0]
            mm[page_offs:page_offs+4]=packedData

    """
1561 1562 1563 1564 1565 1566 1567

    def set_sensor_io_width (
                             self,
                             num_sensor,
                             width): # 0 - use HACT, >0 - generate HACT from start to specified width
        """
        Set sensor frame width
1568
        @param num_sensor - sensor port number (0..3) or all
1569 1570
        @param width - sensor 16-bit frame width (0 - use sensor HACT signal) 
        """
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
        try:
            if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function
                for num_sensor in range(4):
                    self.set_sensor_io_width (num_sensor,
                                width =        width)

                return
        except:
            pass
        
1581
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_WIDTH;
1582
        self.x393_axi_tasks.write_control_register(reg_addr, width)
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
 
    def set_sensor_lens_flat_heights (self,
                                      num_sensor,
                                      height0_m1 = None,
                                      height1_m1 = None,
                                      height2_m1 = None):
        """
        Set division of the composite frame into sub-frames for the vignetting correction module
        @param num_sensor - sensor port number (0..3)
        @param height0_m1 - height of the first sub-frame minus 1
        @param height1_m1 - height of the second sub-frame minus 1
        @param height2_m1 - height of the third sub-frame minus 1
        (No need for the  4-th, as it will just go until end of the composite frame)
        """
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_LENS_RADDR;
        if not height0_m1 is None:
1599
            self.x393_axi_tasks.write_control_register(reg_addr + 0, height0_m1)
1600
        if not height1_m1 is None:
1601
            self.x393_axi_tasks.write_control_register(reg_addr + 1, height1_m1)
1602
        if not height2_m1 is None:
1603
            self.x393_axi_tasks.write_control_register(reg_addr + 2, height2_m1)
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640


    def set_sensor_lens_flat_parameters (self,
                                         num_sensor,
                                         num_sub_sensor,
# add mode "DIRECT", "ASAP", "RELATIVE", "ABSOLUTE" and frame number
                                         AX = None,
                                         AY = None,
                                         BX = None,
                                         BY = None,
                                         C = None,
                                         scales0 = None,
                                         scales1 = None,
                                         scales2 = None,
                                         scales3 = None,
                                         fatzero_in = None,
                                         fatzero_out = None,
                                         post_scale = None):
        """
        Program vignetting correction and per-color scale
        @param num_sensor -     sensor port number (0..3)
        @param num_sub_sensor - sub-sensor attached to the same port through multiplexer (0..3)
    TODO: add mode "DIRECT", "ASAP", "RELATIVE", "ABSOLUTE" and frame number for sequencer
        All the next parameters can be None - will not be set 
        @param AX (19 bits)
        @param AY (19 bits)
        @param BX (21 bits)
        @param BY (21 bits)
        @param C (19 bits)
        @param scales0 (17 bits) - color channel 0 scale
        @param scales1 (17 bits) - color channel 1 scale
        @param scales2 (17 bits) - color channel 2 scale
        @param scales3 (17 bits) - color channel 3 scale
        @param fatzero_in (16 bits)
        @param fatzero_out (16 bits)
        @param post_scale (4 bits) - shift of the result
        """
1641
        def func_lens_data (
1642 1643 1644 1645 1646 1647 1648 1649
                        num_sensor,
                        addr,
                        data,
                        width):
            
            return ((num_sensor & 3) << 24) | ((addr & 0xff) << 16) | (data & ((1 << width) - 1))
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_LENS_RADDR + vrlg.SENS_LENS_COEFF
        if not AX is None:
1650
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_AX, AX, 19))
1651
        if not AY is None:
1652
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_AY, AY, 19))
1653
        if not BX is None:
1654
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_BX, BX, 21))
1655
        if not BY is None:
1656
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_BY, BY, 21))
1657
        if not C is None:
1658
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_C,   C, 19))
1659
        if not scales0 is None:
1660
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_SCALES + 0,   scales0, 17))
1661
        if not scales1 is None:
1662
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_SCALES + 2,   scales1, 17))
1663
        if not scales2 is None:
1664
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_SCALES + 4,   scales2, 17))
1665
        if not scales3 is None:
1666
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_SCALES + 6,   scales3, 17))
1667
        if not fatzero_in is None:
1668
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_FAT0_IN, fatzero_in, 16))
1669
        if not fatzero_out is None:
1670
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_FAT0_OUT, fatzero_out, 16))
1671 1672

        if not post_scale is None:
1673
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_POST_SCALE, post_scale, 4))
1674

1675 1676 1677 1678 1679 1680 1681
    def program_gamma (self,
                       num_sensor,
                       sub_channel,
                       gamma = 0.57,
                       black = 0.04,
                       page = 0):
        """
1682 1683
        Program gamma tables for specified sensor port and subchannel 
        @param num_sensor -     sensor port number (0..3), all - all sensors
1684 1685 1686 1687 1688
        @param num_sub_sensor - sub-sensor attached to the same port through multiplexer (0..3)
        @param gamma - gamma value (1.0 - linear)
        @param black - black level, 1.0 corresponds to 256 for 8bit values
        @param page - gamma table page number (only used if SENS_GAMMA_BUFFER > 0
        """  
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
        curves_data = self.calc_gamma257(gamma = gamma,
                                         black = black,
                                         rshift = 6) * 4
                                         
        try:
            if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function
                for num_sensor in range(4):
                    self.program_gamma ( num_sensor =  num_sensor,
                                         sub_channel = sub_channel,
                                         gamma =       gamma,
                                         black =       black,
                                         page =        page)
                return
        except:
            pass
        
1705 1706
        self.program_curves(num_sensor = num_sensor,
                        sub_channel = sub_channel,
1707
                        curves_data = curves_data,
1708 1709
                        page = page)

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
    def program_curves (self,
                        num_sensor,
                        sub_channel,
                        curves_data,
                        page = 0):
        """
        Program gamma tables for specified sensor port and subchannel
        @param num_sensor -     sensor port number (0..3)
        @param num_sub_sensor - sub-sensor attached to the same port through multiplexer (0..3)
        @param curves_data - either 1028-element list (257 per color component) or a file path
                             with the same data, same as for Verilog $readmemh
1721
        @param page - gamma table page number (only used if SENS_GAMMA_BUFFER > 0
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
        """  
        def set_sensor_gamma_table_addr (
                                         num_sensor,
                                         sub_channel,
                                         color,
                                         page = 0): # only used if SENS_GAMMA_BUFFER != 0

            data =  (1 << 20) | ((color & 3) <<8)
            if (vrlg.SENS_GAMMA_BUFFER):
                data |= (sub_channel & 3) << 11 # [12:11]
                data |= page << 10
            else:
                data |= (sub_channel & 3) << 10 # [11:10]
            reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_GAMMA_RADDR + vrlg.SENS_GAMMA_ADDR_DATA
1736
            self.x393_axi_tasks.write_control_register(reg_addr, data)                   
1737 1738 1739 1740
        def set_sensor_gamma_table_data ( #; // need 256 for a single color data
                                          num_sensor,
                                          data18): # ; // 18-bit table data
            reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_GAMMA_RADDR + vrlg.SENS_GAMMA_ADDR_DATA;
1741
            self.x393_axi_tasks.write_control_register(reg_addr, data18 & ((1 << 18) - 1))                   
1742 1743

                  
1744
        if isinstance(curves_data, (unicode,str)):
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
            with open(curves_data) as f:
                tokens=f.read().split()
            curves_data = []
            for w in tokens:
                curves_data.append(int(w,16))
        set_sensor_gamma_table_addr (
                num_sensor = num_sensor,
                sub_channel = sub_channel,
                color = 0,
                page = page)
        for n in range(4):
            for i in range(256):
                base =curves_data[257*n+i];
                diff =curves_data[257*n+i+1]-curves_data[257*n+i];
                diff1=curves_data[257*n+i+1]-curves_data[257*n+i]+8;
        #        $display ("%x %x %x %x %x %x",n,i,curves_data[257*n+i], base, diff, diff1);
                #1;
                if ((diff > 63) or (diff < -64)):
                    data18 = (1 << 17) | (base & 0x3ff) | (((diff1 >> 4) & 0x7f) << 10) # {1'b1,diff1[10:4],base[9:0]};
                else:
                    data18 =             (base & 0x3ff) | (( diff        & 0x7f) << 10) # {1'b0,diff [ 6:0],base[9:0]};
                set_sensor_gamma_table_data (
                    num_sensor = num_sensor,
                    data18 = data18)
1769 1770 1771 1772 1773 1774 1775 1776

    def calc_gamma257(self,
                      gamma,
                      black,
                      rshift = 6
                      ):
        """
        @brief Calculate gamma table (as array of 257 unsigned short values)
1777
        @param gamma - gamma value (1.0 - linear), 0 - linear as a special case
1778 1779 1780 1781
        @param black - black level, 1.0 corresponds to 256 for 8bit values
        @return array of 257 int elements (for a single color), right-shifted to match original 0..0x3ff range
        """
        gtable = []
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
        if gamma <= 0: # special case
            for i in range (257):
                ig = min(i*256, 0xffff)
                gtable.append(ig >> rshift)
        else:    
            black256 =  max(0.0, min(255, black * 256.0))
            k=  1.0 / (256.0 - black256)
            gamma =max(0.13, min(gamma, 10.0))
            for i in range (257):
                x=k * (i - black256)
                x = max(x, 0.0)
                ig = int (0.5 + 65535.0 * pow(x, gamma))
                ig = min(ig, 0xffff)
                gtable.append(ig >> rshift)
1796 1797 1798
        return gtable    

        
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
    def set_sensor_gamma_heights (self, 
                                  num_sensor,
                                  height0_m1,
                                  height1_m1,
                                  height2_m1):
        """
        Set division of the composite frame into sub-frames for gamma correction (separate for each subframe
        @param num_sensor - sensor port number (0..3)
        @param height0_m1 - height of the first sub-frame minus 1
        @param height1_m1 - height of the second sub-frame minus 1
        @param height2_m1 - height of the third sub-frame minus 1
        (No need for the  4-th, as it will just go until end of the composite frame)
        """
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_GAMMA_RADDR + vrlg.SENS_GAMMA_HEIGHT01
1813
        self.x393_axi_tasks.write_control_register(reg_addr, (height0_m1 & 0xffff) | ((height1_m1 & 0xffff) << 16));                   
1814 1815

        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_GAMMA_RADDR + vrlg.SENS_GAMMA_HEIGHT2;
1816
        self.x393_axi_tasks.write_control_register(reg_addr, height2_m1 & 0xffff);                   
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840

    def set_sensor_gamma_ctl (self,
                              num_sensor,
                              bayer =      0,
                              table_page = 0,
                              en_input =   True,
                              repet_mode = True, #  Normal mode, single trigger - just for debugging  TODO: re-assign?
                              trig = False):
        """
        Setup sensor gamma correction
        @param num_sensor - sensor port number (0..3)
        @param bayer - Bayer shift (0..3)
        @param table_page - Gamma table page
        @param en_input -   Enable input
        @param repet_mode - Repetitive (normal) mode. Set False for debugging, then use trig for single frame trigger
        @param trig       - single trigger (when repet_mode is False), debug feature
        """
        data = self.func_sensor_gamma_ctl (
                                            bayer =      bayer,
                                            table_page = table_page,
                                            en_input =   en_input,
                                            repet_mode = repet_mode,
                                            trig =       trig)
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_GAMMA_RADDR + vrlg.SENS_GAMMA_CTRL;
1841
        self.x393_axi_tasks.write_control_register(reg_addr, data);
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
        
    def set_sensor_histogram_window (self,
                                     num_sensor,
                                     subchannel,
                                     left,
                                     top,
                                     width_m1,
                                     height_m1):
        """
        Program histogram window
        @param num_sensor -     sensor port number (0..3)
        @param num_sub_sensor - sub-sensor attached to the same port through multiplexer (0..3)
        @param left - histogram window left margin
        @param top -  histogram window top margin
        @param width_m1 - one less than window width. If 0 - use frame right margin (end of HACT)
        @param height_m1 - one less than window height. If 0 - use frame bottom margin (end of VACT)
        """
        raddr = (vrlg.HISTOGRAM_RADDR0, vrlg.HISTOGRAM_RADDR1, vrlg.HISTOGRAM_RADDR2, vrlg.HISTOGRAM_RADDR3)
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + raddr[subchannel & 3]
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
        if self.DEBUG_MODE:
            print("set_sensor_histogram_window():")
            print("num_sensor = ", num_sensor)
            print("subchannel = ", subchannel)
            print("left =       ", left)
            print("top =        ", top)
            print("width_m1 =   ", width_m1)
            print("height_m1 =  ", height_m1)
            
        self.x393_axi_tasks.write_control_register(reg_addr + vrlg.HISTOGRAM_LEFT_TOP,     ((top & 0xffff) << 16) | (left & 0xffff))
        self.x393_axi_tasks.write_control_register(reg_addr + vrlg.HISTOGRAM_WIDTH_HEIGHT, ((height_m1 & 0xffff) << 16) | (width_m1 & 0xffff))
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
    def set_sensor_histogram_saxi (self,
                                   en,
                                   nrst,
                                   confirm_write,
                                   cache_mode = 3):
        """
        Setup SAXI GP channel to transfer histograms (16 pages, up to 16 sensors) to the system memory
        @param en - enable transfers
        @param nrst - negated reset False - immediate reset, True - normal run;
        @param confirm_write -  wait for the write confirmed (over B channel) before switching channels
        @param cache_mode AXI cache mode,  default should be 4'h3
        """ 
1884 1885 1886 1887 1888 1889
        if self.DEBUG_MODE:
            print("set_sensor_histogram_saxi():")
            print("en =            ", en)
            print("nrst =          ", nrst)
            print("confirm_write = ", confirm_write)
            print("cache_mode=     ", cache_mode)
1890 1891 1892 1893 1894
        data = 0;
        data |= (0,1)[en] <<            vrlg.HIST_SAXI_EN
        data |= (0,1)[nrst] <<          vrlg.HIST_SAXI_NRESET
        data |= (0,1)[confirm_write] << vrlg.HIST_CONFIRM_WRITE
        data |= (cache_mode & 0xf) <<   vrlg.HIST_SAXI_AWCACHE
1895
        self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + vrlg.HIST_SAXI_MODE_ADDR_REL, data)
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906

    def set_sensor_histogram_saxi_addr (self,
                                        num_sensor,
                                        subchannel,
                                        page):
        """
        Setup SAXI GP start address in 4KB pages (1 page - 1 subchannel histogram)
        @param num_sensor -     sensor port number (0..3)
        @param num_sub_sensor - sub-sensor attached to the same port through multiplexer (0..3)
        @param page -           system memory page address (in 4KB units)
        """ 
1907 1908 1909 1910 1911
        if self.DEBUG_MODE:
            print("set_sensor_histogram_saxi_addr():")
            print("num_sensor = ", num_sensor)
            print("subchannel = ", subchannel)
            print("page =       ", page)
1912 1913 1914 1915 1916
        num_histogram_frames = 1 << vrlg.NUM_FRAME_BITS
        channel = ((num_sensor & 3) << 2) + (subchannel & 3)
        channel_page = page + num_histogram_frames * channel
        self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + vrlg.HIST_SAXI_ADDR_REL + channel,
                                                   channel_page)
Andrey Filippov's avatar