huffman_snglclk.v 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
/*!
 * <b>Module:</b>huffman_snglclk
 * @file huffman_snglclk.v
 * @author Andrey Filippov     
 *
 * @brief Huffman encoder for JPEG compressor, redesigned to use single rate pixel clock. 
 * 
 *
 * @copyright Copyright (c) 2002-2015 Elphel, Inc.
 *
 * <b>License:</b>
 *
 * huffman_snglclk.v is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * huffman_snglclk.v is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/> .
 *
 * Additional permission under GNU GPL version 3 section 7:
 * If you modify this Program, or any covered work, by linking or combining it
 * with independent modules provided by the FPGA vendor only (this permission
 * does not extend to any 3-rd party modules, "soft cores" or macros) under
 * different license terms solely for the purpose of generating binary "bitstream"
 * files and/or simulating the code, the copyright holders of this Program give
 * you the right to distribute the covered work without those independent modules
 * as long as the source code for them is available from the FPGA vendor free of
 * charge, and there is no dependence on any encrypted modules for simulating of
 * the combined code. This permission applies to you if the distributed code
 * contains all the components and scripts required to completely simulate it
 * with at least one of the Free Software programs.
 */
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
`include "system_defines.vh" 
module huffman_snglclk    (
    input             xclk,            // pixel clock, sync to incoming data
    input             rst,             // @xclk
// Interface to program Huffman tables
    input             mclk,            // system clock to write tables
    input             tser_we,         // enable write to a  table
    input             tser_a_not_d,    // address/not data distributed to submodules
    input      [ 7:0] tser_d,          // byte-wide serialized tables address/data to submodules
    
// Input data     
    input      [15:0] di,              // [15:0]    specially RLL prepared 16-bit data (to FIFO) (sync to xclk)
    input             ds,              // di valid strobe  (sync to xclk)
// Output data    
    output     [26:0] do27,            // [26:0]    output data, MSB aligned
    output     [ 4:0] dl,              // [4:0] data length 
    output            dv,              // output data valid
    
    output            flush,           // last block done - flush the rest bits
    output            last_block,
    output reg        test_lbw,
60
    output            gotLastBlock,    // last block done - flush the rest bits
61 62
    input             clk_flush,      // other clock to generate synchronized 1-cycle flush_clk output   
    output            flush_clk,       // 1-cycle flush output @ clk_flush
63 64 65 66 67
    output            fifo_or_full     // FIFO output register full - just for debuging
);

// A small input FIFO, only needed for RLL >16 that require several clock cycles to output

68
    reg         fifo_re_r;
69
    wire        fifo_rdy;
70
    wire        fifo_re = fifo_re_r && fifo_rdy;
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    wire [15:0] fifo_out;
    fifo_same_clock #(
        .DATA_WIDTH(16),
        .DATA_DEPTH(4)
    ) fifo_same_clock_i (
        .rst       (1'b0), // input
        .clk       (xclk), // input
        .sync_rst  (rst), // input
        .we        (ds), // input
        .re        (fifo_re), // input
        .data_in   (di), // input[15:0] 
        .data_out  (fifo_out), // output[15:0] 
        .nempty    (fifo_rdy), // output
        .half_full () // output reg 
    );
    assign fifo_or_full = fifo_rdy;
    wire gotDC=           fifo_out[15] &&  fifo_out[14];
    wire gotAC=           fifo_out[15] && !fifo_out[14];
    wire gotRLL=         !fifo_out[15] && !fifo_out[12];
    wire gotEOB=         !fifo_out[15] &&  fifo_out[12];
    assign gotLastBlock=  fifo_out[15] &&  fifo_out[14] && fifo_out[12] && fifo_re;
    wire gotLastWord=    !fifo_out[14] &&  fifo_out[12] && fifo_re;    // (AC or RLL) and last bit set
    wire gotColor=        fifo_out[13];
94 95 96
    reg     [5:0] rll;      // 2 MSBs - counter to send "f0" codes
//    reg     [3:0] rll1;     // valid at cycle "1"
    wire    [3:0] rll_late; // match AC's length timing
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    reg     [2:0] gotAC_r;
    reg     [2:0] gotDC_r;
    reg     [2:0] gotEOB_r;
    reg     [2:0] gotColor_r;
    reg     [2:1] gotF0_r;    
    
    reg    [11:0] sval;    // signed input value
    wire    [3:0] val_length;
    wire   [10:0] val_literal;
    reg     [8:0] htable_addr;     // address to huffman table
    reg     [2:0] htable_re;       // Huffman table memory re, regen, out valid
    wire   [31:0] htable_out;      // Only [19:0] are used
    wire    [3:0] val_length_late; // delay by 3 clocks to match Huffman table output
    wire   [10:0] val_literal_late;// delay by 3 clocks to match Huffman table output

    reg           ready_to_flush;
    
    reg            flush_r;           // last block done - flush the rest bits
    reg            last_block_r;
    reg     [9:0]  active_r;
    wire           active = fifo_re || active_r[0];
    
    assign flush =        flush_r;
    assign last_block =   last_block_r;
    assign fifo_or_full = fifo_rdy;
    
    always @(posedge xclk) begin
124
        if (rst) fifo_re_r <= 0;
125
        else     fifo_re_r <= fifo_rdy && !(fifo_re && gotRLL && (|fifo_out[5:4])) && !(|rll[5:4]);
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    
        if (rst) gotAC_r <= 0;
        else     gotAC_r <= {gotAC_r[1:0], gotAC && fifo_re};
    
        if (rst) gotDC_r <= 0;
        else     gotDC_r <= {gotDC_r[1:0], gotDC && fifo_re};

        if (rst) gotEOB_r <= 0;
        else     gotEOB_r <= {gotEOB_r[1:0], gotEOB && fifo_re};

        if (rst) gotColor_r <= 0;
        else     gotColor_r <= {gotColor_r[1:0], (gotDC && fifo_re) ? gotColor : gotColor_r[0] };

        if      (rst)               rll[5:4] <= 0;
        else if (fifo_re && gotRLL) rll[5:4] <= fifo_out[5:4];
        else if (gotAC_r[0])        rll[5:4] <= 0; // combine with !en?
        else if (|rll[5:4])         rll[5:4] <=rll[5:4] - 1;
        
        if      (rst)               rll[3:0] <= 0;
        else if (fifo_re)           rll[3:0] <= gotRLL ? fifo_out[3:0] : 4'b0;
        
147 148
//        rll1 <= rll[3:0];
//        rll_late <= rll1;
149 150 151 152 153 154 155 156 157 158 159
        
        if (rst) gotF0_r[2:1] <= 0;
        else     gotF0_r[2:1] <= {gotF0_r[1], (|rll[5:4])};
        
//        if (fifo_re) sval[11:0] <= fifo_out[11:0];
        sval[11:0] <= fifo_out[11:0];
        
        htable_addr[8] <= gotColor_r[2];  // switch Huffman tables
        htable_addr[7:0] <= ({8{gotEOB_r[2]}} & 8'h0 )   | // generate 00 code (end of block)
                      ({8{gotF0_r[2]}}  & 8'hf0 )  | // generate f0 code (16 zeros)
                      ({8{gotDC_r[2]}}  & {val_length[3:0], 4'hf}) |
160
                      ({8{gotAC_r[2]}}  & {rll_late[3:0],       val_length[3:0]});
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
       
       if (rst)  htable_re <= 0;
       else      htable_re <= {htable_re[1:0], gotEOB_r[2] | gotF0_r[2] | gotDC_r[2] | gotAC_r[2]};

       // other signals
       
       if    (rst || flush_r)                 last_block_r <= 0;
       else if (gotLastBlock)                 last_block_r <= 1;
       
       if      (rst || flush_r)               ready_to_flush <= 0;
       else if (last_block_r &&  gotLastWord) ready_to_flush <= 1;

       test_lbw <= last_block &&  gotLastWord;
       
        if      (rst)     active_r <= 0;
        else if (fifo_re) active_r <= 10'h3ff;
        else              active_r <= active_r >> 1;
        
        if (rst) flush_r <= 0;
180
        else     flush_r <= ready_to_flush && !active && !flush_r;
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
        
    end

    varlen_encode_snglclk varlen_encode_snglclk_i (
        .clk     (xclk),       // input
        .d       (sval),       // input[11:0] 
        .l       (val_length), // output[3:0] reg 
        .q       (val_literal) // output[10:0] reg 
    );

    wire          twe;
    wire  [15:0]  tdi;
    wire  [22:0]  ta;
    
  
     table_ad_receive #(
        .MODE_16_BITS (1),
        .NUM_CHN      (1)
    ) table_ad_receive_i (
        .clk       (mclk),              // input
        .a_not_d   (tser_a_not_d),      // input
        .ser_d     (tser_d),            // input[7:0] 
        .dv        (tser_we),           // input
        .ta        (ta),                // output[22:0] 
        .td        (tdi),               // output[15:0] 
        .twe       (twe)                // output
    );

    ram18_var_w_var_r #(
210
        .REGISTERS(1),
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
        .LOG2WIDTH_WR(4),
        .LOG2WIDTH_RD(5),
        .DUMMY(0)
`ifdef PRELOAD_BRAMS
    `include "includes/huffman.dat.vh"
`endif
    ) i_htab (
        .rclk      (xclk),             // input
        .raddr     (htable_addr[8:0]), // input[8:0] 
        .ren       (htable_re[0]),     // input
        .regen     (htable_re[1]),     // input
        .data_out  (htable_out),       // output[31:0] 
        .wclk      (mclk),             // input
        .waddr     (ta[9:0]),          // input[9:0] 
        .we        (twe),              // input
        .web       (4'hf),             // input[3:0] 
        .data_in   (tdi[15:0])         // input[15:0] 
    );

    dly_16 #(
        .WIDTH(11)
    ) dly_16_val_literal_i (
        .clk      (xclk),              // input
        .rst      (rst),              // input
        .dly      (4'h2),             // input[3:0] 
        .din      (val_literal),      // input[0:0] 
        .dout     (val_literal_late)  // output[0:0] 
    );

    dly_16 #(
        .WIDTH(4)
    ) dly_16_val_length_i (
        .clk      (xclk),                                            // input
        .rst      (rst),                                             // input
        .dly      (4'h2),                                            // input[3:0] 
        .din      ((gotEOB_r[2] | gotF0_r[2]) ? 4'b0 :  val_length), // input[0:0] 
        .dout     (val_length_late)                                  // output[0:0] 
    );

250 251 252 253 254 255 256 257 258 259
    dly_16 #(
        .WIDTH(4)
    ) dly_16_rll_late_i (
        .clk      (xclk),                                            // input
        .rst      (rst),                                             // input
        .dly      (4'h2),                                            // input[3:0] 
        .din      (rll[3:0]),                                        // input[0:0] 
        .dout     (rll_late)                                         // output[0:0] 
    );

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
    huffman_merge_code_literal huffman_merge_code_literal_i (
        .clk           (xclk),              // input
        .in_valid      (htable_re[2]),      // input
        .huff_code     (htable_out[15:0]),  // input[15:0] 
        .huff_code_len (htable_out[19:16]), // input[3:0] 
        .literal       (val_literal_late),  // input[10:0] 
        .literal_len   (val_length_late),   // input[3:0] 
        .out_valid     (dv),                // output reg 
        .out_bits      (do27),              // output[26:0] reg 
        .out_len       (dl)                 // output[4:0] reg 
    );
    pulse_cross_clock flush_clk_i (
        .rst       (rst),
        .src_clk   (xclk),
        .dst_clk   (clk_flush),
        .in_pulse  (flush),
        .out_pulse (flush_clk),
        .busy      ());
endmodule