x393_sensor.py 97.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
from __future__ import division
from __future__ import print_function

'''
# Copyright (C) 2015, Elphel.inc.
# Class to control 10393 sensor-to-memory channel (including histograms)  
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http:#www.gnu.org/licenses/>.

@author:     Andrey Filippov
@copyright:  2015 Elphel, Inc.
@license:    GPLv3.0+
@contact:    andrey@elphel.coml
@deffield    updated: Updated
'''
__author__ = "Andrey Filippov"
__copyright__ = "Copyright 2015, Elphel, Inc."
__license__ = "GPL"
__version__ = "3.0+"
__maintainer__ = "Andrey Filippov"
__email__ = "andrey@elphel.com"
__status__ = "Development"
#import sys
#import pickle
35 36
import struct

37 38 39 40 41
from x393_mem                import X393Mem
import x393_axi_control_status

import x393_utils

42
import time
43
import vrlg
44
import x393_mcntrl
45 46 47
#import x393_sens_cmprs
SENSOR_INTERFACE_PARALLEL = "PAR12"
SENSOR_INTERFACE_HISPI =    "HISPI"
48

49 50 51 52 53 54
class X393Sensor(object):
    DRY_MODE= True # True
    DEBUG_MODE=1
    x393_mem=None
    x393_axi_tasks=None #x393X393AxiControlStatus
    x393_utils=None
55

56 57 58 59 60 61 62
    verbose=1
    def __init__(self, debug_mode=1,dry_mode=True, saveFileName=None):
        self.DEBUG_MODE=  debug_mode
        self.DRY_MODE=    dry_mode
        self.x393_mem=            X393Mem(debug_mode,dry_mode)
        self.x393_axi_tasks=      x393_axi_control_status.X393AxiControlStatus(debug_mode,dry_mode)
        self.x393_utils=          x393_utils.X393Utils(debug_mode,dry_mode, saveFileName) # should not overwrite save file path
63
        
64 65 66 67
        try:
            self.verbose=vrlg.VERBOSE
        except:
            pass
68 69 70 71 72 73 74
    def getSensorInterfaceType(self):
        """
        Get sensor interface type by reading status register 0xfe that is set to 0 for parallel and 1 for HiSPi
        @return "PAR12" or "HISPI"
        """
        return (SENSOR_INTERFACE_PARALLEL, SENSOR_INTERFACE_HISPI)[self.x393_axi_tasks.read_status(address=0xfe)] # "PAR12" , "HISPI"
        
75 76 77 78 79 80 81 82 83 84 85
    def program_status_sensor_i2c( self,
                                   num_sensor,
                                   mode,     # input [1:0] mode;
                                   seq_num): # input [5:0] seq_num;
        """
        Set status generation mode for selected sensor port i2c control
        @param num_sensor - number of the sensor port (0..3)
        @param mode -       status generation mode:
                                  0: disable status generation,
                                  1: single status request,
                                  2: auto status, keep specified seq number,
86
                                  3: auto, inc sequence number 
87 88 89
        @param seq_number - 6-bit sequence number of the status message to be sent
        """

90
        self.x393_axi_tasks.program_status (vrlg.SENSOR_GROUP_ADDR  + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSI2C_CTRL_RADDR,
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
                             vrlg.SENSI2C_STATUS,
                             mode,
                             seq_num)# //MCONTR_PHY_STATUS_REG_ADDR=          'h0,

    def program_status_sensor_io( self,
                                  num_sensor,
                                  mode,     # input [1:0] mode;
                                  seq_num): # input [5:0] seq_num;
        """
        Set status generation mode for selected sensor port io subsystem
        @param num_sensor - number of the sensor port (0..3)
        @param mode -       status generation mode:
                                  0: disable status generation,
                                  1: single status request,
                                  2: auto status, keep specified seq number,
106
                                  3: auto, inc sequence number 
107 108
        @param seq_number - 6-bit sequence number of the status message to be sent
        """
109 110 111 112 113 114 115 116 117
        try:
            if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function
                for num_sensor in range(4):
                    self.program_status_sensor_io (num_sensor = num_sensor,
                                                   mode =       mode,
                                                   seq_num =    seq_num)
                return
        except:
            pass
118 119 120 121 122 123

        self.x393_axi_tasks.program_status (
                             vrlg.SENSOR_GROUP_ADDR  + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSIO_RADDR,
                             vrlg.SENSIO_STATUS,
                             mode,
                             seq_num)# //MCONTR_PHY_STATUS_REG_ADDR=          'h0,
124
        
125
    def get_status_sensor_io ( self,
126
                              num_sensor="All"):
127 128 129
        """
        Read sensor_io status word (no sync)
        @param num_sensor - number of the sensor port (0..3)
130
        @return sensor_io status
131
        """
132 133 134 135 136 137 138 139
        try:
            if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function
                rslt = []
                for num_sensor in range(4):
                    rslt.append(self.program_status_sensor_io (num_sensor = num_sensor))
                return rslt
        except:
            pass
140 141 142 143
        return self.x393_axi_tasks.read_status(
                    address=(vrlg.SENSI2C_STATUS_REG_BASE + num_sensor * vrlg.SENSI2C_STATUS_REG_INC + vrlg.SENSIO_STATUS_REG_REL))       

    def print_status_sensor_io (self,
144
                                num_sensor="All"):
145 146 147 148
        """
        Print sensor_io status word (no sync)
        @param num_sensor - number of the sensor port (0..3)
        """
149 150 151 152 153 154 155 156
        try:
            if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function
                for num_sensor in range(4):
                    print ("\n ==== Sensor %d"%(num_sensor))
                    self.print_status_sensor_io (num_sensor = num_sensor)
                return
        except:
            pass
157 158
        status= self.get_status_sensor_io(num_sensor)
        print ("print_status_sensor_io(%d):"%(num_sensor))
159
#last_in_line_1cyc_mclk, dout_valid_1cyc_mclk
160
        """ 
161 162 163 164 165 166 167
        print ("   last_in_line_1cyc_mclk = %d"%((status>>23) & 1))        
        print ("   dout_valid_1cyc_mclk =   %d"%((status>>22) & 1))        
        print ("   alive_hist0_gr =         %d"%((status>>21) & 1))        
        print ("   alive_hist0_rq =         %d"%((status>>20) & 1))        
        print ("   sof_out_mclk =           %d"%((status>>19) & 1))        
        print ("   eof_mclk =               %d"%((status>>18) & 1))        
        print ("   sof_mclk =               %d"%((status>>17) & 1))        
168 169 170 171 172 173 174 175 176
        print ("   sol_mclk =               %d"%((status>>16) & 1))
        """
        #Folowing 5 bits may be just temporarily available        
        print ("   irst =                   %d"%((status>>20) & 1))
        print ("async_prst_with_sens_mrst = %d"%((status>>19) & 1))
        print ("   imrst =                  %d"%((status>>18) & 1))
        print ("   rst_mmcm =               %d"%((status>>17) & 1))
        print ("   pxd_out_pre[1] =         %d"%((status>>16) & 1))
        
177 178
        print ("   vact_alive =             %d"%((status>>15) & 1))
        print ("   hact_ext_alive =         %d"%((status>>14) & 1))
179
#        print ("   hact_alive =             %d"%((status>>13) & 1))
180
        print ("   hact_run =               %d"%((status>>13) & 1))
181 182 183
        print ("   locked_pxd_mmcm =        %d"%((status>>12) & 1))
        print ("   clkin_pxd_stopped_mmcm = %d"%((status>>11) & 1))
        print ("   clkfb_pxd_stopped_mmcm = %d"%((status>>10) & 1))
184 185
        print ("   xfpgadone =              %d"%((status>> 9) & 1))
        print ("   ps_rdy =                 %d"%((status>> 8) & 1))
186 187 188 189 190 191
        print ("   ps_out =                 %d"%((status>> 0)  & 0xff))
        print ("   xfpgatdo =               %d"%((status>>25) & 1))
        print ("   senspgmin =              %d"%((status>>24) & 1))
        print ("   seq =                    %d"%((status>>26) & 0x3f))
#vact_alive, hact_ext_alive, hact_alive
    def get_status_sensor_i2c ( self,
192
                              num_sensor="All"):
193 194 195 196 197
        """
        Read sensor_i2c status word (no sync)
        @param num_sensor - number of the sensor port (0..3)
        @return sesnor_io status
        """
198 199 200 201 202 203 204 205
        try:
            if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function
                rslt = []
                for num_sensor in range(4):
                    rslt.append(self.get_status_sensor_i2c (num_sensor = num_sensor))
                return rslt
        except:
            pass
206 207 208 209
        return self.x393_axi_tasks.read_status(
                    address=(vrlg.SENSI2C_STATUS_REG_BASE + num_sensor * vrlg.SENSI2C_STATUS_REG_INC + vrlg.SENSI2C_STATUS_REG_REL))       

    def print_status_sensor_i2c (self,
210
                                num_sensor="All"):
211 212 213 214
        """
        Print sensor_i2c status word (no sync)
        @param num_sensor - number of the sensor port (0..3)
        """
215 216 217 218 219 220 221 222
        try:
            if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function
                for num_sensor in range(4):
                    print ("\n ==== Sensor %d"%(num_sensor))
                    self.print_status_sensor_i2c (num_sensor = num_sensor)
                return
        except:
            pass
223 224 225 226 227 228 229 230 231 232 233
        status= self.get_status_sensor_i2c(num_sensor)
        print ("print_status_sensor_i2c(%d):"%(num_sensor))
        print ("   reset_on =               %d"%((status>> 7) & 1))
        print ("   req_clr =                %d"%((status>> 6) & 1))
        print ("   alive_fs =               %d"%((status>> 5) & 1))
        
        print ("   busy =                   %d"%((status>> 4) & 1))
        print ("   frame_num =              %d"%((status>> 0)  & 0xf))
        print ("   sda_in =                 %d"%((status>>25) & 1))
        print ("   scl_in =                 %d"%((status>>24) & 1))
        print ("   seq =                    %d"%((status>>26) & 0x3f))
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

# Functions used by sensor-related tasks
    def func_sensor_mode (self,
                          hist_en,
                          hist_nrst, 
                          chn_en, 
                          bits16):
        """
        Combine parameters into sensor mode control word
        @param hist_en -   bit mask to enable histogram sub-modules, when 0 - disable after processing
                           the started frame
        @param hist_nrst - bit mask to immediately reset histogram sub-module (if 0) 
        @param chn_en    - enable sensor channel (False - reset) 
        @param bits16)   - True - 16 bpp mode, false - 8 bpp mode (bypass gamma). Gamma-processed data
                           is still used for histograms
        @return: sensor mode control word
        """
        rslt = 0;
        rslt |= (hist_en & 0xf) <<   vrlg.SENSOR_HIST_EN_BITS
        rslt |= (hist_nrst & 0xf) << vrlg.SENSOR_HIST_NRST_BITS
        rslt |= ((0,1)[chn_en]) <<   vrlg.SENSOR_CHN_EN_BIT
        rslt |= ((0,1)[bits16]) <<   vrlg.SENSOR_16BIT_BIT
        return rslt
    
    def func_sensor_i2c_command (self,
                                 rst_cmd =   False,
                                 run_cmd =   None,
261 262 263
                                 active_sda = None, 
                                 early_release_0 = None,
                                 advance_FIFO = None,
264 265
                                 sda = None,
                                 scl = None,
266
                                 verbose = 1):
267 268 269
        """
        @param rst_cmd - reset all FIFO (takes 16 clock pulses), also - stops i2c until run command
        @param run_cmd - True - run i2c, False - stop i2c (needed before software i2c), None - no change
270 271 272
        @param active_sda - pull-up SDA line during second half of SCL=0, when needed and possible 
        @param early_release_0 -  release SDA=0 immediately after the end of SCL=1 (SDA hold will be provided by week pullup)
        @param advance_FIFO - advance i2c read FIFO
273 274
        @param sda - control SDA line (stopped mode only): I<nput>, L<ow> or 0, High or 1
        @param scl - control SCL line (stopped mode only): I<nput>, L<ow> or 0, High or 1
275 276 277
        @param verbose -          verbose level
        @return combined command word.
        active_sda and early_release_0 should be defined both to take effect (any of the None skips setting these parameters)
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
        """
        def parse_sda_scl(val):
            if val is None:
                return 0
            elif isinstance(val, (unicode,str)):
                if not val:
                    return 0
                if val[0] in "lL0":
                    return 1
                elif val[0] in "hH1":
                    return 2
                elif val[0] in "iI":
                    return 3
                else:
                    print("Unrecognized value for SDA/SCL: %s, should be in lL0hH1iI (or None/ empty string)"%(val))
                    return 0
            else:
                if val == 0:
                    return 1
                elif val == 1:
                    return 2
                else:
                    return 3
  
302
        if verbose>0:
303 304 305
            print ("func_sensor_i2c_command(): rst_cmd= ",rst_cmd,", run_cmd=",run_cmd,", active_sda = ",active_sda,", early_release_0 = ",early_release_0,
                   ", sda=",sda,", scl=",scl)
            
306 307 308 309 310
        rslt = 0
        rslt |= (0,1)[rst_cmd] << vrlg.SENSI2C_CMD_RESET
        if not run_cmd is None:
            rslt |= 1 <<                 vrlg.SENSI2C_CMD_RUN
            rslt |= (0,1)[run_cmd] <<    (vrlg.SENSI2C_CMD_RUN - vrlg.SENSI2C_CMD_RUN_PBITS)
311 312 313 314 315 316
        if (not active_sda is None) and (not early_release_0 is None):
            rslt |= (0,1)[early_release_0] << vrlg.SENSI2C_CMD_ACIVE_EARLY0
            rslt |= (0,1)[active_sda] << vrlg.SENSI2C_CMD_ACIVE_SDA
            rslt |= 1 <<                 vrlg.SENSI2C_CMD_ACIVE
        if advance_FIFO:
            rslt |= 1 << vrlg.SENSI2C_CMD_FIFO_RD
317 318 319 320
        rslt |= parse_sda_scl(sda) <<  vrlg.SENSI2C_CMD_SOFT_SDA  
        rslt |= parse_sda_scl(scl) <<  vrlg.SENSI2C_CMD_SOFT_SCL  
        if verbose>0:
            print (" => 0x%x"%(rslt))
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364

        return rslt        

    def func_sensor_i2c_table_reg_wr (self,
                                 slave_addr,
                                 rah,
                                 num_bytes, 
                                 bit_delay,
                                 verbose = 1):
        """
        @param slave_addr - 7-bit i2c slave address
        @param rah -        register address high byte (bits [15:8]) optionally used for register write commands
        @param num_bytes -  number of bytes to send (including register address bytes) 1..10 
        @param bit_delay -  number of mclk clock cycle in 1/4 of the SCL period
        @param verbose -    verbose level
        @return combined table data word.
        """  
        if verbose>0:
            print ("func_sensor_i2c_table_reg_wr(): slave_addr= ",slave_addr,", rah=",rah,", num_bytes = ",num_bytes,", bit_delay = ",bit_delay)
        rslt = 0
        rslt |= (slave_addr & ((1 << vrlg.SENSI2C_TBL_SA_BITS)   - 1)) << vrlg.SENSI2C_TBL_SA
        rslt |= (rah &        ((1 << vrlg.SENSI2C_TBL_RAH_BITS)  - 1)) << vrlg.SENSI2C_TBL_RAH
        rslt |= (num_bytes &  ((1 << vrlg.SENSI2C_TBL_NBWR_BITS) - 1)) << vrlg.SENSI2C_TBL_NBWR
        rslt |= (bit_delay &  ((1 << vrlg.SENSI2C_TBL_DLY_BITS)  - 1)) << vrlg.SENSI2C_TBL_DLY
        return rslt        

    def func_sensor_i2c_table_reg_rd (self,
                                 two_byte_addr,
                                 num_bytes_rd,
                                 bit_delay,
                                 verbose = 1):
        """
        @param two_byte_addr - Use a 2-byte register address for read command (False - single byte)
        @param num_bytes_rd -  Number of bytes to read (1..8)
        @param bit_delay -     number of mclk clock cycle in 1/4 of the SCL period
        @param verbose -       verbose level
        @return combined table data word.
        """  
        if verbose>0:
            print ("func_sensor_i2c_table_reg_rd(): two_byte_addr= ",two_byte_addr,", num_bytes_rd=",num_bytes_rd,", bit_delay = ",bit_delay)
        rslt = 0
        rslt |= 1 << vrlg.SENSI2C_TBL_RNWREG # this is read register command (0 - write register)
        if two_byte_addr > 1:
            two_byte_addr = 1
365
        rslt |= (0,1)[two_byte_addr]                                      << vrlg.SENSI2C_TBL_NABRD
366 367
        rslt |= (num_bytes_rd &  ((1 << vrlg.SENSI2C_TBL_NBRD_BITS) - 1)) << vrlg.SENSI2C_TBL_NBRD
        rslt |= (bit_delay &     ((1 << vrlg.SENSI2C_TBL_DLY_BITS)  - 1)) << vrlg.SENSI2C_TBL_DLY
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
        return rslt        

    def func_sensor_io_ctl (self,
                            mrst = None,
                            arst = None,
                            aro  = None,
                            mmcm_rst = None,
                            clk_sel = None,
                            set_delays = False,
                            quadrants = None):
        """
        Combine sensor I/O control parameters into a control word 
        @param mrst -  True - activate MRST signal (low), False - deactivate MRST (high), None - no change
        @param arst -  True - activate ARST signal (low), False - deactivate ARST (high), None - no change
        @param aro -   True - activate ARO signal (low), False - deactivate ARO (high), None - no change
        @param mmcm_rst - True - activate MMCM reset, False - deactivate MMCM reset, None - no change (needed after clock change/interruption)
        @param clk_sel - True - use pixel clock from the sensor, False - use internal clock (provided to the sensor), None - no chnage
        @param set_delays - (self-clearing) load all pre-programmed delays for the sensor pad inputs 
        @param quadrants -  90-degree shifts for data [1:0], hact [3:2] and vact [5:4] (6'h01), None - no change
        @return sensor i/o control word
        """
        rslt = 0
        if not mrst is None:
391
            rslt |= (3,2)[mrst] <<     vrlg.SENS_CTRL_MRST
392
        if not arst is None:
393
            rslt |= (3,2)[arst] <<     vrlg.SENS_CTRL_ARST
394
        if not aro is None:
395
            rslt |= (3,2)[aro]  <<     vrlg.SENS_CTRL_ARO
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
        if not mmcm_rst is None:
            rslt |= (2,3)[mmcm_rst] << vrlg.SENS_CTRL_RST_MMCM
        if not clk_sel is None:
            rslt |= (2,3)[clk_sel] <<  vrlg.SENS_CTRL_EXT_CLK
        rslt |= (0,1)[set_delays] <<   vrlg.SENS_CTRL_LD_DLY

        if not quadrants is None:
            rslt |= 1 <<  vrlg.SENS_CTRL_QUADRANTS_EN
            rslt |= (quadrants & ((1 << vrlg.SENS_CTRL_QUADRANTS_WIDTH) - 1)) <<  vrlg.SENS_CTRL_QUADRANTS
        return rslt

    def func_sensor_jtag_ctl(self,
                             pgmen = None,    # <2: keep PGMEN, 2 - PGMEN low (inactive),  3 - high (active) enable JTAG control
                             prog =  None,    # <2: keep prog, 2 - prog low (active),  3 - high (inactive) ("program" pin control)
                             tck =   None,    # <2: keep TCK,  2 - set TCK low,  3 - set TCK high
                             tms =   None,    # <2: keep TMS,  2 - set TMS low,  3 - set TMS high
                             tdi =   None):   # <2: keep TDI,  2 - set TDI low,  3 - set TDI high
        """
        JTAG interface for programming external sensor multiplexer using shared signal lines on the sensor ports
        @param pgmen - False PGMEN low (inactive),  True - high (active) enable JTAG control, None - keep previous value
        @param prog -  False prog low (active),  True - high (inactive) ("program" pin control), None - keep previous value
        @param tck =   False - set TCK low,  True - set TCK high, None - keep previous value
        @param tms =   False - set TMS low,  True - set TMS high, None - keep previous value
        @param tdi =   False - set TDI low,  True - set TDI high, None - keep previous value
        @return combined control word       
        """
        rslt = 0
        if not pgmen is None:
            rslt |= (2,3)[pgmen] << vrlg.SENS_JTAG_PGMEN
        if not prog is None:
            rslt |= (2,3)[prog] <<  vrlg.SENS_JTAG_PROG
        if not tck is None:
            rslt |= (2,3)[tck] <<   vrlg.SENS_JTAG_TCK
        if not tms is None:
            rslt |= (2,3)[tms] <<   vrlg.SENS_JTAG_TMS
        if not tdi is None:
            rslt |= (2,3)[tdi] <<   vrlg.SENS_JTAG_TDI
        return rslt

    def func_sensor_gamma_ctl(self,
                              bayer =      0,
                              table_page = 0,
                              en_input =   True,
                              repet_mode = True, #  Normal mode, single trigger - just for debugging  TODO: re-assign?
                              trig = False):
        """
        @param bayer - Bayer shift (0..3)
        @param table_page - Gamma table page
        @param en_input -   Enable input
        @param repet_mode - Repetitive (normal) mode. Set False for debugging, then use trig for single frame trigger
        @param trig       - single trigger (when repet_mode is False), debug feature
        @return combined control word
        """
        rslt = 0
        rslt |= (bayer & 3) <<       vrlg.SENS_GAMMA_MODE_BAYER
        rslt |= (0,1)[table_page] << vrlg.SENS_GAMMA_MODE_PAGE
        rslt |= (0,1)[en_input] <<   vrlg.SENS_GAMMA_MODE_EN
        rslt |= (0,1)[repet_mode] << vrlg.SENS_GAMMA_MODE_REPET
        rslt |= (0,1)[trig] <<       vrlg.SENS_GAMMA_MODE_TRIG
        return rslt

    def func_status_addr_sensor_i2c(self,
                                    num_sensor):
        """
        @param num_sensor - sensor port number (0..3)
        @return status register address for i2c for selected sensor port
        """
        return (vrlg.SENSI2C_STATUS_REG_BASE + num_sensor * vrlg.SENSI2C_STATUS_REG_INC + vrlg.SENSI2C_STATUS_REG_REL);

    def func_status_addr_sensor_io(self,
                                    num_sensor):
        """
        @param num_sensor - sensor port number (0..3)
        @return status register address for I/O for selected sensor port
        """
        return (vrlg.SENSI2C_STATUS_REG_BASE + num_sensor * vrlg.SENSI2C_STATUS_REG_INC + vrlg.SENSIO_STATUS_REG_REL);
    
    def set_sensor_mode (self,
                         num_sensor,
                         hist_en,
                         hist_nrst, 
                         chn_en, 
                         bits16):
        """
        Set sensor mode
        @param num_sensor - sensor port number (0..3)
        @param hist_en -   bit mask to enable histogram sub-modules, when 0 - disable after processing
                           the started frame
        @param hist_nrst - bit mask to immediately reset histogram sub-module (if 0) 
        @param chn_en    - enable sensor channel (False - reset) 
        @param bits16)   - True - 16 bpp mode, false - 8 bpp mode (bypass gamma). Gamma-processed data
                           is still used for histograms
        """
489
        self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSOR_CTRL_RADDR,
490 491 492 493 494 495 496 497
                                                  self.func_sensor_mode(
                                                                   hist_en =   hist_en,
                                                                   hist_nrst = hist_nrst,
                                                                   chn_en =    chn_en,
                                                                   bits16 =    bits16))

    def set_sensor_i2c_command (self,
                                num_sensor,
498 499 500
                                rst_cmd =         False,
                                run_cmd =         None,
                                active_sda =      None, 
501
                                early_release_0 = None,
502 503 504 505
                                advance_FIFO =    None,
                                sda =             None,
                                scl =             None,
                                verbose =         1):
506
        """
507
        @param num_sensor - sensor port number (0..3)
508 509
        @param rst_cmd - reset all FIFO (takes 16 clock pulses), also - stops i2c until run command
        @param run_cmd - True - run i2c, False - stop i2c (needed before software i2c), None - no change
510 511 512
        @param active_sda - pull-up SDA line during second half of SCL=0, when needed and possible 
        @param early_release_0 -  release SDA=0 immediately after the end of SCL=1 (SDA hold will be provided by week pullup)
        @param advance_FIFO -     advance i2c read FIFO
513 514
        @param sda - control SDA line (stopped mode only): I<nput>, L<ow> or 0, High or 1
        @param scl - control SCL line (stopped mode only): I<nput>, L<ow> or 0, High or 1
515 516 517
        @param verbose -          verbose level
        active_sda and early_release_0 should be defined both to take effect (any of the None skips setting these parameters)

518
        """  
519
        self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSI2C_CTRL_RADDR,
520
                                                  self.func_sensor_i2c_command(
521 522 523 524 525
                                                       rst_cmd =         rst_cmd,
                                                       run_cmd =         run_cmd,
                                                       active_sda =      active_sda,
                                                       early_release_0 = early_release_0,
                                                       advance_FIFO =    advance_FIFO,
526 527
                                                       sda =             sda,
                                                       scl =             scl,
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
                                                       verbose =         verbose))

    def set_sensor_i2c_table_reg_wr (self,
                                     num_sensor,
                                     page,
                                     slave_addr,
                                     rah,
                                     num_bytes, 
                                     bit_delay,
                                     verbose = 1):
        """
        Set table entry for a single index for register write
        @param num_sensor - sensor port number (0..3)
        @param page -       1 byte table index (later provided as high byte of the 32-bit command)
        @param slave_addr - 7-bit i2c slave address
        @param rah -        register address high byte (bits [15:8]) optionally used for register write commands
        @param num_bytes -  number of bytes to send (including register address bytes) 1..10 
        @param bit_delay -  number of mclk clock cycle in 1/4 of the SCL period
        @param verbose -    verbose level
        """
        ta = (1 << vrlg.SENSI2C_CMD_TABLE) | (1 << vrlg.SENSI2C_CMD_TAND) | (page & 0xff)
        td = (1 << vrlg.SENSI2C_CMD_TABLE) | self.func_sensor_i2c_table_reg_wr(
                                               slave_addr = slave_addr,
                                               rah =        rah,
                                               num_bytes =  num_bytes, 
                                               bit_delay =  bit_delay,
                                               verbose =    verbose) 

        self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSI2C_CTRL_RADDR, ta)
        self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSI2C_CTRL_RADDR, td)

    def set_sensor_i2c_table_reg_rd (self,
                                     num_sensor,
                                     page,
                                     two_byte_addr,
                                     num_bytes_rd,
                                     bit_delay,
                                     verbose = 1):
        """
        Set table entry for a single index for register write
        @param num_sensor -    sensor port number (0..3)
        @param page -          1 byte table index (later provided as high byte of the 32-bit command)
        @param two_byte_addr - Use a 2-byte register address for read command (False - single byte)
        @param num_bytes_rd -  Number of bytes to read (1..8)
        @param bit_delay -     number of mclk clock cycle in 1/4 of the SCL period
        @param verbose -       verbose level
        """
        ta = (1 << vrlg.SENSI2C_CMD_TABLE) | (1 << vrlg.SENSI2C_CMD_TAND) | (page & 0xff)
        td = (1 << vrlg.SENSI2C_CMD_TABLE) | self.func_sensor_i2c_table_reg_rd(
                                               two_byte_addr = two_byte_addr,
                                               num_bytes_rd = num_bytes_rd,
                                               bit_delay =  bit_delay,
                                               verbose =    verbose) 
        self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSI2C_CTRL_RADDR, ta)
        self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSI2C_CTRL_RADDR, td)
583 584
        if verbose > 1:
            print ("ta= 0x%x, td = 0x%x"%(ta,td))
585

586 587 588 589 590 591 592
    def write_sensor_reg16(self,
                           num_sensor,
                           reg_addr16,
                           reg_data16):
        """
        Write i2c register in immediate mode
        @param num_sensor - sensor port number (0..3), or "all" - same to all sensors
593 594
        @param reg_addr16 - 16-bit register address (page+low byte, for MT9P006 high byte is an 8-bit slave address = 0x90)
        @param reg_data16 - 16-bit data to write to sensor register
595 596 597 598 599 600
        """
        self.write_sensor_i2c (num_sensor = num_sensor,
                               rel_addr = True,
                               addr = 0,
                               data = ((reg_addr16 & 0xffff) << 16) | (reg_data16 & 0xffff) )

601 602 603 604 605 606 607
    def write_sensor_i2c (self,
                          num_sensor,
                          rel_addr,
                          addr,
                          data):
        """
        Write i2c command to the i2c command sequencer
608
        @param num_sensor - sensor port number (0..3), or "all" - same to all sensors
609 610
        @param rel_addr - True - relative frame address, False - absolute frame address
        @param addr - frame address (0..15)
611 612 613 614 615 616 617 618 619 620
        @param data - depends on context:
                      1 - register write: index page, 3 payload bytes. Payload bytes are used according to table and sent
                          after the slave address and optional high address byte other bytes are sent in descending order (LSB- last).
                          If less than 4 bytes are programmed in the table the high bytes (starting with the one from the table) are
                          skipped.
                          If more than 4 bytes are programmed in the table for the page (high byte), one or two next 32-bit words 
                          bypass the index table and all 4 bytes are considered payload ones. If less than 4 extra bytes are to be
                          sent for such extra word, only the lower bytes are sent.
                      2 - register read: index page, slave address (8-bit, with lower bit 0) and one or 2 address bytes (as programmed
                          in the table. Slave address is always in byte 2 (bits 23:16), byte1 (high register address) is skipped if
621
                          read address in the table is programmed to be a single-byte one    
622
        """
623 624 625 626 627 628 629 630 631 632
        try:
            if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function
                for num_sensor in range(4):
                    self.write_sensor_i2c (num_sensor = num_sensor,
                                           rel_addr =   rel_addr,
                                           addr =       addr,
                                           data =       data)
                return
        except:
            pass
633 634 635
        reg_addr =  (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC)
        reg_addr += ((vrlg.SENSI2C_ABS_RADDR,vrlg.SENSI2C_REL_RADDR)[rel_addr] )
        reg_addr += (addr & ~vrlg.SENSI2C_ADDR_MASK);
636
        self.x393_axi_tasks.write_control_register(reg_addr, data)
637 638 639

    def read_sensor_i2c (self,
                         num_sensor,
640 641
                         num_bytes = None,
                         verbose = 0):
642 643 644 645
        """
        Read sequence of bytes available
        @param num_sensor - sensor port number (0..3), or "all" - same to all sensors
        @param num_bytes - number of bytes to read (None - all in FIFO)
646
        @verbose - verbose level
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
        @return list of read bytes
        """
        ODDEVEN="ODDEVEN"
        DAV = "DAV"
        DATA = "DATA"
        def read_i2c_data(num_sensor):
            addr = vrlg.SENSI2C_STATUS_REG_BASE + num_sensor * vrlg.SENSI2C_STATUS_REG_INC + vrlg.SENSI2C_STATUS_REG_REL
            d = self.x393_axi_tasks.read_status(addr)
            return {ODDEVEN : (d >> 9) & 1, DAV : (d >> 8) & 1, DATA : d & 0xff}

        timeout = 1.0 # sec
        end_time = time.time() + timeout
        rslt = []
        while True:
            d = read_i2c_data(num_sensor)
            if not d[DAV]:
                if num_bytes is None:
                    break # no data available in FIFO and number of bytes is not specified
                while (time.time() < end_time) and (not d[DAV]): # wait for data available
                    d = read_i2c_data(num_sensor)
                if not d[DAV]:
                    break # no data available - timeout
            rslt.append(d[DATA])
            # advance to the next data byte
            oddeven = d[ODDEVEN]
            self. set_sensor_i2c_command (
                                num_sensor =   num_sensor,
                                advance_FIFO = True,
675
                                verbose =      verbose)
676 677 678 679 680 681 682
            # wait until odd/even bit reverses (no timeout here)
            while d[ODDEVEN] == oddeven:
                d = read_i2c_data(num_sensor)
            if len(rslt) == num_bytes:
                break # read all that was requested (num_bytes == None will not get here)
        return  rslt
            
683 684 685 686 687
    def print_sensor_i2c (self,
                          num_sensor,
                          reg_addr,
                          indx =  1,
                          sa7   = 0x48,
688
                          verbose = 1):
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
        """
        Read sequence of bytes available and print the result as a single hex number
        @param num_sensor - sensor port number (0..3), or "all" - same to all sensors
        @param reg_addr - register to read address 1/2 bytes (defined by previously set format)
        @param indx - i2c command index in 1 256-entry table (defines here i2c delay, number of address bytes and number of data bytes)
        @param sa7 - 7-bit i2c slave address
        @param verbose - verbose level
        """
        #clean up FIFO
        dl = self.read_sensor_i2c (num_sensor = num_sensor,
                                   num_bytes = None,
                                   verbose = verbose)
        if len(dl):
            d = 0
            for b in dl:
                d = (d << 8) | (b & 0xff)
            fmt="FIFO contained %d bytes i2c data = 0x%%0%dx"%(len(dl),len(dl*2))
            print (fmt%(d))    
        #create and send i2c command in ASAP mode:
        i2c_cmd = ((indx & 0xff) << 24) | (sa7 <<17) | (reg_addr & 0xffff)
        #write_sensor_i2c  0 1 0 0x91900004
        self.write_sensor_i2c(num_sensor = num_sensor,
                              rel_addr = 1,
                              addr = 0,
                              data = i2c_cmd)
        time.sleep(0.05) # We do not know how many bytes are expected, so just wait long enough and hope all bytes are in fifo already

        
        
        dl = self.read_sensor_i2c (num_sensor = num_sensor,
                                   num_bytes = None,
                                   verbose = verbose)
        if len(dl):
            d = 0
            for b in dl:
                d = (d << 8) | (b & 0xff)
725 726 727 728
            if verbose > 0:    
                fmt="i2c data[0x%02x:0x%x] = 0x%%0%dx"%(sa7,reg_addr,len(dl)*2)
                print (fmt%(d))    
        return d
729

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
    def set_sensor_flipXY(self,
                                  num_sensor,
                                  flip_x =  False,
                                  flip_y =  False,
                                  verbose = 1):
        """
        Set sensor horizontal and vertical mirror (flip)
        @param num_sensor - sensor number or "all"
        @param flip_x -  mirror image around vertical axis
        @param flip_y -  mirror image around horizontal axis
        @param verbose - verbose level
        """
        sensorType = self.getSensorInterfaceType()
        if flip_x is None:
            flip_x = False
        if flip_y is None:
            flip_y = False
            
        if sensorType == "PAR12":
            data = (0,0x8000)[flip_y] | (0,0x4000)[flip_x]  
            self.write_sensor_reg16 (num_sensor = num_sensor,
                                     reg_addr16 = 0x9020,
                                     reg_data16 = data)
        elif sensorType == "HISPI":
            data = (0,0x8000)[flip_y] | (0,0x4000)[flip_x] | 0x41  
            self.write_sensor_reg16 (num_sensor = num_sensor,
                                     reg_addr16 = 0x3040,
                                     reg_data16 = data)
        else:
            raise ("Unknown sensor type: %s"%(sensorType))

    def set_sensor_gains_exposure(self,
                                  num_sensor,
                                  gain_r =   None,
                                  gain_gr =  None,
                                  gain_gb =  None,
                                  gain_b =   None,
                                  exposure = None,
                                  verbose =  1):
        """
        Set sensor analog gains (raw register values) and
        exposure (in scan lines)
        @param num_sensor - sensor number or "all"
        @param gain_r -   RED gain
        @param gain_gr -  GREEN in red row gain
        @param gain_gb -  GREEN in blue row gain
        @param gain_b -   BLUE gain
        @param exposure - exposure time in scan lines
        @param verbose -  verbose level
        """
        sensorType = self.getSensorInterfaceType()
        if sensorType == "PAR12":
            if not gain_r is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x902c,
                                         reg_data16 = gain_r)
            if not gain_gr is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x902b,
                                         reg_data16 = gain_gr)
            if not gain_gb is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x902e,
                                         reg_data16 = gain_gb)
            if not gain_b is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x902d,
                                         reg_data16 = gain_b)
            if not exposure is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x9009,
                                         reg_data16 = exposure)
        elif sensorType == "HISPI":
            if not gain_r is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x208,
                                         reg_data16 = gain_r)
            if not gain_gr is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x206, # SMIA register
                                         reg_data16 = gain_gr)
            if not gain_gb is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x20c, # SMIA register
                                         reg_data16 = gain_gb)
            if not gain_b is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x20a, # SMIA register
                                         reg_data16 = gain_b)
            if not exposure is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x202, # SMIA register
                                         reg_data16 = exposure)
        else:
            raise ("Unknown sensor type: %s"%(sensorType))
                                     
826 827
    def set_sensor_io_ctl (self,
                           num_sensor,
828 829 830 831 832
                           mrst =       None,
                           arst =       None,
                           aro  =       None,
                           mmcm_rst =   None,
                           clk_sel =    None,
833
                           set_delays = False,
834
                           quadrants =  None):
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
        """
        Set sensor I/O controls, including I/O signals 
        @param num_sensor - sensor port number (0..3)
        @param mrst -  True - activate MRST signal (low), False - deactivate MRST (high), None - no change
        @param arst -  True - activate ARST signal (low), False - deactivate ARST (high), None - no change
        @param aro -   True - activate ARO signal (low), False - deactivate ARO (high), None - no change
        @param mmcm_rst - True - activate MMCM reset, False - deactivate MMCM reset, None - no change (needed after clock change/interruption)
        @param clk_sel - True - use pixel clock from the sensor, False - use internal clock (provided to the sensor), None - no chnage
        @param set_delays - (self-clearing) load all pre-programmed delays for the sensor pad inputs 
        @param quadrants -  90-degree shifts for data [1:0], hact [3:2] and vact [5:4] (6'h01), None - no change
        """
        data = self.func_sensor_io_ctl (
                    mrst =       mrst,
                    arst =       arst,
                    aro =        aro,
                    mmcm_rst =   mmcm_rst,
                    clk_sel =    clk_sel,
                    set_delays = set_delays,
                    quadrants =  quadrants)
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_CTRL;
855
        self.x393_axi_tasks.write_control_register(reg_addr, data)
856 857 858 859 860 861 862 863
# TODO: Make one for HiSPi (it is different)
    def set_sensor_io_dly_parallel (self,
                                    num_sensor,
                                    mmcm_phase,
                                    iclk_dly,
                                    vact_dly,
                                    hact_dly,
                                    pxd_dly):
864 865 866 867 868 869 870 871 872 873 874 875 876 877
        """
        Set sensor port input delays and mmcm phase
        @param num_sensor - sensor port number (0..3)
        @param mmcm_phase - MMCM clock phase
        @param iclk_dly - delay in the input clock line (3 LSB are not used)
        @param vact_dly - delay in the VACT line (3 LSB are not used)
        @param hact_dly - delay in the HACT line (3 LSB are not used)
        @param pxd_dly - list of data line delays (12 elements, 3 LSB are not used)                      
        """
        dlys=((pxd_dly[0] & 0xff) | ((pxd_dly[1] & 0xff) << 8) | ((pxd_dly[ 2] & 0xff) << 16) | ((pxd_dly[ 3] & 0xff) << 24),
              (pxd_dly[4] & 0xff) | ((pxd_dly[5] & 0xff) << 8) | ((pxd_dly[ 6] & 0xff) << 16) | ((pxd_dly[ 7] & 0xff) << 24),
              (pxd_dly[8] & 0xff) | ((pxd_dly[9] & 0xff) << 8) | ((pxd_dly[10] & 0xff) << 16) | ((pxd_dly[11] & 0xff) << 24),
              (hact_dly & 0xff) |   ((vact_dly & 0xff) <<   8) | ((iclk_dly & 0xff)    << 16) | ((mmcm_phase & 0xff) <<  24))                       
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_DELAYS;
878 879 880 881
        self.x393_axi_tasks.write_control_register(reg_addr + 0, dlys[0]) # {pxd3,       pxd2,  pxd1, pxd0}
        self.x393_axi_tasks.write_control_register(reg_addr + 1, dlys[1]) # {pxd7,       pxd6,  pxd5, pxd4}
        self.x393_axi_tasks.write_control_register(reg_addr + 2, dlys[2]) # {pxd11,      pxd10, pxd9, pxd8}
        self.x393_axi_tasks.write_control_register(reg_addr + 3, dlys[3]) # {mmcm_phase, bpf,   vact, hact}
882 883
        self.set_sensor_io_ctl (num_sensor = num_sensor,
                                set_delays = True)
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920

    def set_sensor_io_dly_hispi (self,
                                    num_sensor,
                                    mmcm_phase = None,
                                    lane0_dly =  None,
                                    lane1_dly =  None,
                                    lane2_dly =  None,
                                    lane3_dly =  None):
        """
        Set sensor port input delays and mmcm phase
        @param num_sensor - sensor port number (0..3) or all, 'A'
        @param mmcm_phase - MMCM clock phase
        @param lane0_dly - delay in the lane0 (3 LSB are not used) // All 4 lane delays should be set simultaneously
        @param lane1_dly - delay in the lane1 (3 LSB are not used)
        @param lane2_dly - delay in the lane2 (3 LSB are not used)
        @param lane3_dly - delay in the lane3 (3 LSB are not used))                      
        """
        try:
            if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function
                for num_sensor in range(4):
                    self.set_sensor_io_dly_hispi (num_sensor = num_sensor,
                                                  mmcm_phase = mmcm_phase,
                                                  lane0_dly =  lane0_dly,
                                                  lane1_dly =  lane1_dly,
                                                  lane2_dly =  lane2_dly,
                                                  lane3_dly =  lane3_dly)
                return
        except:
            pass
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_DELAYS
        try: # if any delay is None - do not set
            dlys=(lane0_dly & 0xff) | ((lane1_dly & 0xff) << 8) | ((lane2_dly & 0xff) << 16) | ((lane3_dly & 0xff) << 24)
            self.x393_axi_tasks.write_control_register(reg_addr + 2, dlys)
        except:
            pass                           
        if not mmcm_phase is None:
            self.x393_axi_tasks.write_control_register(reg_addr + 3, mmcm_phase & 0xff)
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
        
    def set_sensor_hispi_lanes(self,
                               num_sensor,
                               lane0 = 0,
                               lane1 = 1,
                               lane2 = 2,
                               lane3 = 3):
        """
        Set HiSPi sensor lane map (physical lane for each logical lane)
        @param num_sensor - sensor port number (0..3)
        @param lane0 - physical (input) lane number for logical (internal) lane 0
        @param lane1 - physical (input) lane number for logical (internal) lane 1
        @param lane2 - physical (input) lane number for logical (internal) lane 2
        @param lane3 - physical (input) lane number for logical (internal) lane 3
        """
        data = ((lane0 & 3) << 0 ) | ((lane1 & 3) << 2 ) | ((lane2 & 3) << 4 ) | ((lane3 & 3) << 6 )
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_DELAYS;
        self.x393_axi_tasks.write_control_register(reg_addr + 1, data)
939

940 941 942 943 944 945 946 947 948 949 950
    def set_sensor_fifo_lag(self,
                            num_sensor,
                            fifo_lag = 7):
        """
        Set HiSPi sensor FIFO lag (when to start line output, ~= 1/2 FIFO size)
        @param num_sensor - sensor port number (0..3)
        @param fifo_lag - number of pixels to write to FIFO before starting output
        """
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_DELAYS;
        self.x393_axi_tasks.write_control_register(reg_addr + 0, fifo_lag)

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
    def set_sensor_io_jtag (self,
                            num_sensor,
                            pgmen = None,    # <2: keep PGMEN, 2 - PGMEN low (inactive),  3 - high (active) enable JTAG control
                            prog =  None,    # <2: keep prog, 2 - prog low (active),  3 - high (inactive) ("program" pin control)
                            tck =   None,    # <2: keep TCK,  2 - set TCK low,  3 - set TCK high
                            tms =   None,    # <2: keep TMS,  2 - set TMS low,  3 - set TMS high
                            tdi =   None):   # <2: keep TDI,  2 - set TDI low,  3 - set TDI high
        """
        JTAG interface for programming external sensor multiplexer using shared signal lines on the sensor ports
        @param num_sensor - sensor port number (0..3)
        @param pgmen - False PGMEN low (inactive),  True - high (active) enable JTAG control, None - keep previous value
        @param prog -  False prog low (active),  True - high (inactive) ("program" pin control), None - keep previous value
        @param tck =   False - set TCK low,  True - set TCK high, None - keep previous value
        @param tms =   False - set TMS low,  True - set TMS high, None - keep previous value
        @param tdi =   False - set TDI low,  True - set TDI high, None - keep previous value
        """
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_JTAG;
        data = self.func_sensor_jtag_ctl (
                            pgmen = pgmen,
                            prog =  prog,
                            tck =   tck,
                            tms =   tms,
                            tdi =   tdi)
974
        self.x393_axi_tasks.write_control_register(reg_addr, data)
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

#    def jtag_prep_status(self, chn):
#        seq_num = ((self.get_status_sensor_io(num_sensor = chn) >> 26) + 1) & 0x3f
#        self.program_status_sensor_io(num_sensor = num_sensor,
#                                      mode = 1,     # input [1:0] mode;
#                                      seq_num = seq_num) # input [5:0] seq_num;
#        return seq_num
     
    def jtag_get_tdo(self, chn):
        seq_num = ((self.get_status_sensor_io(num_sensor = chn) >> 26) + 1) & 0x3f
        self.program_status_sensor_io(num_sensor = chn,
                                      mode = 1,     # input [1:0] mode;
                                      seq_num = seq_num) # input [5:0] seq_num;
        
        for _ in range(10):
            stat = self.get_status_sensor_io(num_sensor = chn)
            if seq_num == ((stat >> 26) & 0x3f):
                break    
        else:
            print ("wait_sensio_status(): Failed to get seq_num== 0x%x, current is 0x%x"%(seq_num, (stat >> 26) & 0x3f))
        return (stat >> 25) & 1    


        
    def jtag_send(self, chn, tms, ln, d):
        i = ln & 7
        if (i == 0):
            i = 8
        d &= 0xff;
        r = 0
        while i > 0:
            self.set_sensor_io_jtag (num_sensor = chn,
                            pgmen = None,
                            prog =  None,
                            tck =   0, 
                            tms =   tms,
                            tdi =   ((d << 1) >> 8) & 1)
            d <<= 1
            r = (r << 1) + self.jtag_get_tdo(chn)
            self.set_sensor_io_jtag (num_sensor = chn,
                            pgmen = None,
                            prog =  None,
                            tck =   1, 
                            tms =   None,
                            tdi =   None)
            self.set_sensor_io_jtag (num_sensor = chn,
                            pgmen = None,
                            prog =  None,
                            tck =   0, 
                            tms =   None,
                            tdi =   None)
            i -= 1
        return r
        
    def jtag_write_bits (self,
                         chn,
                         buf,    # data to write
                         ln,     # number of bits to write
#                         check,  # compare readback data with previously written, abort on mismatch
                         last):   # output last bit with TMS=1
#                         prev = None): # if null - don't use 
        rbuf = []
        r = 0
        for d0 in buf:
            d=d0
            for _ in range(8):
                if ln >0:
                    self.set_sensor_io_jtag (num_sensor = chn,
                                    pgmen = None,
                                    prog =  None,
                                    tck =   0, 
                                    tms =   (0,1)[(ln == 1) and last],
                                    tdi =   ((d << 1) >> 8) & 1)
                    d <<= 1
                    r = (r << 1) + self.jtag_get_tdo(chn)
                    self.set_sensor_io_jtag (num_sensor = chn,
                                    pgmen = None,
                                    prog =  None,
                                    tck =   1, 
                                    tms =   None,
                                    tdi =   None)
                    self.set_sensor_io_jtag (num_sensor = chn,
                                    pgmen = None,
                                    prog =  None,
                                    tck =   0, 
                                    tms =   None,
                                    tdi =   None)
                else:
                    r <<= 1
                ln -= 1    
            rbuf.append(r & 0xff)
                
        return rbuf
    
    def jtag_set_pgm_mode(self,chn,en):
        self.set_sensor_io_jtag (num_sensor = chn,
                        pgmen = en,
                        prog =  None,
                        tck =   0, 
                        tms =   None,
                        tdi =   None)

    def jtag_set_pgm(self,chn,en):
        self.set_sensor_io_jtag (num_sensor = chn,
                        pgmen = None,
                        prog =  en,
                        tck =   0, 
                        tms =   None,
                        tdi =   None)
        
                
    def JTAG_openChannel (self, chn):
        self.jtag_set_pgm_mode (chn, 1);
        self.jtag_set_pgm      (chn, 1)
        self.jtag_set_pgm      (chn, 0)
        time.sleep        (0.01)
        self.jtag_send    (chn, 1, 5, 0 ) # set Test-Logic-Reset state
        self.jtag_send    (chn, 0, 1, 0 ) # set Run-Test-Idle state

    def JTAG_EXTEST     (self,  chn, buf, ln):
#        self.jtag_send(chn, 1, 5, 0   ) # step 1 - set Test-Logic-Reset state
#        self.jtag_send(chn, 0, 1, 0   ) # step 2 - set Run-Test-Idle state
        self.jtag_send(chn, 1, 2, 0   ) # step 3 - set SELECT-IR state
        self.jtag_send(chn, 0, 2, 0   ) # step 4 - set SHIFT-IR state
        self.jtag_send(chn, 0, 5, 0xf0) # step 5 - start of EXTEST
        self.jtag_send(chn, 1, 1, 0   ) # step 6 - finish EXTEST
        self.jtag_send(chn, 1, 2, 0   ) # step 7 - set SELECT-DR state
        self.jtag_send(chn, 0, 2, 0   ) # step 8 - set CAPTURE-DR state

        rbuf = self.jtag_write_bits (chn = chn,
                                     buf = buf,    # data to write
                                     ln =  ln,     # number of bytes to write
                                     last = 1)
        self.jtag_send(chn, 1, 1, 0   ) #step 9 - set UPDATE-DR state
        return rbuf
        
        

1113 1114 1115 1116 1117 1118 1119 1120 1121
# /dev/sfpgabscan0
    def readbscan(self, filename):
        ffs=struct.pack("B",0xff)*97
        with open(filename,'r+') as jtag:
            jtag.write(ffs)
            jtag.seek (0,0)
            boundary= jtag.read(97)
        return boundary    
            
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
    def checkSclSda(self, chn, verbose = 1):
        '''
        Check which board is connected to the sensor board
        @param chn - sensor port number (0..3)
        @param verbose - if >0, print debug output
        @return - name of the FPGA-based board detected, "sensor" (grounded pad 7) or "" if none detected
        '''
        def print_i2c(chn):
            self.program_status_sensor_i2c(num_sensor = chn, mode = 1, seq_num = 0)
            status= self.get_status_sensor_i2c(num_sensor = chn)            
            sda_in =(status>>25) & 1
            scl_in =(status>>24) & 1
            print ("chn = %d, scl = %d, sda = %d"%(chn,scl_in, sda_in))
1135
            
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
        def print_bv(chn, boundary, value, key):    
            self.program_status_sensor_i2c(num_sensor = chn, mode = 1, seq_num = 0)
            status= self.get_status_sensor_i2c(num_sensor = chn)            
            sda_in =(status>>25) & 1
            scl_in =(status>>24) & 1
            print ("%d: sda = %d, bit number SDA = %d, pin value SDA = %d"%(key, sda_in, value['sda'], (((ord(boundary[value['sda'] >> 3]) >> (7 -(value['sda'] & 7))) &1)) ))
            print ("%d: scl = %d, bit number SCL = %d, pin value SCL = %d"%(key, scl_in, value['scl'], (((ord(boundary[value['scl'] >> 3]) >> (7 -(value['scl'] & 7))) &1)) ))

            
        boards = [{'model':'10347', 'scl': 241,'sda': 199},  #// E4, C1
                  {'model':'10359', 'scl': 280,'sda': 296}]  #// H6, J5
        bscan_path=('/dev/sfpgabscan%d'%(chn))
        self. program_status_sensor_io(num_sensor = chn, mode = 1, seq_num = 0)
        status = self.get_status_sensor_io(num_sensor=chn)
        senspgmin = (status >> 24) & 1
        if not senspgmin:
            print ("Some sensor board is connected to port # %d, not FPGA"%(chn))
            return "sensor"
       
        test = [1]*len(boards)
        #Stop hardware i2c controller
        self.set_sensor_i2c_command(num_sensor = chn,    run_cmd = False)
        #Set SCL=0, SDA=0 and read values:
        self.set_sensor_i2c_command(num_sensor = chn,    sda = 0,  scl = 0)
        if verbose > 0:
            print_i2c(chn = chn)
        boundary = self.readbscan(bscan_path)
        for key, value in enumerate(boards):
            test[key] &= ((((ord(boundary[value['sda'] >> 3]) >> (7 -(value['sda'] & 7))) &1) == 0) and
                          (((ord(boundary[value['scl'] >> 3]) >> (7 -(value['scl'] & 7))) &1) == 0))
            if verbose >0:
                print_bv(chn=chn, boundary = boundary, value = value, key=key)
        #Set SCL=1, SDA=0 and read values:
        self.set_sensor_i2c_command(num_sensor = chn,    sda = 0,  scl = 1)
        boundary = self.readbscan(bscan_path)
        for key, value in enumerate(boards):
            test[key] &= ((((ord(boundary[value['sda'] >> 3]) >> (7 -(value['sda'] & 7))) &1) == 0) and
                          (((ord(boundary[value['scl'] >> 3]) >> (7 -(value['scl'] & 7))) &1) == 1))
            if verbose >0:
                print_bv(chn=chn, boundary = boundary, value = value, key=key)
        #Set SCL=0, SDA=1 and read values:
        self.set_sensor_i2c_command(num_sensor = chn,    sda = 1,  scl = 0)
        boundary = self.readbscan(bscan_path)
        for key, value in enumerate(boards):
            test[key] &= ((((ord(boundary[value['sda'] >> 3]) >> (7 -(value['sda'] & 7))) &1) == 1) and
                          (((ord(boundary[value['scl'] >> 3]) >> (7 -(value['scl'] & 7))) &1) == 0))
            if verbose >0:
                print_bv(chn=chn, boundary = boundary, value = value, key=key)
        #Set SCL=1, SDA=1 and read values:
        self.set_sensor_i2c_command(num_sensor = chn,    sda = 1,  scl = 1)
        boundary = self.readbscan(bscan_path)
        for key, value in enumerate(boards):
            test[key] &= ((((ord(boundary[value['sda'] >> 3]) >> (7 -(value['sda'] & 7))) &1) == 1) and
                          (((ord(boundary[value['scl'] >> 3]) >> (7 -(value['scl'] & 7))) &1) == 1))
            if verbose >0:
                print_bv(chn=chn, boundary = boundary, value = value, key=key)
        for key, value in enumerate(boards):
            if test[key]:
                if verbose >0:
                    print ("Detected FPGA-based board :%s"%(value['model']))
                return value['model']
        return ""
            
                
1200
    """
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
   def set_sensor_i2c_command (self,
                                num_sensor,
                                rst_cmd =         False,
                                run_cmd =         None,
                                active_sda =      None, 
                                early_release_0 = None,
                                advance_FIFO =    None,
                                sda =             None,
                                scl =             None,
                                verbose =         1):
        @param num_sensor - sensor port number (0..3)
        @param rst_cmd - reset all FIFO (takes 16 clock pulses), also - stops i2c until run command
        @param run_cmd - True - run i2c, False - stop i2c (needed before software i2c), None - no change
        @param active_sda - pull-up SDA line during second half of SCL=0, when needed and possible 
        @param early_release_0 -  release SDA=0 immediately after the end of SCL=1 (SDA hold will be provided by week pullup)
        @param advance_FIFO -     advance i2c read FIFO
        @param sda - control SDA line (stopped mode only): I<nput>, L<ow> or 0, High or 1
        @param scl - control SCL line (stopped mode only): I<nput>, L<ow> or 0, High or 1
        @param verbose -          verbose level
        active_sda and early_release_0 should be defined both to take effect (any of the None skips setting these parameters)
    def program_status_sensor_i2c( self,
                                   num_sensor,
                                   mode,     # input [1:0] mode;
                                   seq_num): # input [5:0] seq_num;

    def print_status_sensor_i2c (self,
                                num_sensor="All"):
        Print sensor_i2c status word (no sync)
        @param num_sensor - number of the sensor port (0..3)
        try:
            if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function
                for num_sensor in range(4):
                    print ("\n ==== Sensor %d"%(num_sensor))
                    self.print_status_sensor_i2c (num_sensor = num_sensor)
                return
        except:
            pass
        status= self.get_status_sensor_i2c(num_sensor)
        print ("print_status_sensor_i2c(%d):"%(num_sensor))
        print ("   reset_on =               %d"%((status>> 7) & 1))
        print ("   req_clr =                %d"%((status>> 6) & 1))
        print ("   alive_fs =               %d"%((status>> 5) & 1))
        
        print ("   busy =                   %d"%((status>> 4) & 1))
        print ("   frame_num =              %d"%((status>> 0)  & 0xf))
        print ("   sda_in =                 %d"%((status>>25) & 1))
        print ("   scl_in =                 %d"%((status>>24) & 1))
        print ("   seq =                    %d"%((status>>26) & 0x3f))
    
    
set_sensor_mode 0 0 0 1 0
set_sensor_mode 1 0 0 1 0
set_sensor_mode 2 0 0 1 0
set_sensor_mode 3 0 0 1 0
program_status_sensor_io all 1 0
print_status_sensor_io all



python
1261
import struct
1262
import time
1263 1264 1265
def readbscan(filename):
    ffs=struct.pack("B",0xff)*97
    with open(filename,'r+') as jtag:
1266
        #time.sleep(5)
1267
        jtag.write(ffs)
1268
        #time.sleep(5)
1269
        jtag.seek (0,0)
1270
        #time.sleep(5)
1271
        boundary= jtag.read(97)
1272
        #time.sleep(5)
1273
    return boundary
1274 1275
    
b = readbscan('/dev/sfpgabscan1')    
1276 1277 1278 1279 1280 1281
        
$boards=array (
                '0' => array ('model' => '10347', 'scl' =>241,'sda' => 199),  // E4, C1
                '1' => array ('model' => '10359', 'scl' =>280,'sda' => 296)   // H6, J5

);
1282
cd /usr/local/verilog/; test_mcntrl.py -x @hargs
1283 1284 1285 1286
setupSensorsPower "PAR12"
measure_all "*DI"
program_status_sensor_io all 1 0
print_status_sensor_io all
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
setSensorClock

#jtag_set_pgm_mode 0 1
#jtag_set_pgm_mode 1 1
#jtag_set_pgm_mode 2 1
#jtag_set_pgm_mode 3 1

#set_sensor_mode 0 0 0 1 0
#set_sensor_mode 1 0 0 1 0
#set_sensor_mode 2 0 0 1 0
#set_sensor_mode 3 0 0 1 0
set_sensor_io_ctl 1 0 #turn mrst off to enable clocked signal (and to read done!) TODO: Add to the driver

program_status_sensor_io all 1 0
print_status_sensor_io 1 # all
1302

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366

set_sensor_io_ctl (self,

                           num_sensor,
                           mrst =       None,
                           arst =       None,
                           aro  =       None,
                           mmcm_rst =   None,
                           clk_sel =    None,
                           set_delays = False,
                           quadrants =  None):



set_sensor_io_jtag 1 None None None None 0        
program_status_sensor_io all 1 0          
print_status_sensor_io 1                  
get_status_sensor_io 1                  

x393 +0.001s--> set_sensor_io_jtag 1 None None None None 0        
x393 +0.001s--> program_status_sensor_io all 1 0
x393 +0.002s--> print_status_sensor_io 1 # all
print_status_sensor_io(1):
   irst =                   0
async_prst_with_sens_mrst = 0
   imrst =                  1
   rst_mmcm =               0
   pxd_out_pre[1] =         0
   vact_alive =             0
   hact_ext_alive =         0
   hact_run =               0
   locked_pxd_mmcm =        1
   clkin_pxd_stopped_mmcm = 0
   clkfb_pxd_stopped_mmcm = 0
   xfpgadone =              1
   ps_rdy =                 1
   ps_out =                 0
   xfpgatdo =               0
   senspgmin =              1
   seq =                    0
x393 +0.001s--> set_sensor_io_jtag 1 None None None None 1        
x393 +0.001s--> program_status_sensor_io all 1 0
x393 +0.002s--> print_status_sensor_io 1 # all
print_status_sensor_io(1):
   irst =                   0
async_prst_with_sens_mrst = 0
   imrst =                  1
   rst_mmcm =               0
   pxd_out_pre[1] =         1
   vact_alive =             0
   hact_ext_alive =         0
   hact_run =               0
   locked_pxd_mmcm =        1
   clkin_pxd_stopped_mmcm = 0
   clkfb_pxd_stopped_mmcm = 0
   xfpgadone =              1
   ps_rdy =                 1
   ps_out =                 0
   xfpgatdo =               1
   senspgmin =              1
   seq =                    0


#setSensorClock(self, freq_MHz = 24.0, iface = "2V5_LVDS", quiet = 0)
1367 1368
>>> b = readbscan('/dev/sfpgabscan0')
>>> b
1369 1370 1371
b = '\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00$\x82\x12I\t\x00\x80\x02\x00@\x00\x04\x00\x00@\x00\x00\x00\x00\x00@\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00 \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
b = '\xff\xff\xff\xff\xff\xff\xff\xff\xf7\xff\xdb}\xed\xb6\xf6\xff\x7f\xfd\xff\xbf\xff\xfb\xff\xff\xbf\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xfb\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xdf\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xf0'
b = '\xff\xff\xff\xff\xff\xff\xff\xff\xf7\xff\xdb}\xed\xb6\xf6\xff\x7f\xfd\xff\xbf\xff\xfb\xff\xff\xbf\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xfb\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xdf\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xf0'
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406

a='ffffffffff7fffffffffffffffffffffffffffffffffffffbfffffffffffffffffffff7fff7ffffffbffffffffffffffffffffffffffffffffffffffffdffffffffffffffffffffff6dfffffffffffffffedf7fdbfedff7ffff6fffeffffffbff0'
al = []
for i in range(len(a)/2):
    al.append(int('0x'+a[2*i:2*i+2],0))
    
bl = []
for i in b:
    bl.append(ord(i))

for i,x in enumerate(zip(al,bl)):
    print ("%02x %02x %02x"%(i,x[0],x[1]))
    

fwrite returned 97<br/>
Boundary:
ffffffffff7fffffffffffffffffffffffffffffffffffffbfffffffffffffffffffffffff7ffffffbffffffffffffffffffffffffffffffffffffffffdffffffffffffffffffffff6dfffffffffffffffedf7fdbfedff7ffff6fffeffffffbff0

fwrite returned 97<br/>
Boundary:
ffffffffff7fffffffffffffffffffffffffffffffffffffbfffffffffffffffffffff7ffffffffffbffffffffffffffffffffffffffffffffffffffffdffffffffffffffffffffff6dfffffffffffffffedf7fdbfedff7ffff6fffeffffffbff0

fwrite returned 97<br/>
Boundary:
ffffffffff7fffffffffffffffffffffffffffffffffffffbffffffffffffffffffffffffffffffffbffffffffffffffffffffffffffffffffffffffffdffffffffffffffffffffff6dfffffffffffffffedf7fdbfedff7ffff6fffeffffffbff0





>>> b1 = readbscan('/dev/sfpgabscan0')
>>> b1
'\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xf0'

'\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00$\x82\x12I\t\x00\x80\x02\x00@\x00\x04\x00\x00@\x00\x00\x00\x00\x00@\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00 \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
1407
cd /sys/kernel/debug/dynamic_debug
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
root@elphel393:/sys/kernel/debug/dynamic_debug# cat control | grep fpga
drivers/elphel/fpgajtag353.c:655 [fpgajtag]fpga_jtag_lseek =_ "fpga_jtag_lseek, fsize= 0x%x\012"
drivers/elphel/fpgajtag353.c:679 [fpgajtag]fpga_jtag_lseek =_ "fpga_jtag_lseek, file->f_pos= 0x%x\012"
drivers/elphel/fpgajtag353.c:1405 [fpgajtag]fpga_jtag_init =_ "elphel test %s: MAJOR %d"
drivers/elphel/fpgajtag353.c:751 [fpgajtag]wait_sensio_status =_ "seq_num = %d received after %d wait cycles"
drivers/elphel/fpgajtag353.c:764 [fpgajtag]set_pgm_mode =_ "set_pgm_mode (%d,%d)\012"
drivers/elphel/fpgajtag353.c:789 [fpgajtag]set_pgm =_ "set_pgm (%d,%d)\012"
drivers/elphel/fpgajtag353.c:851 [fpgajtag]jtag_send =_ "jtag_send(0x%x, 0x%x, 0x%x, 0x%x)\015\012"
drivers/elphel/fpgajtag353.c:950 [fpgajtag]jtag_write_bits =_ "jtag_write_bits(0x%x, 0x%x, 0x%x, 0x%x, 0x%x)\015\012"
drivers/elphel/fpgajtag353.c:1096 [fpgajtag]JTAG_configure =_ "JTAG_configure: chn=%x,  wp=0x%x, rp=0x%x, len=0x%x\015\012"
drivers/elphel/fpgajtag353.c:1211 [fpgajtag]JTAG_openChannel =_ "JTAG_openChannel (%d)\012"
drivers/elphel/fpgajtag353.c:367 [fpgajtag]fpga_jtag_open =_ "fpga_jtag_open: minor=%x, channel=%x, buf=%p\015\012"
drivers/elphel/fpgajtag353.c:440 [fpgajtag]fpga_jtag_open =_ "fpga_jtag_open: chn=%x, JTAG_channels[chn].sizew=%x, JTAG_channels[chn].sizer=%x\015\012"
drivers/elphel/fpgajtag353.c:441 [fpgajtag]fpga_jtag_open =_ "fpga_jtag_open: chn=%x, JTAG_channels[chn].bitsw=%x, JTAG_channels[chn].bitsr=%x\015\012"
drivers/elphel/fpgajtag353.c:446 [fpgajtag]fpga_jtag_open =_ "fpga_jtag_open: inode->i_size=%x, chn=%x\015\012"
drivers/elphel/fpgajtag353.c:1231 [fpgajtag]JTAG_resetChannel =_ "JTAG_resetChannel (%d)\012"
drivers/elphel/fpgajtag353.c:1342 [fpgajtag]JTAG_CAPTURE =_ "\012"
drivers/elphel/fpgajtag353.c:1347 [fpgajtag]JTAG_CAPTURE =_ "\012"
drivers/elphel/fpgajtag353.c:1344 [fpgajtag]JTAG_CAPTURE =_ "%3x "
drivers/elphel/fpgajtag353.c:1345 [fpgajtag]JTAG_CAPTURE =_ "\012"
drivers/elphel/fpgajtag353.c:456 [fpgajtag]fpga_jtag_release =_ "fpga_jtag_release: p=%x,chn=%x,  wp=0x%x, rp=0x%x\015\012"
drivers/elphel/fpgajtag353.c:497 [fpgajtag]fpga_jtag_release =_ "fpga_jtag_release:  done\015\012"
drivers/elphel/fpgajtag353.c:509 [fpgajtag]fpga_jtag_write =_ "fpga_jtag_write: p=%x,chn=%x, buf address=%lx count=%lx *offs=%lx, wp=%lx,size=0x%x\015\012"
drivers/elphel/fpgajtag353.c:562 [fpgajtag]fpga_jtag_write =_ "fpga_jtag_write end: p=%x,chn=%x, buf address=%lx count=%lx *offs=%lx, wp=%lx,size=0x%x\015\012"
drivers/elphel/fpgajtag353.c:574 [fpgajtag]fpga_jtag_read =_ "fpga_jtag_read: p=%x,chn=%x, buf address=%lx count=%lx *offs=%lx, rp=%lx,size=0x%x\015\012"
drivers/elphel/fpgajtag353.c:601 [fpgajtag]fpga_jtag_read =_ "fpga_jtag_read_01: p=%x,chn=%x, buf address=%lx count=%lx *offs=%lx, rp=%lx,size=0x%x\015\012"
drivers/elphel/fpgajtag353.c:624 [fpgajtag]fpga_jtag_read =_ "fpga_jtag_read_01: p=%x,chn=%x, buf address=%lx count=%lx *offs=%lx, rp=%lx,size=0x%x\015\012"
drivers/elphel/fpgajtag353.c:635 [fpgajtag]fpga_jtag_read =_ "fpga_jtag_read_end: p=%x,chn=%x, buf address=%lx count=%lx *offs=%lx, rp=%lx,size=0x%x, mode=%x\015\012"
drivers/elphel/fpgajtag353.c:1416 [fpgajtag]fpga_jtag_exit =_ "unregistering driver"

root@elphel393:/sys/kernel/debug/dynamic_debug# echo 'file drivers/elphel/fpgajtag353.c +p' > control

 afpgaconfjtag       jtagraw             memory_bandwidth    mtd4ro              ram2                stderr              tty18               tty30               tty43               tty56               ttyS1
block               kmem                mmcblk0             mtdblock0           ram3                stdin               tty19               tty31               tty44               tty57               ttyS2
char                kmsg                mmcblk0p1           mtdblock1           random              stdout              tty2                tty32               tty45               tty58               ttyS3
console             log                 mmcblk0p2           mtdblock2           rtc0                tty                 tty20               tty33               tty46               tty59               ubi_ctrl
cpu_dma_latency     loop-control        mtab                mtdblock3           sfpgabscan0         tty0                tty21               tty34               tty47               tty6                urandom
disk                loop0               mtd0                mtdblock4           sfpgabscan1         tty1                tty22               tty35               tty48               tty60               vcs
fd                  loop1               mtd0ro              network_latency     sfpgabscan2         tty10               tty23               tty36               tty49               tty61               vcs1
fpgaconfjtag        loop2               mtd1                network_throughput  sfpgabscan3         tty11               tty24               tty37               tty5                tty62               vcsa
fpgaresetjtag       loop3               mtd1ro              null                sfpgaconfjtag       tty12               tty25               tty38               tty50               tty63               vcsa1
full                loop4               mtd2                psaux               sfpgaconfjtag0      tty13               tty26               tty39               tty51               tty7                watchdog
i2c-0               loop5               mtd2ro              ptmx                sfpgaconfjtag1      tty14               tty27               tty4                tty52               tty8                watchdog0
iio:device0         loop6               mtd3                pts                 sfpgaconfjtag2      tty15               tty28               tty40               tty53               tty9                xdevcfg
initctl             loop7               mtd3ro              ram0                sfpgaconfjtag3      tty16               tty29               tty41               tty54               ttyPS0              zero
input               mem                 mtd4                ram1                shm                 tty17               tty3                tty42               tty55               ttyS0
   
    
   fseek ($jtag,0);
   $boundary= fread($jtag, 97);
   fclose($jtag);
  return $boundary;
    
    
    
            packedData=struct.pack(self.ENDIAN+"L",data)
            d=struct.unpack(self.ENDIAN+"L",packedData)[0]
            mm[page_offs:page_offs+4]=packedData

    """
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478

    def set_sensor_io_width (
                             self,
                             num_sensor,
                             width): # 0 - use HACT, >0 - generate HACT from start to specified width
        """
        Set sensor frame width
        @param num_sensor - sensor port number (0..3)
        @param width - sensor 16-bit frame width (0 - use sensor HACT signal) 
        """
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_WIDTH;
1479
        self.x393_axi_tasks.write_control_register(reg_addr, width)
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
 
    def set_sensor_lens_flat_heights (self,
                                      num_sensor,
                                      height0_m1 = None,
                                      height1_m1 = None,
                                      height2_m1 = None):
        """
        Set division of the composite frame into sub-frames for the vignetting correction module
        @param num_sensor - sensor port number (0..3)
        @param height0_m1 - height of the first sub-frame minus 1
        @param height1_m1 - height of the second sub-frame minus 1
        @param height2_m1 - height of the third sub-frame minus 1
        (No need for the  4-th, as it will just go until end of the composite frame)
        """
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_LENS_RADDR;
        if not height0_m1 is None:
1496
            self.x393_axi_tasks.write_control_register(reg_addr + 0, height0_m1)
1497
        if not height1_m1 is None:
1498
            self.x393_axi_tasks.write_control_register(reg_addr + 1, height1_m1)
1499
        if not height2_m1 is None:
1500
            self.x393_axi_tasks.write_control_register(reg_addr + 2, height2_m1)
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537


    def set_sensor_lens_flat_parameters (self,
                                         num_sensor,
                                         num_sub_sensor,
# add mode "DIRECT", "ASAP", "RELATIVE", "ABSOLUTE" and frame number
                                         AX = None,
                                         AY = None,
                                         BX = None,
                                         BY = None,
                                         C = None,
                                         scales0 = None,
                                         scales1 = None,
                                         scales2 = None,
                                         scales3 = None,
                                         fatzero_in = None,
                                         fatzero_out = None,
                                         post_scale = None):
        """
        Program vignetting correction and per-color scale
        @param num_sensor -     sensor port number (0..3)
        @param num_sub_sensor - sub-sensor attached to the same port through multiplexer (0..3)
    TODO: add mode "DIRECT", "ASAP", "RELATIVE", "ABSOLUTE" and frame number for sequencer
        All the next parameters can be None - will not be set 
        @param AX (19 bits)
        @param AY (19 bits)
        @param BX (21 bits)
        @param BY (21 bits)
        @param C (19 bits)
        @param scales0 (17 bits) - color channel 0 scale
        @param scales1 (17 bits) - color channel 1 scale
        @param scales2 (17 bits) - color channel 2 scale
        @param scales3 (17 bits) - color channel 3 scale
        @param fatzero_in (16 bits)
        @param fatzero_out (16 bits)
        @param post_scale (4 bits) - shift of the result
        """
1538
        def func_lens_data (
1539 1540 1541 1542 1543 1544 1545 1546
                        num_sensor,
                        addr,
                        data,
                        width):
            
            return ((num_sensor & 3) << 24) | ((addr & 0xff) << 16) | (data & ((1 << width) - 1))
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_LENS_RADDR + vrlg.SENS_LENS_COEFF
        if not AX is None:
1547
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_AX, AX, 19))
1548
        if not AY is None:
1549
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_AY, AY, 19))
1550
        if not BX is None:
1551
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_BX, BX, 21))
1552
        if not BY is None:
1553
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_BY, BY, 21))
1554
        if not C is None:
1555
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_C,   C, 19))
1556
        if not scales0 is None:
1557
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_SCALES + 0,   scales0, 17))
1558
        if not scales1 is None:
1559
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_SCALES + 2,   scales1, 17))
1560
        if not scales2 is None:
1561
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_SCALES + 4,   scales2, 17))
1562
        if not scales3 is None:
1563
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_SCALES + 6,   scales3, 17))
1564
        if not fatzero_in is None:
1565
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_FAT0_IN, fatzero_in, 16))
1566
        if not fatzero_out is None:
1567
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_FAT0_OUT, fatzero_out, 16))
1568 1569

        if not post_scale is None:
1570
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_POST_SCALE, post_scale, 4))
1571

1572 1573 1574 1575 1576 1577 1578
    def program_gamma (self,
                       num_sensor,
                       sub_channel,
                       gamma = 0.57,
                       black = 0.04,
                       page = 0):
        """
1579 1580
        Program gamma tables for specified sensor port and subchannel 
        @param num_sensor -     sensor port number (0..3), all - all sensors
1581 1582 1583 1584 1585
        @param num_sub_sensor - sub-sensor attached to the same port through multiplexer (0..3)
        @param gamma - gamma value (1.0 - linear)
        @param black - black level, 1.0 corresponds to 256 for 8bit values
        @param page - gamma table page number (only used if SENS_GAMMA_BUFFER > 0
        """  
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
        curves_data = self.calc_gamma257(gamma = gamma,
                                         black = black,
                                         rshift = 6) * 4
                                         
        try:
            if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function
                for num_sensor in range(4):
                    self.program_gamma ( num_sensor =  num_sensor,
                                         sub_channel = sub_channel,
                                         gamma =       gamma,
                                         black =       black,
                                         page =        page)
                return
        except:
            pass
        
1602 1603
        self.program_curves(num_sensor = num_sensor,
                        sub_channel = sub_channel,
1604
                        curves_data = curves_data,
1605 1606
                        page = page)

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
    def program_curves (self,
                        num_sensor,
                        sub_channel,
                        curves_data,
                        page = 0):
        """
        Program gamma tables for specified sensor port and subchannel
        @param num_sensor -     sensor port number (0..3)
        @param num_sub_sensor - sub-sensor attached to the same port through multiplexer (0..3)
        @param curves_data - either 1028-element list (257 per color component) or a file path
                             with the same data, same as for Verilog $readmemh
1618
        @param page - gamma table page number (only used if SENS_GAMMA_BUFFER > 0
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
        """  
        def set_sensor_gamma_table_addr (
                                         num_sensor,
                                         sub_channel,
                                         color,
                                         page = 0): # only used if SENS_GAMMA_BUFFER != 0

            data =  (1 << 20) | ((color & 3) <<8)
            if (vrlg.SENS_GAMMA_BUFFER):
                data |= (sub_channel & 3) << 11 # [12:11]
                data |= page << 10
            else:
                data |= (sub_channel & 3) << 10 # [11:10]
            reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_GAMMA_RADDR + vrlg.SENS_GAMMA_ADDR_DATA
1633
            self.x393_axi_tasks.write_control_register(reg_addr, data)                   
1634 1635 1636 1637
        def set_sensor_gamma_table_data ( #; // need 256 for a single color data
                                          num_sensor,
                                          data18): # ; // 18-bit table data
            reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_GAMMA_RADDR + vrlg.SENS_GAMMA_ADDR_DATA;
1638
            self.x393_axi_tasks.write_control_register(reg_addr, data18 & ((1 << 18) - 1))                   
1639 1640

                  
1641
        if isinstance(curves_data, (unicode,str)):
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
            with open(curves_data) as f:
                tokens=f.read().split()
            curves_data = []
            for w in tokens:
                curves_data.append(int(w,16))
        set_sensor_gamma_table_addr (
                num_sensor = num_sensor,
                sub_channel = sub_channel,
                color = 0,
                page = page)
        for n in range(4):
            for i in range(256):
                base =curves_data[257*n+i];
                diff =curves_data[257*n+i+1]-curves_data[257*n+i];
                diff1=curves_data[257*n+i+1]-curves_data[257*n+i]+8;
        #        $display ("%x %x %x %x %x %x",n,i,curves_data[257*n+i], base, diff, diff1);
                #1;
                if ((diff > 63) or (diff < -64)):
                    data18 = (1 << 17) | (base & 0x3ff) | (((diff1 >> 4) & 0x7f) << 10) # {1'b1,diff1[10:4],base[9:0]};
                else:
                    data18 =             (base & 0x3ff) | (( diff        & 0x7f) << 10) # {1'b0,diff [ 6:0],base[9:0]};
                set_sensor_gamma_table_data (
                    num_sensor = num_sensor,
                    data18 = data18)
1666 1667 1668 1669 1670 1671 1672 1673

    def calc_gamma257(self,
                      gamma,
                      black,
                      rshift = 6
                      ):
        """
        @brief Calculate gamma table (as array of 257 unsigned short values)
1674
        @param gamma - gamma value (1.0 - linear), 0 - linear as a special case
1675 1676 1677 1678
        @param black - black level, 1.0 corresponds to 256 for 8bit values
        @return array of 257 int elements (for a single color), right-shifted to match original 0..0x3ff range
        """
        gtable = []
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
        if gamma <= 0: # special case
            for i in range (257):
                ig = min(i*256, 0xffff)
                gtable.append(ig >> rshift)
        else:    
            black256 =  max(0.0, min(255, black * 256.0))
            k=  1.0 / (256.0 - black256)
            gamma =max(0.13, min(gamma, 10.0))
            for i in range (257):
                x=k * (i - black256)
                x = max(x, 0.0)
                ig = int (0.5 + 65535.0 * pow(x, gamma))
                ig = min(ig, 0xffff)
                gtable.append(ig >> rshift)
1693 1694 1695
        return gtable    

        
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
    def set_sensor_gamma_heights (self, 
                                  num_sensor,
                                  height0_m1,
                                  height1_m1,
                                  height2_m1):
        """
        Set division of the composite frame into sub-frames for gamma correction (separate for each subframe
        @param num_sensor - sensor port number (0..3)
        @param height0_m1 - height of the first sub-frame minus 1
        @param height1_m1 - height of the second sub-frame minus 1
        @param height2_m1 - height of the third sub-frame minus 1
        (No need for the  4-th, as it will just go until end of the composite frame)
        """
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_GAMMA_RADDR + vrlg.SENS_GAMMA_HEIGHT01
1710
        self.x393_axi_tasks.write_control_register(reg_addr, (height0_m1 & 0xffff) | ((height1_m1 & 0xffff) << 16));                   
1711 1712

        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_GAMMA_RADDR + vrlg.SENS_GAMMA_HEIGHT2;
1713
        self.x393_axi_tasks.write_control_register(reg_addr, height2_m1 & 0xffff);                   
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737

    def set_sensor_gamma_ctl (self,
                              num_sensor,
                              bayer =      0,
                              table_page = 0,
                              en_input =   True,
                              repet_mode = True, #  Normal mode, single trigger - just for debugging  TODO: re-assign?
                              trig = False):
        """
        Setup sensor gamma correction
        @param num_sensor - sensor port number (0..3)
        @param bayer - Bayer shift (0..3)
        @param table_page - Gamma table page
        @param en_input -   Enable input
        @param repet_mode - Repetitive (normal) mode. Set False for debugging, then use trig for single frame trigger
        @param trig       - single trigger (when repet_mode is False), debug feature
        """
        data = self.func_sensor_gamma_ctl (
                                            bayer =      bayer,
                                            table_page = table_page,
                                            en_input =   en_input,
                                            repet_mode = repet_mode,
                                            trig =       trig)
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_GAMMA_RADDR + vrlg.SENS_GAMMA_CTRL;
1738
        self.x393_axi_tasks.write_control_register(reg_addr, data);
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
        
    def set_sensor_histogram_window (self,
                                     num_sensor,
                                     subchannel,
                                     left,
                                     top,
                                     width_m1,
                                     height_m1):
        """
        Program histogram window
        @param num_sensor -     sensor port number (0..3)
        @param num_sub_sensor - sub-sensor attached to the same port through multiplexer (0..3)
        @param left - histogram window left margin
        @param top -  histogram window top margin
        @param width_m1 - one less than window width. If 0 - use frame right margin (end of HACT)
        @param height_m1 - one less than window height. If 0 - use frame bottom margin (end of VACT)
        """
        raddr = (vrlg.HISTOGRAM_RADDR0, vrlg.HISTOGRAM_RADDR1, vrlg.HISTOGRAM_RADDR2, vrlg.HISTOGRAM_RADDR3)
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + raddr[subchannel & 3]
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
        if self.DEBUG_MODE:
            print("set_sensor_histogram_window():")
            print("num_sensor = ", num_sensor)
            print("subchannel = ", subchannel)
            print("left =       ", left)
            print("top =        ", top)
            print("width_m1 =   ", width_m1)
            print("height_m1 =  ", height_m1)
            
        self.x393_axi_tasks.write_control_register(reg_addr + vrlg.HISTOGRAM_LEFT_TOP,     ((top & 0xffff) << 16) | (left & 0xffff))
        self.x393_axi_tasks.write_control_register(reg_addr + vrlg.HISTOGRAM_WIDTH_HEIGHT, ((height_m1 & 0xffff) << 16) | (width_m1 & 0xffff))
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
    def set_sensor_histogram_saxi (self,
                                   en,
                                   nrst,
                                   confirm_write,
                                   cache_mode = 3):
        """
        Setup SAXI GP channel to transfer histograms (16 pages, up to 16 sensors) to the system memory
        @param en - enable transfers
        @param nrst - negated reset False - immediate reset, True - normal run;
        @param confirm_write -  wait for the write confirmed (over B channel) before switching channels
        @param cache_mode AXI cache mode,  default should be 4'h3
        """ 
1781 1782 1783 1784 1785 1786
        if self.DEBUG_MODE:
            print("set_sensor_histogram_saxi():")
            print("en =            ", en)
            print("nrst =          ", nrst)
            print("confirm_write = ", confirm_write)
            print("cache_mode=     ", cache_mode)
1787 1788 1789 1790 1791
        data = 0;
        data |= (0,1)[en] <<            vrlg.HIST_SAXI_EN
        data |= (0,1)[nrst] <<          vrlg.HIST_SAXI_NRESET
        data |= (0,1)[confirm_write] << vrlg.HIST_CONFIRM_WRITE
        data |= (cache_mode & 0xf) <<   vrlg.HIST_SAXI_AWCACHE
1792
        self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + vrlg.HIST_SAXI_MODE_ADDR_REL, data)
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803

    def set_sensor_histogram_saxi_addr (self,
                                        num_sensor,
                                        subchannel,
                                        page):
        """
        Setup SAXI GP start address in 4KB pages (1 page - 1 subchannel histogram)
        @param num_sensor -     sensor port number (0..3)
        @param num_sub_sensor - sub-sensor attached to the same port through multiplexer (0..3)
        @param page -           system memory page address (in 4KB units)
        """ 
1804 1805 1806 1807 1808
        if self.DEBUG_MODE:
            print("set_sensor_histogram_saxi_addr():")
            print("num_sensor = ", num_sensor)
            print("subchannel = ", subchannel)
            print("page =       ", page)
1809 1810 1811 1812 1813
        num_histogram_frames = 1 << vrlg.NUM_FRAME_BITS
        channel = ((num_sensor & 3) << 2) + (subchannel & 3)
        channel_page = page + num_histogram_frames * channel
        self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + vrlg.HIST_SAXI_ADDR_REL + channel,
                                                   channel_page)
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838

    def setup_sensor_memory (self,
                             num_sensor,
                             frame_sa,
                             frame_sa_inc,
                             last_frame_num,
                             frame_full_width,
                             window_width,
                             window_height,
                             window_left,
                             window_top):
        """
        Setup memory controller for a sensor channel
        @param num_sensor -       sensor port number (0..3)
        @param frame_sa -         22-bit frame start address ((3 CA LSBs==0. BA==0)
        @param frame_sa_inc -     22-bit frame start address increment  ((3 CA LSBs==0. BA==0)
        @param last_frame_num -   16-bit number of the last frame in a buffer
        @param frame_full_width - 13-bit Padded line length (8-row increment), in 8-bursts (16 bytes)
        @param window_width -     13-bit - in 8*16=128 bit bursts
        @param window_height -    16-bit window height (in scan lines)
        @param window_left -      13-bit window left margin in 8-bursts (16 bytes)
        @param window_top -       16-bit window top margin (in scan lines
        """
        base_addr = vrlg.MCONTR_SENS_BASE + vrlg.MCONTR_SENS_INC * num_sensor;
        mode=   x393_mcntrl.func_encode_mode_scan_tiled(
1839
                                   skip_too_late = True,                     
1840 1841 1842 1843 1844 1845 1846 1847 1848
                                   disable_need = False,
                                   repetitive=    True,
                                   single =       False,
                                   reset_frame =  False,
                                   extra_pages =  0,
                                   write_mem =    True,
                                   enable =       True,
                                   chn_reset =    False)
                    
1849
        self.x393_axi_tasks.write_control_register(base_addr + vrlg.MCNTRL_SCANLINE_STARTADDR,
1850
                                                  frame_sa); # RA=80, CA=0, BA=0 22-bit frame start address (3 CA LSBs==0. BA==0)
1851
        self.x393_axi_tasks.write_control_register(base_addr + vrlg.MCNTRL_SCANLINE_FRAME_SIZE,
1852
                                                  frame_sa_inc);
1853
        self.x393_axi_tasks.write_control_register(base_addr + vrlg.MCNTRL_SCANLINE_FRAME_LAST,
1854
                                                  last_frame_num);
1855
        self.x393_axi_tasks.write_control_register(base_addr + vrlg.MCNTRL_SCANLINE_FRAME_FULL_WIDTH,
1856
                                                  frame_full_width);
1857
        self.x393_axi_tasks.write_control_register(base_addr + vrlg.MCNTRL_SCANLINE_WINDOW_WH,
1858
                                                  ((window_height & 0xffff) << 16) | (window_width & 0xffff)) #/WINDOW_WIDTH + (WINDOW_HEIGHT<<16));
1859
        self.x393_axi_tasks.write_control_register(base_addr + vrlg.MCNTRL_SCANLINE_WINDOW_X0Y0,
1860
                                                  ((window_top & 0xffff) << 16) | (window_left & 0xffff)) #WINDOW_X0+ (WINDOW_Y0<<16));
1861 1862
        self.x393_axi_tasks.write_control_register(base_addr + vrlg.MCNTRL_SCANLINE_WINDOW_STARTXY,   0)
        self.x393_axi_tasks.write_control_register(base_addr + vrlg.MCNTRL_SCANLINE_MODE,          mode) 
1863 1864