x393_mcntrl_eyepatterns.py 40.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
from __future__ import print_function
'''
# Copyright (C) 2015, Elphel.inc.
# Class based on earlier code to produce eye patterns  
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http:#www.gnu.org/licenses/>.

@author:     Andrey Filippov
@copyright:  2015 Elphel, Inc.
@license:    GPLv3.0+
@contact:    andrey@elphel.coml
@deffield    updated: Updated
'''
__author__ = "Andrey Filippov"
__copyright__ = "Copyright 2015, Elphel, Inc."
__license__ = "GPL"
__version__ = "3.0+"
__maintainer__ = "Andrey Filippov"
__email__ = "andrey@elphel.com"
__status__ = "Development"
import random
from x393_mem                import X393Mem
import x393_axi_control_status
from x393_pio_sequences      import X393PIOSequences
from x393_mcntrl_timing      import X393McntrlTiming
from x393_mcntrl_buffers     import X393McntrlBuffers
from verilog_utils import checkIntArgs,smooth2d,split_delay,combine_delay,NUM_FINE_STEPS, convert_w32_to_mem16,convert_mem16_to_w32

import vrlg
#NUM_FINE_STEPS=    5
NUM_DLY_STEPS =NUM_FINE_STEPS * 32 # =160 

class X393McntrlEyepattern(object):
    DRY_MODE= True # True
    DEBUG_MODE=1
    x393_mem=None
    x393_axi_tasks=None #x393X393AxiControlStatus
    x393_pio_sequences=None
    x393_mcntrl_timing=None
    x393_mcntrl_buffers=None
    verbose=1
    adjustment_state={}
    def __init__(self, debug_mode=1,dry_mode=True):
        self.DEBUG_MODE=  debug_mode
        self.DRY_MODE=    dry_mode
        self.x393_mem=            X393Mem(debug_mode,dry_mode)
#        self.x393_axi_tasks=      X393AxiControlStatus(debug_mode,dry_mode)
        self.x393_axi_tasks=      x393_axi_control_status.X393AxiControlStatus(debug_mode,dry_mode)
        self.x393_pio_sequences=  X393PIOSequences(debug_mode,dry_mode)
        self.x393_mcntrl_timing=  X393McntrlTiming(debug_mode,dry_mode)
        self.x393_mcntrl_buffers= X393McntrlBuffers(debug_mode,dry_mode)
#        self.__dict__.update(VerilogParameters.__dict__["_VerilogParameters__shared_state"]) # Add verilog parameters to the class namespace
        try:
            self.verbose=vrlg.VERBOSE
        except:
            pass
    def bad_data(self,buf):
        """
        The whole block contains only "bad data" - nothing was read
        It can happen if command was not decoded correctly
        <buf> - list of the data read
        Returns True if the data is bad, False otherwise
        """
        for w in buf:
            if (w!=0xffffffff): return False
        return True
    def missing_dqs(self,
                     rd_blk,
                     quiet=False):
        """
        Suspect missing final DQS puls(es) during write if last written burst matches previous one
        <rd_blk> - block of 32-bit data read from DDR3 device
        <quiet>  - no output
        Returns True if missing DQS pulse is suspected
        """
        if (not rd_blk) or (len(rd_blk) <8 ):
            return False
        for i in range(-4,0):
            if rd_blk[i] != rd_blk[i-4]:
                break
        else:
            if not quiet:
                print ("End of the block repeats 2 last 8-bursts, insufficient number of trailing DQS pulses is suspected:")
                print("\n%03x:"%(len(rd_blk)-8),end=" ")
                for i in range(len(rd_blk)-8,len(rd_blk)):
                    print("%08x"%rd_blk[i],end=" ")
                print("\n")
            return True
        return False            
                   
    def scan_dqs(self,
                 low_delay, 
                 high_delay,
                 num=8,
                 sel=1,     # 0 - early, 1 - late read command (shift by a SDCLK period) 
                 quiet=2  ):
        """
        Scan DQS input delay values using pattern read mode
        <low_delay>   low delay value (in 'hardware' format, sparse)
        <high_delay>  high delay value (in 'hardware' format, sparse)
        <num>         number of 64-bit words to process
        <sel>        0 - early, 1 - late read command (shift by a SDCLK period) 
        <quiet>       less output
        """
        checkIntArgs(('low_delay','high_delay','num'),locals())
        self.x393_pio_sequences.set_read_pattern(num+1,sel) # do not use first/last pair of the 32 bit words
        low = split_delay(low_delay)
        high = split_delay(high_delay)
        results = []
        for dly in range (low, high+1):
            enc_dly=combine_delay(dly)
            self.x393_mcntrl_timing.axi_set_dqs_idelay(enc_dly)
            buf= self.x393_pio_sequences.read_pattern(
                     (4*num+2),     # num,
                     0,             # show_rslt,
                     1) # Wait for operation to complete
            if quiet <1:
                hbuf=[]
                for dd in buf:
                    hbuf.append(hex(dd))
                print(hbuf)
            # with "good" data each word in buf should be 0xff00ff00
            
            if self.bad_data(buf):
                results.append([])
            else:    
                data=[0]*32 # for each bit - even, then for all - odd
                for w in range (4*num):
                    lane=w%2
                    for wb in range(32):
                        g=(wb/8)%2
                        b=wb%8+lane*8+16*g
                        if (buf[w+2] & (1<<wb) != 0):
                            data[b]+=1
                results.append(data)
                if quiet < 2:
                    print ("%3d (0x%02x): "%(dly,enc_dly),end="")
                    for i in range(32):
                        print("%5x"%data[i],end="")
                    print()
        if quiet<3:
            for index in range (len(results)):
                dly=index+low
                enc_dly=combine_delay(dly)
                if (len (results[index])>0):
                    print ("%3d (0x%02x): "%(dly,enc_dly),end="")
                    for i in range(32):
                        print("%5x"%results[index][i],end="")
                    print()    
            print()
        if quiet < 4:    
            print()
            print ("Delay",end=" ")
            for i in range(16):
                print ("Bit%dP"%i,end=" ")
            for i in range(16):
                print ("Bit%dM"%i,end=" ")
            print()
            for index in range (len(results)):
                dly=index+low
                enc_dly=combine_delay(dly)
                if (len (results[index])>0):
                    print ("%d"%(dly),end=" ")
                    for i in range(32):
                        print("%d"%results[index][i],end=" ")
                    print()    
        return results                                  

    def scan_dq_idelay(self,
                       low_delay,
                       high_delay,
                       num=8,
                       sel=1,#  0 - early, 1 - late read command (shift by a SDCLK period) 
                       quiet=2 ):
        """
        Scan DQ input delay values using pattern read mode
        <low_delay>   low delay value (in 'hardware' format, sparse)
        <high_delay>  high delay value (in 'hardware' format, sparse)
        <num>         number of 64-bit words to process
        <sel>         0 - early, 1 - late read command (shift by a SDCLK period) 
        <quiet>       less output
        """
        checkIntArgs(('low_delay','high_delay','num'),locals())
        self.x393_pio_sequences.set_read_pattern(num+1,sel) # do not use first/last pair of the 32 bit words
        low = split_delay(low_delay)
        high = split_delay(high_delay)
        results = []
        for dly in range (low, high+1):
            enc_dly=combine_delay(dly)
            self.x393_mcntrl_timing.axi_set_dq_idelay(enc_dly) # same value to all DQ lines
            buf= self.x393_pio_sequences.read_pattern(
                     (4*num+2),     # num,
                     0,             # show_rslt,
                     1) # Wait for operation to complete
            if not quiet:
                hbuf=[]
                for dd in buf:
                    hbuf.append(hex(dd))
                print(hbuf)
            # with "good" data each word in buf should be 0xff00ff00
            if self.bad_data(buf):
                results.append([])
            else:    
                data=[0]*32 # for each bit - even, then for all - odd
                for w in range (4*num):    # read 32-bit word number
                    lane=w%2               # even words - lane 0, odd - lane 1
                    for wb in range(32):
                        g=(wb/8)%2
                        b=wb%8+lane*8+16*g
                        if (buf[w+2] & (1<<wb) != 0):# buf[w+2] - skip first 2 words
                            data[b]+=1
                results.append(data)
                #When all correct, data[:16] should be all 0, data[16:] - maximal, (with num=8  - 32)
                if not quiet: 
                    print ("%3d (0x%02x): "%(dly,enc_dly),end="")
                    for i in range(32):
                        print("%5x"%data[i],end="")
                    print()
        if quiet <2:                
            for index in range (len(results)):
                dly=index+low
                enc_dly=combine_delay(dly)
                if (len (results[index])>0):
                    print ("%3d (0x%02x): "%(dly,enc_dly),end="")
                    for i in range(32):
                        print("%5x"%results[index][i],end="")
                    print()    
            print()
        if quiet <3:                
            print()
            print ("Delay",end=" ")
            for i in range(16):
                print ("Bit%dP"%i,end=" ")
            for i in range(16):
                print ("Bit%dM"%i,end=" ")
            print()
            for index in range (len(results)):
                dly=index+low
                enc_dly=combine_delay(dly)
                if (len (results[index])>0):
                    print ("%d"%(dly),end=" ")
                    for i in range(32):
                        print("%d"%results[index][i],end=" ")
                    print()    
            print()
        return results                                  

    def adjust_dq_idelay(self,
                         low_delay,
                         high_delay,
                         num=8,
                         sel=1, # 0 - early, 1 - late read command (shift by a SDCLK period) 
                         falling=0, # 0 - use rising as delay increases, 1 - use falling
                         smooth=10,
                         quiet=2):
        """
        Adjust individual per-line DQ delays using read pattern mode
        DQS idelay(s) should be set 90-degrees from the final values
        <low_delay>   low delay value (in 'hardware' format, sparse)
        <high_delay>  high delay value (in 'hardware' format, sparse)
        <num>         number of 64-bit words to process
        <sel>         0 - early, 1 - late read command (shift by a SDCLK period) 
        <falling>     0 - use rising edge as delay increases, 1 - use falling one
                      In 'falling' mode results are the longest DQ idelay
                      when bits switch from correct to incorrect,
                      In 'rising' mode (falling==0) - the shortest one
        <smooth>      number of times to run LPF
        <quiet>       less output
        Returns:      list of 16 per-line delay values (sequential, not 'hardware')
        """
        checkIntArgs(('low_delay','high_delay','num'),locals())
        low = split_delay(low_delay)
        data_raw=self.scan_dq_idelay(low_delay,high_delay,num,sel,quiet)
        data=[]
        delays=[]
        for i,d in enumerate(data_raw):
            if len(d)>0:
                data.append(d)
                delays.append(i+low)
        if (quiet<2):
            print(delays)
        
        centerRaw=num*2.0# center value
        uncert=[] #"uncertanty of read for each bit and even/odd words. list of 32-element lists, each positive in the [0,1] interval
        rate=[]   # data change rate
        lm1=len(data)-1
        for i in range (0,len(data)):
            im1=(0,  i-1)[i>0]
            ip1=(lm1,i+1)[i<lm1]
            r_uncert=[]
            r_rate=[]
            for j in range (32):
                d=0.5*data[i][j]+0.25*(data[ip1][j]+data[im1][j])
                r=data[im1][j]-data[ip1][j]
                if (j>=16):
                    r=-r
                r_uncert.append(1.0-((d-centerRaw)/centerRaw)**2) #0 and max -> 0, center ->1.0
                r_rate.append(r/(2.0*centerRaw))
            uncert.append(r_uncert)
            rate.append(r_rate)
#            print ("%d %s"%(i,str(r_uncert)))
        for _ in range(smooth):
            uncert=smooth2d(uncert)
        for _ in range(smooth):
            rate= smooth2d(rate)
        val=[] # list of 16-element rows of composite uncert*rate values, multiplied for odd/even values, hoping not to have
        #         any bumps causes by asymmetry 0->1 and 1-->0
        for i in range (0,len(data)):
            r_val=[]
            for j in range(16):
                sign=(-1,1)[rate[i][j]>0]
                rr=rate[i][j]*rate[i][j+16]
#                if falling:
#                    sign=-sign
                if rr<0:
                    sign=0 # different slope direction - ignore                
                r_val.append(sign * rr * uncert[i][j] * uncert[i][j+16])
            val.append(r_val)
        best_dlys=[None]*16
        best_diffs=[None]*16
        for i in range (len(val)):
            for j in range (16):
                v=val[i][j]
                if falling:
                    v=-v
                if (best_dlys[j] is None) or (v>best_diffs[j]):
                    best_dlys[j]=  i+1
                    best_diffs[j]= v
        if quiet <2:
            for i in range (len(data)):
                print("%d "%(i),end="")
                for j in range (32):
                    print("%f "%uncert[i][j],end="")
                for j in range (32):
                    print("%f "%rate[i][j],end="")
                for j in range (16):
                    print("%f "%(val[i][j]),end="")
                print()
        
        for i in range (16):
            print("%2d: %3d (0x%02x)"%(i,best_dlys[i],combine_delay(best_dlys[i])))
        comb_delays=combine_delay(best_dlys)
        self.x393_mcntrl_timing.axi_set_dq_idelay((comb_delays[0:8],comb_delays[8:16]))
        return best_dlys       

    def corr_delays(self,
                    low,         # absolute delay value of start scan
                    avg_types,   # weights of each of the 8  bit sequences
                    res_bits,    # individual per-bit results
                    res_avg,     # averaged eye data table, each line has 8 elements, or [] for bad measurements
                    corr_fine,   # fine delay correction
                    ends_dist,   # do not process if one of the primary interval ends is within this from 0.0 or 1.0
                    verbose
                    ):
        """
        Correct delays
        <low>         absolute delay value of start scan
        <avg_types>   weights of each of the 8  bit sequences
        <res_bits>    individual per-bit results
        <res_avg>     averaged eye data table, each line has 8 elements, or [] for bad measurements
        <corr_fine>   fine delay correction
        <ends_dist>   do not process if one of the primary interval ends is within this from 0.0 or 1.0
        <verbose>
        Returns list of corrected delays
        """
        # coarse adjustments - decimate arrays to use the same (0) value of the fine delay
        usable_types=[]
        for i,w in enumerate(avg_types):
            if (w>0) and not i in (0,7) :
                usable_types.append(i)
        if (verbose): print ("usable_types=",usable_types)            
        def thr_sign(bit,typ,limit,data):
#            lim_l=limit
#            lim_u=1.0-limit
            if data[bit][typ] <= limit: return -1
            if data[bit][typ] >= (1.0- limit): return 1
            return 0
        def thr_signs(typ,limit,data):
            signs=""
            for bit in range(15,-1,-1):
                signs+=("-","0","+")[thr_sign(bit,typ,limit,data)+1]
        def full_state(types,limit,data): #will NOT return None if any is undefined
            state=""
            for t in types:
                for bit in range(15,-1,-1):
                    state+=("-","0","+")[thr_sign(bit,t,limit,data)+1]
            return state                    
        def full_same_state(types,limit,data): #will return None if any is undefined
            state=""
            for t in types:
                s0=thr_sign(15,t,limit,data)
                state+=("-","0","+")[s0+1]
                for bit in range(15,-1,-1):
                    s=thr_sign(bit,t,limit,data)
                    if (not s) or (s != s0) :
                        return None
            return state                    
                
                        
        def diff_state(state1,state2):
            for i,s in enumerate(state1):
                if s != state2[i]:
                    return True
            return False    
#       start_index=0;
#       if (low % NUM_FINE_STEPS) != 0:
#           start_index=NUM_FINE_STEPS-(low % NUM_FINE_STEPS)
        #find the first index where all bits are either above 1.0 -ends_dist or below ends_dist
        for index in range(len(res_avg)):
            print (" index=%d: %s"%(index,full_state(usable_types,ends_dist,res_bits[index])))
            initial_state=full_same_state(usable_types,ends_dist,res_bits[index])
            if initial_state:
                break
        else:
            print ("Could not find delay value where all bits/types are outside of undefined area (%f thershold)"%ends_dist)
            return None
        if (verbose): print ("start index=%d, start state=%s"%(index,initial_state))
        #find end of that state
        for index in range(index+1,len(res_avg)):
            state=full_same_state(usable_types,ends_dist,res_bits[index])
            if state != initial_state:
                break
        else:
            print ("Could not find delay value where initial state changes  (%f thershold)"%ends_dist)
            return None
        last_initial_index=index-1
        if (verbose): print ("last start state index=%d, new state=%s"%(last_initial_index,state))
        #find new defined state for all bits
        for index in range(last_initial_index+1,len(res_avg)): #here repeat last delay
            new_state=full_same_state(usable_types,ends_dist,res_bits[index])
            if new_state and (new_state != initial_state):
                break
        else:
            print ("Could not find delay value whith the new defined state (%f thershold)"%ends_dist)
            return None
        new_state_index=index
        if (verbose): print ("new defined state index=%d, new state=%s"%(new_state_index,new_state))
    # remove states that do not have a transition    
        filtered_types=[]
        for i,t in enumerate(usable_types):
            if (new_state[i]!=initial_state[i]):
                filtered_types.append(t)
        if (verbose): print ("filtered_types=",filtered_types)            
        second_trans= 1 in filtered_types # use second transition, false - use first transition
        if (verbose): print("second_trans=",second_trans)
    #    signs=((1,1,-1,-1),(1,-1,1,-1))[1 in filtered_types]
        signs=((0,0,1,1,-1,-1,0,0),(0,1,-1,0,0,1,-1,0))[1 in filtered_types]
        if (verbose): print("signs=",signs)
            
        for index in range(last_initial_index,new_state_index+1):
            if (verbose): print ("index=%3d, delay=%3d, state=%s"%(index,index+low,full_state(filtered_types,ends_dist,res_bits[index])))  
    
    #extend range, combine each bit and averages
        ext_low_index=last_initial_index-(new_state_index-last_initial_index)
        if ext_low_index<0:
            ext_low_index=0
        ext_high_index=new_state_index+(new_state_index-last_initial_index)
        if ext_high_index>=len(res_bits):
            ext_high_index=len(res_bits)-1
        if (verbose): print("ext_low_index=%d ext_high_index=%d"%(ext_low_index,ext_high_index))
        bit_data=[]
        for i in range(16):
            bit_data.append([]) # [[]]*16 does not work! (shallow copy)
        avg_data=[]
        for index0 in range(ext_high_index-ext_low_index+1):
            index=index0+ext_low_index
    #        if (verbose): print(res_bits[index])
            bit_samples=[0.0]*16
            avg_sample=0.0
            weight=0.0
            for t in filtered_types:
                w=avg_types[t]
                weight+=w
                sw=signs[t]*w
                avg_sample += sw * (2.0*res_avg[index][t]-1.0)
    #            if (verbose): print ("%3d %d:"%(index,t),end=" ")
                for bit in range(16):
                    bit_samples[bit] += sw*(2.0*res_bits[index][bit][t]-1.0)
    #                if (verbose): print ("%.3f"%(res_bits[index][bit][t]),end=" ")
    #            if (verbose): print()    
            
            avg_sample /= weight
            avg_data.append(avg_sample)    
            for bit in range(16):
                bit_samples[bit] /= weight
    #            if (verbose): print ("bit_samples[%d]=%f"%(bit,bit_samples[bit]))
                bit_data[bit].append(bit_samples[bit])
    #        if (verbose): print ("bit_samples=",bit_samples)
    #       if index0 <3:
    #            if (verbose): print ("bit_data=",bit_data)
                        
    #    if (verbose): print ("\n\nbit_data=",bit_data)
        period_fine=len(corr_fine)
        for index in range(ext_high_index-ext_low_index+1):
            dly=low+index+ext_low_index
            corr_dly=dly+corr_fine[dly%period_fine]
            if (verbose): print ("%d %d %.2f %.3f"%(index,dly,corr_dly,avg_data[index]),end=" ")
            for bit in range(16):
                if (verbose): print ("%.3f"%(bit_data[bit][index]),end=" ")
            if (verbose): print()            
    # Seems all above was an overkill, just find bit delays that result in  most close to 0
        delays=[]
        for bit in range(16):
            best_dist=1.0
            best_index=None
            for index in range(ext_high_index-ext_low_index+1):
                if (abs(bit_data[bit][index])<best_dist):
                    best_dist=abs(bit_data[bit][index])
                    best_index=index
            delays.append(best_index+low+ext_low_index)
        if (verbose): print (delays)
        return delays

    def calibrate_finedelay(self,
                            low,         # absolute delay value of start scan
                            avg_types,   # weights of each of the 8  bit sequences
                            res_avg,     # averaged eye data tablle, each line has 8 elements, or [] for bad measurements
                            ends_dist,   # do not process if one of the primary interval ends is within this from 0.0 or 1.0
                            min_diff):   # minimal difference between primary delay steps to process
        """
        Calibrate fine delay taps
        <low>         absolute delay value of start scan
        <avg_types>   weights of each of the 8  bit sequences
        <res_avg>     averaged eye data tablle, each line has 8 elements, or [] for bad measurements
        <ends_dist>   do not process if one of the primary interval ends is within this from 0.0 or 1.0
        <min_diff>:   minimal difference between primary delay steps to process

        """
        start_index=0;
        if (low % NUM_FINE_STEPS) != 0:
            start_index=NUM_FINE_STEPS-(low % NUM_FINE_STEPS)
        weights=[0.0]*( NUM_FINE_STEPS)
        corr=[0.0]*( NUM_FINE_STEPS) #[0] will stay 0
        for index in range(start_index, len(res_avg)-NUM_FINE_STEPS,NUM_FINE_STEPS):
            if (len(res_avg[index])>0) and (len(res_avg[index+NUM_FINE_STEPS])>0):
                for t,w in enumerate(avg_types):
                    if (w>0):
                        f=res_avg[index][t];
                        s=res_avg[index+NUM_FINE_STEPS][t];
#                       print ("index=%d t=%d f=%f s=%s"%(index,t,f,s))
                        if ((f>ends_dist) and (s>ends_dist) and
                             (f< (1-ends_dist)) and (s < (1-ends_dist)) and
                             (abs(s-f)>min_diff)):
                            diff=s-f
                            wd=w* diff*diff # squared? or use abs?
                            for j in range (1,NUM_FINE_STEPS):
                                if ( (len(res_avg[index+j])>0)):
                                    v=res_avg[index+j][t];
                                    #correction to the initial step==1
                                    d=(v-f)/(s-f)*NUM_FINE_STEPS-j
                                    #average
                                    corr[j]+=wd*d
                                    weights[j]+=wd
#       print ("\n weights:")
#       print(weights)
#       print ("\n corr:")
#       print(corr)
        for i,w in enumerate(weights):
            if (w>0) : corr[i]/=w # will skip 0
        print ("\ncorr:")
#       print(corr)
        for i,c in enumerate(corr):
            print ("%i %f"%(i,c))
        return corr

    def scan_or_adjust_delay_random(self,
                                    low_delay,
                                    high_delay,
                                    use_dq,
                                    use_odelay,
                                    ends_dist,
                                    min_diff,
                                    adjust,
                                    verbose):
        """
        Scan or adjust delays using random data write+read
        <low_delay>   Low delay value to tru
        <high_delay>  high delay value to try
        <use_dq>      0 - scan dqs, 1 - scan dq (common value, post-adjustment)
        <use_odelay>  0 - use input delays, 1 - use output delays
        <ends_dist>   do not process if one of the primary interval ends is within this from 0.0 or 1.0
        <min_diff>    minimal difference between primary delay steps to process 
        <adjust>      0 - scan, 1 - adjust
        <verbose>:    verbose mode (more prints) 
        Returns list of calculated delay values
        """
        checkIntArgs(('low_delay','high_delay'),locals())
        brc=(5,        # 3'h5,     # bank
             0x1234,   # 15'h1234, # row address
             0x100)     # 10'h100   # column address
           
#        global BASEADDR_PORT1_WR,VERBOSE;
#        saved_verbose=VERBOSE;
#        VERBOSE=False;
        low = split_delay(low_delay)
        high = split_delay(high_delay)
        rand16=[]
        for i in range(512):
            rand16.append(random.randint(0,65535))
        wdata=convert_mem16_to_w32(rand16)
        if (verbose and not adjust): print("rand16:")
        for i in range(len(rand16)):
            if (i & 0x1f) == 0:
                if (verbose and not adjust): print("\n%03x:"%i,end=" ")
            if (verbose and not adjust): print("%04x"%rand16[i],end=" ")
        if (verbose and not adjust): print("\n")        
        if (verbose and not adjust): print("wdata:")
        for i in range(len(wdata)):
            if (i & 0xf) == 0:
                if (verbose and not adjust): print("\n%03x:"%i,end=" ")
            if (verbose and not adjust): print("%08x"%wdata[i],end=" ")
        if (verbose and not adjust): print("\n")        
        bit_type=[] # does not include first and last elements
        for i in range(1,511):
            types=[]
            for j in range(16):
                types.append((((rand16[i-1]>>j) & 1)<<2) | (((rand16[i  ]>>j) & 1)<<1) |  (((rand16[i+1]>>j) & 1)))
            bit_type.append(types)
    #        if (verbose and not adjust): print ("i=%d",i)
    #        if (verbose and not adjust): print(types)
    #    total_types=[[0]*8]*16 # number of times each type occurred in the block for each DQ bit (separate for DG up/down?)
        total_types=[] # number of times each type occurred in the block for each DQ bit (separate for DG up/down?)
        for i in range(16): total_types.append([0]*8) 
        for typ in bit_type:
    #        if (verbose and not adjust): print(typ)
            for j in range(16):
    #            total_types[j][typ[j]]+=1
                total_types[j][typ[j]]=total_types[j][typ[j]]+1
        if (verbose and not adjust): print("\ntotal_types:")        
        if (verbose and not adjust): print (total_types)
        
        avg_types=[0.0]*8
        N=0
        for t in total_types:
            for j,n in enumerate(t):
                avg_types[j]+=n
                N+=n
        for i in range(len(avg_types)):
            avg_types[i]/=N
        if (verbose and not adjust): print("\avg_types:")        
        if (verbose and not adjust): print (avg_types)
        #write blok buffer with 256x32bit data
                
        self.x393_mcntrl_buffers.write_block_buf_chn(0,0,wdata); # fill block memory (channel, page, number)

        self.x393_pio_sequences.set_write_block(*brc) #64 8-bursts, 1 extra DQ/DQS/ active cycle
        self.x393_pio_sequences.set_read_block(*brc)
        
        if (use_odelay==0) :
            self.x393_pio_sequences.write_block(0,1) # Wait for operation to complete
            if verbose: print("++++++++ block written once")
    #now scanning - first DQS, then try with DQ (post-adjustment - best fit) 
        results = []
        if verbose: print("******** use_odelay=%d use_dq=%d"%(use_odelay,use_dq))
        alreadyWarned=False
        for dly in range (low, high+1):
            enc_dly=combine_delay(dly)
            if (use_odelay!=0):
                if (use_dq!=0):
                    if verbose: print("******** axi_set_dq_odelay(0x%x)"%enc_dly)
                    self.x393_mcntrl_timing.axi_set_dq_odelay(enc_dly) #  set the same odelay for all DQ bits
                else:
                    if verbose: print("******** axi_set_dqs_odelay(0x%x)"%enc_dly)
                    self.x393_mcntrl_timing.axi_set_dqs_odelay(enc_dly)
                self.x393_pio_sequences.write_block(0,1) # Wait for operation to complete
                if verbose: print("-------- block written AGAIN")
            else:
                if (use_dq!=0):
                    if verbose: print("******** axi_set_dq_idelay(0x%x)"%enc_dly)
                    self.x393_mcntrl_timing.axi_set_dq_idelay(enc_dly)#  set the same idelay for all DQ bits
                else:
                    if verbose: print("******** axi_set_dqs_idelay(0x%x)"%enc_dly)
                    self.x393_mcntrl_timing.axi_set_dqs_idelay(enc_dly)
            buf32=self.x393_pio_sequences.read_block(
                                                     256,    # num,
                                                     0,      # show_rslt,
                                                     1)      # Wait for operation to complete
            if self.bad_data(buf32):
                results.append([])
            else:
                # Warn about possible missing DQS pulses during writes
                alreadyWarned |= self.missing_dqs(buf32, alreadyWarned) 
                read16=convert_w32_to_mem16(buf32) # 512x16 bit, same as DDR3 DQ over time
                if verbose and (dly==low):   
                    if (verbose and not adjust): print("buf32:")
                    for i in range(len(buf32)):
                        if (i & 0xf) == 0:
                            if (verbose and not adjust): print("\n%03x:"%i,end=" ")
                        if (verbose and not adjust): print("%08x"%buf32[i],end=" ")
                    if (verbose and not adjust): print("\n")        
    
    
                    if (verbose and not adjust): print("read16:")
                    for i in range(len(read16)):
                        if (i & 0x1f) == 0:
                            if (verbose and not adjust): print("\n%03x:"%i,end=" ")
                        if (verbose and not adjust): print("%04x"%read16[i],end=" ")
                    if (verbose and not adjust): print("\n")
                data=[] # number of times each type occurred in the block for each DQ bit (separate for DG up/down?)
                for i in range(16):
                    data.append([0]*8) 
                
                for i in range (1,511):
                    w= read16[i]
                    typ=bit_type[i-1] # first and last words are not used, no type was calculated
                    for j in range(16):
                        if (w & (1<<j)) !=0:
                            data[j][typ[j]]+=1
                for i in range(16):
                    for t in range(8):
                        if (total_types[i][t] >0 ):
                            data[i][t]*=1.0/total_types[i][t]
                results.append(data)
                if (verbose and not adjust): print ("%3d (0x%02x): "%(dly,enc_dly),end="")
                for i in range(16):
                    if (verbose and not adjust): print("[",end="")
                    for j in range(8):
                        if (verbose and not adjust): print("%3d"%(round(100.0*data[i][j])),end=" ")
                    if (verbose and not adjust): print("]",end=" ")
                if (verbose and not adjust): print()    
        titles=["'000","'001","'010", "'011","'100","'101","'110","'111"]
        #calculate weighted averages
        #TODO: for DQ scan shift individual bits for the best match
        if  use_dq:
            if (verbose and not adjust): print("TODO: shift individual bits for the best match before averaging")
    
        res_avg=[]
        for dly in range (len(results)):
            if (len(results[dly])>0):
                data=results[dly]
                avg=[0.0]*8
                for t in range(8):
                    weight=0;
                    d=0.0
                    for i in range(16):
                        weight+=total_types[i][t]
                        d+=total_types[i][t]*data[i][t]
                    if (weight>0):
                        d/=weight
                    avg[t] = d
                res_avg.append(avg)
            else:
                res_avg.append([])
        corr_fine=self.calibrate_finedelay(
                low,         # absolute delay value of start scan
                avg_types,   # weights of weach of the 8  bit sequences
                res_avg,     # averaged eye data tablle, each line has 8 elements, or [] for bad measurements
                ends_dist/256.0, # ends_dist,   # do not process if one of the primary interval ends is within this from 0.0 or 1.0
                min_diff/256.0) #min_diff):   # minimal difference between primary delay steps to process
        period=len(corr_fine)
    
        if (not adjust):
            print("\n\n\n========== Copy below to the spreadsheet,  use columns from corr_delay ==========")
            print("========== First are individual results for each bit, then averaged eye pattern ==========")
            print ("delay corr_delay",end=" ")
            for t in range(8):
                for i in range(16):
                    if (not adjust): print("%02d:%s"%(i,titles[t]),end=" ")
            print()
            for index in range (len(results)):
                if (len(results[index])>0):
                    dly=index+low
                    corr_dly=dly+corr_fine[dly%period]
                    print ("%d %.2f"%(dly,corr_dly),end=" ")
                    for t in range(8):
                        for i in range(16):
                            try:
                                print("%.4f"%(results[dly][i][t]),end=" ") #IndexError: list index out of range
                            except:
                                print(".????",end="")
                    print()
                            
            print("\n\n\n========== Copy below to the spreadsheet,  use columns from corr_delay ==========")
            print("========== data above can be used for the individual bits eye patterns ==========")            
            print ("delay corr_delay",end=" ")
            for t in range(8):
                print(titles[t],end=" ")
            print()
            for index in range (len(res_avg)):
                if (len(res_avg[index])>0):
                    dly=index+low
                    corr_dly=dly+corr_fine[dly%period]
                    print ("%d %.2f"%(dly,corr_dly),end=" ")
                    for t in range(8):
                        try:
                            print("%.4f"%(res_avg[dly][t]),end=" ")
                        except:
                            print(".????",end=" ")
                    print()
        dly_corr=None
        if adjust:        
            dly_corr=self.corr_delays(
                low,         # absolute delay value of start scan
                avg_types,   # weights of weach of the 8  bit sequences
                results,    #individual per-bit results
                res_avg,     # averaged eye data tablle, each line has 8 elements, or [] for bad measurements
                corr_fine,    # fine delay correction
                ends_dist/256.0,   # find where all bits are above/below that distance from 0.0/1.0margin
                verbose)
#            VERBOSE=verbose
#            print ("VERBOSE=",VERBOSE)
            print ("dly_corr=",dly_corr)
            print ("use_dq=",use_dq)
            if dly_corr and use_dq: # only adjusting DQ delays, not DQS
                dly_comb=combine_delay(dly_corr)
                if use_odelay:
                    self.x393_mcntrl_timing.axi_set_dq_odelay((dly_comb[0:8],dly_comb[8:16]))
                    """
                    for i in range (8):
                        axi_set_dly_single(0,i,combine_delay(dly_corr[i]))    
                    for i in range (8):
                        axi_set_dly_single(2,i,combine_delay(dly_corr[i+8]))
                    """
                else: 
                    self.x393_mcntrl_timing.axi_set_dq_idelay((dly_comb[0:8],dly_comb[8:16]))
                    """
                    for i in range (8):
                        axi_set_dly_single(1,i,combine_delay(dly_corr[i]))    
                    for i in range (8):
                        axi_set_dly_single(3,i,combine_delay(dly_corr[i+8]))
                    """
    #          use_dq, # 0 - scan dqs, 1 - scan dq (common valuwe, post-adjustment)
    #      use_odelay,
            
#        VEBOSE=saved_verbose
        return dly_corr





    def scan_delay_random(self,
                          low_delay,
                          high_delay,
                          use_dq, # 0 - scan dqs, 1 - scan dq (common valuwe, post-adjustment)
                          use_odelay, # 0 - idelay, 1 - odelay
                          ends_dist,   # do not process if one of the primary interval ends is within this from 0.0 or 1.0
                          min_diff,   # minimal difference between primary delay steps to process
                          verbose):
        """
        Scan  delays using random data write+read
        <low_delay>   Low delay value to tru
        <high_delay>  high delay value to try
        <use_dq>      0 - scan dqs, 1 - scan dq (common value, post-adjustment)
        <use_odelay>  0 - use input delays, 1 - use output delays
        <ends_dist>   do not process if one of the primary interval ends is within this from 0.0 or 1.0
        <min_diff>    minimal difference between primary delay steps to process 
        <verbose>:    verbose mode (more prints) 
        """
        checkIntArgs(('low_delay','high_delay'),locals())
        self.scan_or_adjust_delay_random(
                                         low_delay,
                                         high_delay,
                                         use_dq, # 0 - scan dqs, 1 - scan dq (common valuwe, post-adjustment)
                                         use_odelay,
                                         ends_dist,   # do not process if one of the primary interval ends is within this from 0.0 or 1.0
                                         min_diff,
                                         False,     #scan, not adjust
                                         verbose)   # minimal difference between primary delay steps to process