x393_sensor.py 67.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
from __future__ import division
from __future__ import print_function

'''
# Copyright (C) 2015, Elphel.inc.
# Class to control 10393 sensor-to-memory channel (including histograms)  
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http:#www.gnu.org/licenses/>.

@author:     Andrey Filippov
@copyright:  2015 Elphel, Inc.
@license:    GPLv3.0+
@contact:    andrey@elphel.coml
@deffield    updated: Updated
'''
__author__ = "Andrey Filippov"
__copyright__ = "Copyright 2015, Elphel, Inc."
__license__ = "GPL"
__version__ = "3.0+"
__maintainer__ = "Andrey Filippov"
__email__ = "andrey@elphel.com"
__status__ = "Development"
#import sys
#import pickle
from x393_mem                import X393Mem
import x393_axi_control_status

import x393_utils

40
import time
41
import vrlg
42
import x393_mcntrl
43 44 45
#import x393_sens_cmprs
SENSOR_INTERFACE_PARALLEL = "PAR12"
SENSOR_INTERFACE_HISPI =    "HISPI"
46

47 48 49 50 51 52
class X393Sensor(object):
    DRY_MODE= True # True
    DEBUG_MODE=1
    x393_mem=None
    x393_axi_tasks=None #x393X393AxiControlStatus
    x393_utils=None
53

54 55 56 57 58 59 60
    verbose=1
    def __init__(self, debug_mode=1,dry_mode=True, saveFileName=None):
        self.DEBUG_MODE=  debug_mode
        self.DRY_MODE=    dry_mode
        self.x393_mem=            X393Mem(debug_mode,dry_mode)
        self.x393_axi_tasks=      x393_axi_control_status.X393AxiControlStatus(debug_mode,dry_mode)
        self.x393_utils=          x393_utils.X393Utils(debug_mode,dry_mode, saveFileName) # should not overwrite save file path
61
        
62 63 64 65
        try:
            self.verbose=vrlg.VERBOSE
        except:
            pass
66 67 68 69 70 71 72
    def getSensorInterfaceType(self):
        """
        Get sensor interface type by reading status register 0xfe that is set to 0 for parallel and 1 for HiSPi
        @return "PAR12" or "HISPI"
        """
        return (SENSOR_INTERFACE_PARALLEL, SENSOR_INTERFACE_HISPI)[self.x393_axi_tasks.read_status(address=0xfe)] # "PAR12" , "HISPI"
        
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    def program_status_sensor_i2c( self,
                                   num_sensor,
                                   mode,     # input [1:0] mode;
                                   seq_num): # input [5:0] seq_num;
        """
        Set status generation mode for selected sensor port i2c control
        @param num_sensor - number of the sensor port (0..3)
        @param mode -       status generation mode:
                                  0: disable status generation,
                                  1: single status request,
                                  2: auto status, keep specified seq number,
                                  4: auto, inc sequence number 
        @param seq_number - 6-bit sequence number of the status message to be sent
        """

88
        self.x393_axi_tasks.program_status (vrlg.SENSOR_GROUP_ADDR  + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSI2C_CTRL_RADDR,
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
                             vrlg.SENSI2C_STATUS,
                             mode,
                             seq_num)# //MCONTR_PHY_STATUS_REG_ADDR=          'h0,

    def program_status_sensor_io( self,
                                  num_sensor,
                                  mode,     # input [1:0] mode;
                                  seq_num): # input [5:0] seq_num;
        """
        Set status generation mode for selected sensor port io subsystem
        @param num_sensor - number of the sensor port (0..3)
        @param mode -       status generation mode:
                                  0: disable status generation,
                                  1: single status request,
                                  2: auto status, keep specified seq number,
                                  4: auto, inc sequence number 
        @param seq_number - 6-bit sequence number of the status message to be sent
        """

        self.x393_axi_tasks.program_status (
                             vrlg.SENSOR_GROUP_ADDR  + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSIO_RADDR,
                             vrlg.SENSIO_STATUS,
                             mode,
                             seq_num)# //MCONTR_PHY_STATUS_REG_ADDR=          'h0,
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    def get_status_sensor_io ( self,
                              num_sensor):
        """
        Read sensor_io status word (no sync)
        @param num_sensor - number of the sensor port (0..3)
        @return sesnor_io status
        """
        return self.x393_axi_tasks.read_status(
                    address=(vrlg.SENSI2C_STATUS_REG_BASE + num_sensor * vrlg.SENSI2C_STATUS_REG_INC + vrlg.SENSIO_STATUS_REG_REL))       

    def print_status_sensor_io (self,
                                num_sensor):
        """
        Print sensor_io status word (no sync)
        @param num_sensor - number of the sensor port (0..3)
        """
        status= self.get_status_sensor_io(num_sensor)
        print ("print_status_sensor_io(%d):"%(num_sensor))
131 132
#last_in_line_1cyc_mclk, dout_valid_1cyc_mclk
        """        
133 134 135 136 137 138 139 140 141 142 143
        print ("   last_in_line_1cyc_mclk = %d"%((status>>23) & 1))        
        print ("   dout_valid_1cyc_mclk =   %d"%((status>>22) & 1))        
        print ("   alive_hist0_gr =         %d"%((status>>21) & 1))        
        print ("   alive_hist0_rq =         %d"%((status>>20) & 1))        
        print ("   sof_out_mclk =           %d"%((status>>19) & 1))        
        print ("   eof_mclk =               %d"%((status>>18) & 1))        
        print ("   sof_mclk =               %d"%((status>>17) & 1))        
        print ("   sol_mclk =               %d"%((status>>16) & 1))        
        print ("   vact_alive =             %d"%((status>>15) & 1))
        print ("   hact_ext_alive =         %d"%((status>>14) & 1))
        print ("   hact_alive =             %d"%((status>>13) & 1))
144 145
        """
        print ("   hact_run =               %d"%((status>>13) & 1))
146 147 148
        print ("   locked_pxd_mmcm =        %d"%((status>>12) & 1))
        print ("   clkin_pxd_stopped_mmcm = %d"%((status>>11) & 1))
        print ("   clkfb_pxd_stopped_mmcm = %d"%((status>>10) & 1))
149 150
        print ("   xfpgadone =              %d"%((status>> 9) & 1))
        print ("   ps_rdy =                 %d"%((status>> 8) & 1))
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        print ("   ps_out =                 %d"%((status>> 0)  & 0xff))
        print ("   xfpgatdo =               %d"%((status>>25) & 1))
        print ("   senspgmin =              %d"%((status>>24) & 1))
        print ("   seq =                    %d"%((status>>26) & 0x3f))
#vact_alive, hact_ext_alive, hact_alive
    def get_status_sensor_i2c ( self,
                              num_sensor):
        """
        Read sensor_i2c status word (no sync)
        @param num_sensor - number of the sensor port (0..3)
        @return sesnor_io status
        """
        return self.x393_axi_tasks.read_status(
                    address=(vrlg.SENSI2C_STATUS_REG_BASE + num_sensor * vrlg.SENSI2C_STATUS_REG_INC + vrlg.SENSI2C_STATUS_REG_REL))       

    def print_status_sensor_i2c (self,
                                num_sensor):
        """
        Print sensor_i2c status word (no sync)
        @param num_sensor - number of the sensor port (0..3)
        """
        status= self.get_status_sensor_i2c(num_sensor)
        print ("print_status_sensor_i2c(%d):"%(num_sensor))
        print ("   reset_on =               %d"%((status>> 7) & 1))
        print ("   req_clr =                %d"%((status>> 6) & 1))
        print ("   alive_fs =               %d"%((status>> 5) & 1))
        
        print ("   busy =                   %d"%((status>> 4) & 1))
        print ("   frame_num =              %d"%((status>> 0)  & 0xf))
        print ("   sda_in =                 %d"%((status>>25) & 1))
        print ("   scl_in =                 %d"%((status>>24) & 1))
        print ("   seq =                    %d"%((status>>26) & 0x3f))
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

# Functions used by sensor-related tasks
    def func_sensor_mode (self,
                          hist_en,
                          hist_nrst, 
                          chn_en, 
                          bits16):
        """
        Combine parameters into sensor mode control word
        @param hist_en -   bit mask to enable histogram sub-modules, when 0 - disable after processing
                           the started frame
        @param hist_nrst - bit mask to immediately reset histogram sub-module (if 0) 
        @param chn_en    - enable sensor channel (False - reset) 
        @param bits16)   - True - 16 bpp mode, false - 8 bpp mode (bypass gamma). Gamma-processed data
                           is still used for histograms
        @return: sensor mode control word
        """
        rslt = 0;
        rslt |= (hist_en & 0xf) <<   vrlg.SENSOR_HIST_EN_BITS
        rslt |= (hist_nrst & 0xf) << vrlg.SENSOR_HIST_NRST_BITS
        rslt |= ((0,1)[chn_en]) <<   vrlg.SENSOR_CHN_EN_BIT
        rslt |= ((0,1)[bits16]) <<   vrlg.SENSOR_16BIT_BIT
        return rslt
    
    def func_sensor_i2c_command (self,
                                 rst_cmd =   False,
                                 run_cmd =   None,
210 211 212 213
                                 active_sda = None, 
                                 early_release_0 = None,
                                 advance_FIFO = None,
                                 verbose = 1):
214 215 216
        """
        @param rst_cmd - reset all FIFO (takes 16 clock pulses), also - stops i2c until run command
        @param run_cmd - True - run i2c, False - stop i2c (needed before software i2c), None - no change
217 218 219 220 221 222
        @param active_sda - pull-up SDA line during second half of SCL=0, when needed and possible 
        @param early_release_0 -  release SDA=0 immediately after the end of SCL=1 (SDA hold will be provided by week pullup)
        @param advance_FIFO - advance i2c read FIFO
        @param verbose -          verbose level
        @return combined command word.
        active_sda and early_release_0 should be defined both to take effect (any of the None skips setting these parameters)
223
        """  
224 225
        if verbose>0:
            print ("func_sensor_i2c_command(): rst_cmd= ",rst_cmd,", run_cmd=",run_cmd,", active_sda = ",active_sda,", early_release_0 = ",early_release_0)
226 227 228 229 230
        rslt = 0
        rslt |= (0,1)[rst_cmd] << vrlg.SENSI2C_CMD_RESET
        if not run_cmd is None:
            rslt |= 1 <<                 vrlg.SENSI2C_CMD_RUN
            rslt |= (0,1)[run_cmd] <<    (vrlg.SENSI2C_CMD_RUN - vrlg.SENSI2C_CMD_RUN_PBITS)
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
        if (not active_sda is None) and (not early_release_0 is None):
            rslt |= (0,1)[early_release_0] << vrlg.SENSI2C_CMD_ACIVE_EARLY0
            rslt |= (0,1)[active_sda] << vrlg.SENSI2C_CMD_ACIVE_SDA
            rslt |= 1 <<                 vrlg.SENSI2C_CMD_ACIVE
        if advance_FIFO:
            rslt |= 1 << vrlg.SENSI2C_CMD_FIFO_RD

        return rslt        

    def func_sensor_i2c_table_reg_wr (self,
                                 slave_addr,
                                 rah,
                                 num_bytes, 
                                 bit_delay,
                                 verbose = 1):
        """
        @param slave_addr - 7-bit i2c slave address
        @param rah -        register address high byte (bits [15:8]) optionally used for register write commands
        @param num_bytes -  number of bytes to send (including register address bytes) 1..10 
        @param bit_delay -  number of mclk clock cycle in 1/4 of the SCL period
        @param verbose -    verbose level
        @return combined table data word.
        """  
        if verbose>0:
            print ("func_sensor_i2c_table_reg_wr(): slave_addr= ",slave_addr,", rah=",rah,", num_bytes = ",num_bytes,", bit_delay = ",bit_delay)
        rslt = 0
        rslt |= (slave_addr & ((1 << vrlg.SENSI2C_TBL_SA_BITS)   - 1)) << vrlg.SENSI2C_TBL_SA
        rslt |= (rah &        ((1 << vrlg.SENSI2C_TBL_RAH_BITS)  - 1)) << vrlg.SENSI2C_TBL_RAH
        rslt |= (num_bytes &  ((1 << vrlg.SENSI2C_TBL_NBWR_BITS) - 1)) << vrlg.SENSI2C_TBL_NBWR
        rslt |= (bit_delay &  ((1 << vrlg.SENSI2C_TBL_DLY_BITS)  - 1)) << vrlg.SENSI2C_TBL_DLY
        return rslt        

    def func_sensor_i2c_table_reg_rd (self,
                                 two_byte_addr,
                                 num_bytes_rd,
                                 bit_delay,
                                 verbose = 1):
        """
        @param two_byte_addr - Use a 2-byte register address for read command (False - single byte)
        @param num_bytes_rd -  Number of bytes to read (1..8)
        @param bit_delay -     number of mclk clock cycle in 1/4 of the SCL period
        @param verbose -       verbose level
        @return combined table data word.
        """  
        if verbose>0:
            print ("func_sensor_i2c_table_reg_rd(): two_byte_addr= ",two_byte_addr,", num_bytes_rd=",num_bytes_rd,", bit_delay = ",bit_delay)
        rslt = 0
        rslt |= 1 << vrlg.SENSI2C_TBL_RNWREG # this is read register command (0 - write register)
        if two_byte_addr > 1:
            two_byte_addr = 1
281
        rslt |= (0,1)[two_byte_addr]                                      << vrlg.SENSI2C_TBL_NABRD
282 283
        rslt |= (num_bytes_rd &  ((1 << vrlg.SENSI2C_TBL_NBRD_BITS) - 1)) << vrlg.SENSI2C_TBL_NBRD
        rslt |= (bit_delay &     ((1 << vrlg.SENSI2C_TBL_DLY_BITS)  - 1)) << vrlg.SENSI2C_TBL_DLY
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
        return rslt        

    def func_sensor_io_ctl (self,
                            mrst = None,
                            arst = None,
                            aro  = None,
                            mmcm_rst = None,
                            clk_sel = None,
                            set_delays = False,
                            quadrants = None):
        """
        Combine sensor I/O control parameters into a control word 
        @param mrst -  True - activate MRST signal (low), False - deactivate MRST (high), None - no change
        @param arst -  True - activate ARST signal (low), False - deactivate ARST (high), None - no change
        @param aro -   True - activate ARO signal (low), False - deactivate ARO (high), None - no change
        @param mmcm_rst - True - activate MMCM reset, False - deactivate MMCM reset, None - no change (needed after clock change/interruption)
        @param clk_sel - True - use pixel clock from the sensor, False - use internal clock (provided to the sensor), None - no chnage
        @param set_delays - (self-clearing) load all pre-programmed delays for the sensor pad inputs 
        @param quadrants -  90-degree shifts for data [1:0], hact [3:2] and vact [5:4] (6'h01), None - no change
        @return sensor i/o control word
        """
        rslt = 0
        if not mrst is None:
307
            rslt |= (3,2)[mrst] <<     vrlg.SENS_CTRL_MRST
308
        if not arst is None:
309
            rslt |= (3,2)[arst] <<     vrlg.SENS_CTRL_ARST
310
        if not aro is None:
311
            rslt |= (3,2)[aro]  <<     vrlg.SENS_CTRL_ARO
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
        if not mmcm_rst is None:
            rslt |= (2,3)[mmcm_rst] << vrlg.SENS_CTRL_RST_MMCM
        if not clk_sel is None:
            rslt |= (2,3)[clk_sel] <<  vrlg.SENS_CTRL_EXT_CLK
        rslt |= (0,1)[set_delays] <<   vrlg.SENS_CTRL_LD_DLY

        if not quadrants is None:
            rslt |= 1 <<  vrlg.SENS_CTRL_QUADRANTS_EN
            rslt |= (quadrants & ((1 << vrlg.SENS_CTRL_QUADRANTS_WIDTH) - 1)) <<  vrlg.SENS_CTRL_QUADRANTS
        return rslt

    def func_sensor_jtag_ctl(self,
                             pgmen = None,    # <2: keep PGMEN, 2 - PGMEN low (inactive),  3 - high (active) enable JTAG control
                             prog =  None,    # <2: keep prog, 2 - prog low (active),  3 - high (inactive) ("program" pin control)
                             tck =   None,    # <2: keep TCK,  2 - set TCK low,  3 - set TCK high
                             tms =   None,    # <2: keep TMS,  2 - set TMS low,  3 - set TMS high
                             tdi =   None):   # <2: keep TDI,  2 - set TDI low,  3 - set TDI high
        """
        JTAG interface for programming external sensor multiplexer using shared signal lines on the sensor ports
        @param pgmen - False PGMEN low (inactive),  True - high (active) enable JTAG control, None - keep previous value
        @param prog -  False prog low (active),  True - high (inactive) ("program" pin control), None - keep previous value
        @param tck =   False - set TCK low,  True - set TCK high, None - keep previous value
        @param tms =   False - set TMS low,  True - set TMS high, None - keep previous value
        @param tdi =   False - set TDI low,  True - set TDI high, None - keep previous value
        @return combined control word       
        """
        rslt = 0
        if not pgmen is None:
            rslt |= (2,3)[pgmen] << vrlg.SENS_JTAG_PGMEN
        if not prog is None:
            rslt |= (2,3)[prog] <<  vrlg.SENS_JTAG_PROG
        if not tck is None:
            rslt |= (2,3)[tck] <<   vrlg.SENS_JTAG_TCK
        if not tms is None:
            rslt |= (2,3)[tms] <<   vrlg.SENS_JTAG_TMS
        if not tdi is None:
            rslt |= (2,3)[tdi] <<   vrlg.SENS_JTAG_TDI
        return rslt

    def func_sensor_gamma_ctl(self,
                              bayer =      0,
                              table_page = 0,
                              en_input =   True,
                              repet_mode = True, #  Normal mode, single trigger - just for debugging  TODO: re-assign?
                              trig = False):
        """
        @param bayer - Bayer shift (0..3)
        @param table_page - Gamma table page
        @param en_input -   Enable input
        @param repet_mode - Repetitive (normal) mode. Set False for debugging, then use trig for single frame trigger
        @param trig       - single trigger (when repet_mode is False), debug feature
        @return combined control word
        """
        rslt = 0
        rslt |= (bayer & 3) <<       vrlg.SENS_GAMMA_MODE_BAYER
        rslt |= (0,1)[table_page] << vrlg.SENS_GAMMA_MODE_PAGE
        rslt |= (0,1)[en_input] <<   vrlg.SENS_GAMMA_MODE_EN
        rslt |= (0,1)[repet_mode] << vrlg.SENS_GAMMA_MODE_REPET
        rslt |= (0,1)[trig] <<       vrlg.SENS_GAMMA_MODE_TRIG
        return rslt

    def func_status_addr_sensor_i2c(self,
                                    num_sensor):
        """
        @param num_sensor - sensor port number (0..3)
        @return status register address for i2c for selected sensor port
        """
        return (vrlg.SENSI2C_STATUS_REG_BASE + num_sensor * vrlg.SENSI2C_STATUS_REG_INC + vrlg.SENSI2C_STATUS_REG_REL);

    def func_status_addr_sensor_io(self,
                                    num_sensor):
        """
        @param num_sensor - sensor port number (0..3)
        @return status register address for I/O for selected sensor port
        """
        return (vrlg.SENSI2C_STATUS_REG_BASE + num_sensor * vrlg.SENSI2C_STATUS_REG_INC + vrlg.SENSIO_STATUS_REG_REL);
    
    def set_sensor_mode (self,
                         num_sensor,
                         hist_en,
                         hist_nrst, 
                         chn_en, 
                         bits16):
        """
        Set sensor mode
        @param num_sensor - sensor port number (0..3)
        @param hist_en -   bit mask to enable histogram sub-modules, when 0 - disable after processing
                           the started frame
        @param hist_nrst - bit mask to immediately reset histogram sub-module (if 0) 
        @param chn_en    - enable sensor channel (False - reset) 
        @param bits16)   - True - 16 bpp mode, false - 8 bpp mode (bypass gamma). Gamma-processed data
                           is still used for histograms
        """
405
        self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSOR_CTRL_RADDR,
406 407 408 409 410 411 412 413 414 415
                                                  self.func_sensor_mode(
                                                                   hist_en =   hist_en,
                                                                   hist_nrst = hist_nrst,
                                                                   chn_en =    chn_en,
                                                                   bits16 =    bits16))

    def set_sensor_i2c_command (self,
                                num_sensor,
                                rst_cmd =   False,
                                run_cmd =   None,
416 417 418 419
                                active_sda = None, 
                                early_release_0 = None,
                                advance_FIFO = None,
                                verbose = 1):
420
        """
421
        @param num_sensor - sensor port number (0..3)
422 423
        @param rst_cmd - reset all FIFO (takes 16 clock pulses), also - stops i2c until run command
        @param run_cmd - True - run i2c, False - stop i2c (needed before software i2c), None - no change
424 425 426 427 428 429
        @param active_sda - pull-up SDA line during second half of SCL=0, when needed and possible 
        @param early_release_0 -  release SDA=0 immediately after the end of SCL=1 (SDA hold will be provided by week pullup)
        @param advance_FIFO -     advance i2c read FIFO
        @param verbose -          verbose level
        active_sda and early_release_0 should be defined both to take effect (any of the None skips setting these parameters)

430
        """  
431
        self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSI2C_CTRL_RADDR,
432
                                                  self.func_sensor_i2c_command(
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
                                                       rst_cmd =         rst_cmd,
                                                       run_cmd =         run_cmd,
                                                       active_sda =      active_sda,
                                                       early_release_0 = early_release_0,
                                                       advance_FIFO =    advance_FIFO,
                                                       verbose =         verbose))

    def set_sensor_i2c_table_reg_wr (self,
                                     num_sensor,
                                     page,
                                     slave_addr,
                                     rah,
                                     num_bytes, 
                                     bit_delay,
                                     verbose = 1):
        """
        Set table entry for a single index for register write
        @param num_sensor - sensor port number (0..3)
        @param page -       1 byte table index (later provided as high byte of the 32-bit command)
        @param slave_addr - 7-bit i2c slave address
        @param rah -        register address high byte (bits [15:8]) optionally used for register write commands
        @param num_bytes -  number of bytes to send (including register address bytes) 1..10 
        @param bit_delay -  number of mclk clock cycle in 1/4 of the SCL period
        @param verbose -    verbose level
        """
        ta = (1 << vrlg.SENSI2C_CMD_TABLE) | (1 << vrlg.SENSI2C_CMD_TAND) | (page & 0xff)
        td = (1 << vrlg.SENSI2C_CMD_TABLE) | self.func_sensor_i2c_table_reg_wr(
                                               slave_addr = slave_addr,
                                               rah =        rah,
                                               num_bytes =  num_bytes, 
                                               bit_delay =  bit_delay,
                                               verbose =    verbose) 

        self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSI2C_CTRL_RADDR, ta)
        self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSI2C_CTRL_RADDR, td)

    def set_sensor_i2c_table_reg_rd (self,
                                     num_sensor,
                                     page,
                                     two_byte_addr,
                                     num_bytes_rd,
                                     bit_delay,
                                     verbose = 1):
        """
        Set table entry for a single index for register write
        @param num_sensor -    sensor port number (0..3)
        @param page -          1 byte table index (later provided as high byte of the 32-bit command)
        @param two_byte_addr - Use a 2-byte register address for read command (False - single byte)
        @param num_bytes_rd -  Number of bytes to read (1..8)
        @param bit_delay -     number of mclk clock cycle in 1/4 of the SCL period
        @param verbose -       verbose level
        """
        ta = (1 << vrlg.SENSI2C_CMD_TABLE) | (1 << vrlg.SENSI2C_CMD_TAND) | (page & 0xff)
        td = (1 << vrlg.SENSI2C_CMD_TABLE) | self.func_sensor_i2c_table_reg_rd(
                                               two_byte_addr = two_byte_addr,
                                               num_bytes_rd = num_bytes_rd,
                                               bit_delay =  bit_delay,
                                               verbose =    verbose) 
        self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSI2C_CTRL_RADDR, ta)
        self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC + vrlg.SENSI2C_CTRL_RADDR, td)
493 494
        if verbose > 1:
            print ("ta= 0x%x, td = 0x%x"%(ta,td))
495

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
    def write_sensor_reg16(self,
                           num_sensor,
                           reg_addr16,
                           reg_data16):
        """
        Write i2c register in immediate mode
        @param num_sensor - sensor port number (0..3), or "all" - same to all sensors
        @param reg_addr16 - 16-bit register address (page+low byte, for MT9F006 high byte is an 8-bit slave address = 0x90)
        @param reg_data16 - 16-bit data to write to sesnor register
        """
        self.write_sensor_i2c (num_sensor = num_sensor,
                               rel_addr = True,
                               addr = 0,
                               data = ((reg_addr16 & 0xffff) << 16) | (reg_data16 & 0xffff) )

511 512 513 514 515 516 517
    def write_sensor_i2c (self,
                          num_sensor,
                          rel_addr,
                          addr,
                          data):
        """
        Write i2c command to the i2c command sequencer
518
        @param num_sensor - sensor port number (0..3), or "all" - same to all sensors
519 520
        @param rel_addr - True - relative frame address, False - absolute frame address
        @param addr - frame address (0..15)
521 522 523 524 525 526 527 528 529 530
        @param data - depends on context:
                      1 - register write: index page, 3 payload bytes. Payload bytes are used according to table and sent
                          after the slave address and optional high address byte other bytes are sent in descending order (LSB- last).
                          If less than 4 bytes are programmed in the table the high bytes (starting with the one from the table) are
                          skipped.
                          If more than 4 bytes are programmed in the table for the page (high byte), one or two next 32-bit words 
                          bypass the index table and all 4 bytes are considered payload ones. If less than 4 extra bytes are to be
                          sent for such extra word, only the lower bytes are sent.
                      2 - register read: index page, slave address (8-bit, with lower bit 0) and one or 2 address bytes (as programmed
                          in the table. Slave address is always in byte 2 (bits 23:16), byte1 (high register address) is skipped if
531
                          read address in the table is programmed to be a single-byte one    
532
        """
533 534 535 536 537 538 539 540 541 542
        try:
            if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function
                for num_sensor in range(4):
                    self.write_sensor_i2c (num_sensor = num_sensor,
                                           rel_addr =   rel_addr,
                                           addr =       addr,
                                           data =       data)
                return
        except:
            pass
543 544 545
        reg_addr =  (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC)
        reg_addr += ((vrlg.SENSI2C_ABS_RADDR,vrlg.SENSI2C_REL_RADDR)[rel_addr] )
        reg_addr += (addr & ~vrlg.SENSI2C_ADDR_MASK);
546
        self.x393_axi_tasks.write_control_register(reg_addr, data)
547 548 549

    def read_sensor_i2c (self,
                         num_sensor,
550 551
                         num_bytes = None,
                         verbose = 0):
552 553 554 555
        """
        Read sequence of bytes available
        @param num_sensor - sensor port number (0..3), or "all" - same to all sensors
        @param num_bytes - number of bytes to read (None - all in FIFO)
556
        @verbose - verbose level
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
        @return list of read bytes
        """
        ODDEVEN="ODDEVEN"
        DAV = "DAV"
        DATA = "DATA"
        def read_i2c_data(num_sensor):
            addr = vrlg.SENSI2C_STATUS_REG_BASE + num_sensor * vrlg.SENSI2C_STATUS_REG_INC + vrlg.SENSI2C_STATUS_REG_REL
            d = self.x393_axi_tasks.read_status(addr)
            return {ODDEVEN : (d >> 9) & 1, DAV : (d >> 8) & 1, DATA : d & 0xff}

        timeout = 1.0 # sec
        end_time = time.time() + timeout
        rslt = []
        while True:
            d = read_i2c_data(num_sensor)
            if not d[DAV]:
                if num_bytes is None:
                    break # no data available in FIFO and number of bytes is not specified
                while (time.time() < end_time) and (not d[DAV]): # wait for data available
                    d = read_i2c_data(num_sensor)
                if not d[DAV]:
                    break # no data available - timeout
            rslt.append(d[DATA])
            # advance to the next data byte
            oddeven = d[ODDEVEN]
            self. set_sensor_i2c_command (
                                num_sensor =   num_sensor,
                                advance_FIFO = True,
585
                                verbose =      verbose)
586 587 588 589 590 591 592
            # wait until odd/even bit reverses (no timeout here)
            while d[ODDEVEN] == oddeven:
                d = read_i2c_data(num_sensor)
            if len(rslt) == num_bytes:
                break # read all that was requested (num_bytes == None will not get here)
        return  rslt
            
593 594 595 596 597
    def print_sensor_i2c (self,
                          num_sensor,
                          reg_addr,
                          indx =  1,
                          sa7   = 0x48,
598
                          verbose = 1):
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
        """
        Read sequence of bytes available and print the result as a single hex number
        @param num_sensor - sensor port number (0..3), or "all" - same to all sensors
        @param reg_addr - register to read address 1/2 bytes (defined by previously set format)
        @param indx - i2c command index in 1 256-entry table (defines here i2c delay, number of address bytes and number of data bytes)
        @param sa7 - 7-bit i2c slave address
        @param verbose - verbose level
        """
        #clean up FIFO
        dl = self.read_sensor_i2c (num_sensor = num_sensor,
                                   num_bytes = None,
                                   verbose = verbose)
        if len(dl):
            d = 0
            for b in dl:
                d = (d << 8) | (b & 0xff)
            fmt="FIFO contained %d bytes i2c data = 0x%%0%dx"%(len(dl),len(dl*2))
            print (fmt%(d))    
        #create and send i2c command in ASAP mode:
        i2c_cmd = ((indx & 0xff) << 24) | (sa7 <<17) | (reg_addr & 0xffff)
        #write_sensor_i2c  0 1 0 0x91900004
        self.write_sensor_i2c(num_sensor = num_sensor,
                              rel_addr = 1,
                              addr = 0,
                              data = i2c_cmd)
        time.sleep(0.05) # We do not know how many bytes are expected, so just wait long enough and hope all bytes are in fifo already

        
        
        dl = self.read_sensor_i2c (num_sensor = num_sensor,
                                   num_bytes = None,
                                   verbose = verbose)
        if len(dl):
            d = 0
            for b in dl:
                d = (d << 8) | (b & 0xff)
635 636 637 638
            if verbose > 0:    
                fmt="i2c data[0x%02x:0x%x] = 0x%%0%dx"%(sa7,reg_addr,len(dl)*2)
                print (fmt%(d))    
        return d
639

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
    def set_sensor_flipXY(self,
                                  num_sensor,
                                  flip_x =  False,
                                  flip_y =  False,
                                  verbose = 1):
        """
        Set sensor horizontal and vertical mirror (flip)
        @param num_sensor - sensor number or "all"
        @param flip_x -  mirror image around vertical axis
        @param flip_y -  mirror image around horizontal axis
        @param verbose - verbose level
        """
        sensorType = self.getSensorInterfaceType()
        if flip_x is None:
            flip_x = False
        if flip_y is None:
            flip_y = False
            
        if sensorType == "PAR12":
            data = (0,0x8000)[flip_y] | (0,0x4000)[flip_x]  
            self.write_sensor_reg16 (num_sensor = num_sensor,
                                     reg_addr16 = 0x9020,
                                     reg_data16 = data)
        elif sensorType == "HISPI":
            data = (0,0x8000)[flip_y] | (0,0x4000)[flip_x] | 0x41  
            self.write_sensor_reg16 (num_sensor = num_sensor,
                                     reg_addr16 = 0x3040,
                                     reg_data16 = data)
        else:
            raise ("Unknown sensor type: %s"%(sensorType))

    def set_sensor_gains_exposure(self,
                                  num_sensor,
                                  gain_r =   None,
                                  gain_gr =  None,
                                  gain_gb =  None,
                                  gain_b =   None,
                                  exposure = None,
                                  verbose =  1):
        """
        Set sensor analog gains (raw register values) and
        exposure (in scan lines)
        @param num_sensor - sensor number or "all"
        @param gain_r -   RED gain
        @param gain_gr -  GREEN in red row gain
        @param gain_gb -  GREEN in blue row gain
        @param gain_b -   BLUE gain
        @param exposure - exposure time in scan lines
        @param verbose -  verbose level
        """
        sensorType = self.getSensorInterfaceType()
        if sensorType == "PAR12":
            if not gain_r is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x902c,
                                         reg_data16 = gain_r)
            if not gain_gr is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x902b,
                                         reg_data16 = gain_gr)
            if not gain_gb is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x902e,
                                         reg_data16 = gain_gb)
            if not gain_b is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x902d,
                                         reg_data16 = gain_b)
            if not exposure is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x9009,
                                         reg_data16 = exposure)
        elif sensorType == "HISPI":
            if not gain_r is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x208,
                                         reg_data16 = gain_r)
            if not gain_gr is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x206, # SMIA register
                                         reg_data16 = gain_gr)
            if not gain_gb is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x20c, # SMIA register
                                         reg_data16 = gain_gb)
            if not gain_b is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x20a, # SMIA register
                                         reg_data16 = gain_b)
            if not exposure is None:
                self.write_sensor_reg16 (num_sensor = num_sensor,
                                         reg_addr16 = 0x202, # SMIA register
                                         reg_data16 = exposure)
        else:
            raise ("Unknown sensor type: %s"%(sensorType))
                                     
736 737
    def set_sensor_io_ctl (self,
                           num_sensor,
738 739 740 741 742
                           mrst =       None,
                           arst =       None,
                           aro  =       None,
                           mmcm_rst =   None,
                           clk_sel =    None,
743
                           set_delays = False,
744
                           quadrants =  None):
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
        """
        Set sensor I/O controls, including I/O signals 
        @param num_sensor - sensor port number (0..3)
        @param mrst -  True - activate MRST signal (low), False - deactivate MRST (high), None - no change
        @param arst -  True - activate ARST signal (low), False - deactivate ARST (high), None - no change
        @param aro -   True - activate ARO signal (low), False - deactivate ARO (high), None - no change
        @param mmcm_rst - True - activate MMCM reset, False - deactivate MMCM reset, None - no change (needed after clock change/interruption)
        @param clk_sel - True - use pixel clock from the sensor, False - use internal clock (provided to the sensor), None - no chnage
        @param set_delays - (self-clearing) load all pre-programmed delays for the sensor pad inputs 
        @param quadrants -  90-degree shifts for data [1:0], hact [3:2] and vact [5:4] (6'h01), None - no change
        """
        data = self.func_sensor_io_ctl (
                    mrst =       mrst,
                    arst =       arst,
                    aro =        aro,
                    mmcm_rst =   mmcm_rst,
                    clk_sel =    clk_sel,
                    set_delays = set_delays,
                    quadrants =  quadrants)
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_CTRL;
765
        self.x393_axi_tasks.write_control_register(reg_addr, data)
766 767 768 769 770 771 772 773
# TODO: Make one for HiSPi (it is different)
    def set_sensor_io_dly_parallel (self,
                                    num_sensor,
                                    mmcm_phase,
                                    iclk_dly,
                                    vact_dly,
                                    hact_dly,
                                    pxd_dly):
774 775 776 777 778 779 780 781 782 783 784 785 786 787
        """
        Set sensor port input delays and mmcm phase
        @param num_sensor - sensor port number (0..3)
        @param mmcm_phase - MMCM clock phase
        @param iclk_dly - delay in the input clock line (3 LSB are not used)
        @param vact_dly - delay in the VACT line (3 LSB are not used)
        @param hact_dly - delay in the HACT line (3 LSB are not used)
        @param pxd_dly - list of data line delays (12 elements, 3 LSB are not used)                      
        """
        dlys=((pxd_dly[0] & 0xff) | ((pxd_dly[1] & 0xff) << 8) | ((pxd_dly[ 2] & 0xff) << 16) | ((pxd_dly[ 3] & 0xff) << 24),
              (pxd_dly[4] & 0xff) | ((pxd_dly[5] & 0xff) << 8) | ((pxd_dly[ 6] & 0xff) << 16) | ((pxd_dly[ 7] & 0xff) << 24),
              (pxd_dly[8] & 0xff) | ((pxd_dly[9] & 0xff) << 8) | ((pxd_dly[10] & 0xff) << 16) | ((pxd_dly[11] & 0xff) << 24),
              (hact_dly & 0xff) |   ((vact_dly & 0xff) <<   8) | ((iclk_dly & 0xff)    << 16) | ((mmcm_phase & 0xff) <<  24))                       
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_DELAYS;
788 789 790 791
        self.x393_axi_tasks.write_control_register(reg_addr + 0, dlys[0]) # {pxd3,       pxd2,  pxd1, pxd0}
        self.x393_axi_tasks.write_control_register(reg_addr + 1, dlys[1]) # {pxd7,       pxd6,  pxd5, pxd4}
        self.x393_axi_tasks.write_control_register(reg_addr + 2, dlys[2]) # {pxd11,      pxd10, pxd9, pxd8}
        self.x393_axi_tasks.write_control_register(reg_addr + 3, dlys[3]) # {mmcm_phase, bpf,   vact, hact}
792 793
        self.set_sensor_io_ctl (num_sensor = num_sensor,
                                set_delays = True)
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830

    def set_sensor_io_dly_hispi (self,
                                    num_sensor,
                                    mmcm_phase = None,
                                    lane0_dly =  None,
                                    lane1_dly =  None,
                                    lane2_dly =  None,
                                    lane3_dly =  None):
        """
        Set sensor port input delays and mmcm phase
        @param num_sensor - sensor port number (0..3) or all, 'A'
        @param mmcm_phase - MMCM clock phase
        @param lane0_dly - delay in the lane0 (3 LSB are not used) // All 4 lane delays should be set simultaneously
        @param lane1_dly - delay in the lane1 (3 LSB are not used)
        @param lane2_dly - delay in the lane2 (3 LSB are not used)
        @param lane3_dly - delay in the lane3 (3 LSB are not used))                      
        """
        try:
            if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function
                for num_sensor in range(4):
                    self.set_sensor_io_dly_hispi (num_sensor = num_sensor,
                                                  mmcm_phase = mmcm_phase,
                                                  lane0_dly =  lane0_dly,
                                                  lane1_dly =  lane1_dly,
                                                  lane2_dly =  lane2_dly,
                                                  lane3_dly =  lane3_dly)
                return
        except:
            pass
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_DELAYS
        try: # if any delay is None - do not set
            dlys=(lane0_dly & 0xff) | ((lane1_dly & 0xff) << 8) | ((lane2_dly & 0xff) << 16) | ((lane3_dly & 0xff) << 24)
            self.x393_axi_tasks.write_control_register(reg_addr + 2, dlys)
        except:
            pass                           
        if not mmcm_phase is None:
            self.x393_axi_tasks.write_control_register(reg_addr + 3, mmcm_phase & 0xff)
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
        
    def set_sensor_hispi_lanes(self,
                               num_sensor,
                               lane0 = 0,
                               lane1 = 1,
                               lane2 = 2,
                               lane3 = 3):
        """
        Set HiSPi sensor lane map (physical lane for each logical lane)
        @param num_sensor - sensor port number (0..3)
        @param lane0 - physical (input) lane number for logical (internal) lane 0
        @param lane1 - physical (input) lane number for logical (internal) lane 1
        @param lane2 - physical (input) lane number for logical (internal) lane 2
        @param lane3 - physical (input) lane number for logical (internal) lane 3
        """
        data = ((lane0 & 3) << 0 ) | ((lane1 & 3) << 2 ) | ((lane2 & 3) << 4 ) | ((lane3 & 3) << 6 )
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_DELAYS;
        self.x393_axi_tasks.write_control_register(reg_addr + 1, data)
849

850 851 852 853 854 855 856 857 858 859 860
    def set_sensor_fifo_lag(self,
                            num_sensor,
                            fifo_lag = 7):
        """
        Set HiSPi sensor FIFO lag (when to start line output, ~= 1/2 FIFO size)
        @param num_sensor - sensor port number (0..3)
        @param fifo_lag - number of pixels to write to FIFO before starting output
        """
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_DELAYS;
        self.x393_axi_tasks.write_control_register(reg_addr + 0, fifo_lag)

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
    def set_sensor_io_jtag (self,
                            num_sensor,
                            pgmen = None,    # <2: keep PGMEN, 2 - PGMEN low (inactive),  3 - high (active) enable JTAG control
                            prog =  None,    # <2: keep prog, 2 - prog low (active),  3 - high (inactive) ("program" pin control)
                            tck =   None,    # <2: keep TCK,  2 - set TCK low,  3 - set TCK high
                            tms =   None,    # <2: keep TMS,  2 - set TMS low,  3 - set TMS high
                            tdi =   None):   # <2: keep TDI,  2 - set TDI low,  3 - set TDI high
        """
        JTAG interface for programming external sensor multiplexer using shared signal lines on the sensor ports
        @param num_sensor - sensor port number (0..3)
        @param pgmen - False PGMEN low (inactive),  True - high (active) enable JTAG control, None - keep previous value
        @param prog -  False prog low (active),  True - high (inactive) ("program" pin control), None - keep previous value
        @param tck =   False - set TCK low,  True - set TCK high, None - keep previous value
        @param tms =   False - set TMS low,  True - set TMS high, None - keep previous value
        @param tdi =   False - set TDI low,  True - set TDI high, None - keep previous value
        """
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_JTAG;
        data = self.func_sensor_jtag_ctl (
                            pgmen = pgmen,
                            prog =  prog,
                            tck =   tck,
                            tms =   tms,
                            tdi =   tdi)
884
        self.x393_axi_tasks.write_control_register(reg_addr, data)
885 886 887 888 889 890 891 892 893 894 895

    def set_sensor_io_width (
                             self,
                             num_sensor,
                             width): # 0 - use HACT, >0 - generate HACT from start to specified width
        """
        Set sensor frame width
        @param num_sensor - sensor port number (0..3)
        @param width - sensor 16-bit frame width (0 - use sensor HACT signal) 
        """
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENSIO_RADDR + vrlg.SENSIO_WIDTH;
896
        self.x393_axi_tasks.write_control_register(reg_addr, width)
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
 
    def set_sensor_lens_flat_heights (self,
                                      num_sensor,
                                      height0_m1 = None,
                                      height1_m1 = None,
                                      height2_m1 = None):
        """
        Set division of the composite frame into sub-frames for the vignetting correction module
        @param num_sensor - sensor port number (0..3)
        @param height0_m1 - height of the first sub-frame minus 1
        @param height1_m1 - height of the second sub-frame minus 1
        @param height2_m1 - height of the third sub-frame minus 1
        (No need for the  4-th, as it will just go until end of the composite frame)
        """
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_LENS_RADDR;
        if not height0_m1 is None:
913
            self.x393_axi_tasks.write_control_register(reg_addr + 0, height0_m1)
914
        if not height1_m1 is None:
915
            self.x393_axi_tasks.write_control_register(reg_addr + 1, height1_m1)
916
        if not height2_m1 is None:
917
            self.x393_axi_tasks.write_control_register(reg_addr + 2, height2_m1)
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954


    def set_sensor_lens_flat_parameters (self,
                                         num_sensor,
                                         num_sub_sensor,
# add mode "DIRECT", "ASAP", "RELATIVE", "ABSOLUTE" and frame number
                                         AX = None,
                                         AY = None,
                                         BX = None,
                                         BY = None,
                                         C = None,
                                         scales0 = None,
                                         scales1 = None,
                                         scales2 = None,
                                         scales3 = None,
                                         fatzero_in = None,
                                         fatzero_out = None,
                                         post_scale = None):
        """
        Program vignetting correction and per-color scale
        @param num_sensor -     sensor port number (0..3)
        @param num_sub_sensor - sub-sensor attached to the same port through multiplexer (0..3)
    TODO: add mode "DIRECT", "ASAP", "RELATIVE", "ABSOLUTE" and frame number for sequencer
        All the next parameters can be None - will not be set 
        @param AX (19 bits)
        @param AY (19 bits)
        @param BX (21 bits)
        @param BY (21 bits)
        @param C (19 bits)
        @param scales0 (17 bits) - color channel 0 scale
        @param scales1 (17 bits) - color channel 1 scale
        @param scales2 (17 bits) - color channel 2 scale
        @param scales3 (17 bits) - color channel 3 scale
        @param fatzero_in (16 bits)
        @param fatzero_out (16 bits)
        @param post_scale (4 bits) - shift of the result
        """
955
        def func_lens_data (
956 957 958 959 960 961 962 963
                        num_sensor,
                        addr,
                        data,
                        width):
            
            return ((num_sensor & 3) << 24) | ((addr & 0xff) << 16) | (data & ((1 << width) - 1))
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_LENS_RADDR + vrlg.SENS_LENS_COEFF
        if not AX is None:
964
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_AX, AX, 19))
965
        if not AY is None:
966
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_AY, AY, 19))
967
        if not BX is None:
968
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_BX, BX, 21))
969
        if not BY is None:
970
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_BY, BY, 21))
971
        if not C is None:
972
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_C,   C, 19))
973
        if not scales0 is None:
974
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_SCALES + 0,   scales0, 17))
975
        if not scales1 is None:
976
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_SCALES + 2,   scales1, 17))
977
        if not scales2 is None:
978
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_SCALES + 4,   scales2, 17))
979
        if not scales3 is None:
980
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_SCALES + 6,   scales3, 17))
981
        if not fatzero_in is None:
982
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_FAT0_IN, fatzero_in, 16))
983
        if not fatzero_out is None:
984
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_FAT0_OUT, fatzero_out, 16))
985 986

        if not post_scale is None:
987
            self.x393_axi_tasks.write_control_register(reg_addr, func_lens_data(num_sub_sensor, vrlg.SENS_LENS_POST_SCALE, post_scale, 4))
988

989 990 991 992 993 994 995
    def program_gamma (self,
                       num_sensor,
                       sub_channel,
                       gamma = 0.57,
                       black = 0.04,
                       page = 0):
        """
996 997
        Program gamma tables for specified sensor port and subchannel 
        @param num_sensor -     sensor port number (0..3), all - all sensors
998 999 1000 1001 1002
        @param num_sub_sensor - sub-sensor attached to the same port through multiplexer (0..3)
        @param gamma - gamma value (1.0 - linear)
        @param black - black level, 1.0 corresponds to 256 for 8bit values
        @param page - gamma table page number (only used if SENS_GAMMA_BUFFER > 0
        """  
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
        curves_data = self.calc_gamma257(gamma = gamma,
                                         black = black,
                                         rshift = 6) * 4
                                         
        try:
            if (num_sensor == all) or (num_sensor[0].upper() == "A"): #all is a built-in function
                for num_sensor in range(4):
                    self.program_gamma ( num_sensor =  num_sensor,
                                         sub_channel = sub_channel,
                                         gamma =       gamma,
                                         black =       black,
                                         page =        page)
                return
        except:
            pass
        
1019 1020
        self.program_curves(num_sensor = num_sensor,
                        sub_channel = sub_channel,
1021
                        curves_data = curves_data,
1022 1023
                        page = page)

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
    def program_curves (self,
                        num_sensor,
                        sub_channel,
                        curves_data,
                        page = 0):
        """
        Program gamma tables for specified sensor port and subchannel
        @param num_sensor -     sensor port number (0..3)
        @param num_sub_sensor - sub-sensor attached to the same port through multiplexer (0..3)
        @param curves_data - either 1028-element list (257 per color component) or a file path
                             with the same data, same as for Verilog $readmemh
1035
        @param page - gamma table page number (only used if SENS_GAMMA_BUFFER > 0
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
        """  
        def set_sensor_gamma_table_addr (
                                         num_sensor,
                                         sub_channel,
                                         color,
                                         page = 0): # only used if SENS_GAMMA_BUFFER != 0

            data =  (1 << 20) | ((color & 3) <<8)
            if (vrlg.SENS_GAMMA_BUFFER):
                data |= (sub_channel & 3) << 11 # [12:11]
                data |= page << 10
            else:
                data |= (sub_channel & 3) << 10 # [11:10]
            reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_GAMMA_RADDR + vrlg.SENS_GAMMA_ADDR_DATA
1050
            self.x393_axi_tasks.write_control_register(reg_addr, data)                   
1051 1052 1053 1054
        def set_sensor_gamma_table_data ( #; // need 256 for a single color data
                                          num_sensor,
                                          data18): # ; // 18-bit table data
            reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_GAMMA_RADDR + vrlg.SENS_GAMMA_ADDR_DATA;
1055
            self.x393_axi_tasks.write_control_register(reg_addr, data18 & ((1 << 18) - 1))                   
1056 1057

                  
1058
        if isinstance(curves_data, (unicode,str)):
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
            with open(curves_data) as f:
                tokens=f.read().split()
            curves_data = []
            for w in tokens:
                curves_data.append(int(w,16))
        set_sensor_gamma_table_addr (
                num_sensor = num_sensor,
                sub_channel = sub_channel,
                color = 0,
                page = page)
        for n in range(4):
            for i in range(256):
                base =curves_data[257*n+i];
                diff =curves_data[257*n+i+1]-curves_data[257*n+i];
                diff1=curves_data[257*n+i+1]-curves_data[257*n+i]+8;
        #        $display ("%x %x %x %x %x %x",n,i,curves_data[257*n+i], base, diff, diff1);
                #1;
                if ((diff > 63) or (diff < -64)):
                    data18 = (1 << 17) | (base & 0x3ff) | (((diff1 >> 4) & 0x7f) << 10) # {1'b1,diff1[10:4],base[9:0]};
                else:
                    data18 =             (base & 0x3ff) | (( diff        & 0x7f) << 10) # {1'b0,diff [ 6:0],base[9:0]};
                set_sensor_gamma_table_data (
                    num_sensor = num_sensor,
                    data18 = data18)
1083 1084 1085 1086 1087 1088 1089 1090

    def calc_gamma257(self,
                      gamma,
                      black,
                      rshift = 6
                      ):
        """
        @brief Calculate gamma table (as array of 257 unsigned short values)
1091
        @param gamma - gamma value (1.0 - linear), 0 - linear as a special case
1092 1093 1094 1095
        @param black - black level, 1.0 corresponds to 256 for 8bit values
        @return array of 257 int elements (for a single color), right-shifted to match original 0..0x3ff range
        """
        gtable = []
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
        if gamma <= 0: # special case
            for i in range (257):
                ig = min(i*256, 0xffff)
                gtable.append(ig >> rshift)
        else:    
            black256 =  max(0.0, min(255, black * 256.0))
            k=  1.0 / (256.0 - black256)
            gamma =max(0.13, min(gamma, 10.0))
            for i in range (257):
                x=k * (i - black256)
                x = max(x, 0.0)
                ig = int (0.5 + 65535.0 * pow(x, gamma))
                ig = min(ig, 0xffff)
                gtable.append(ig >> rshift)
1110 1111 1112
        return gtable    

        
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
    def set_sensor_gamma_heights (self, 
                                  num_sensor,
                                  height0_m1,
                                  height1_m1,
                                  height2_m1):
        """
        Set division of the composite frame into sub-frames for gamma correction (separate for each subframe
        @param num_sensor - sensor port number (0..3)
        @param height0_m1 - height of the first sub-frame minus 1
        @param height1_m1 - height of the second sub-frame minus 1
        @param height2_m1 - height of the third sub-frame minus 1
        (No need for the  4-th, as it will just go until end of the composite frame)
        """
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_GAMMA_RADDR + vrlg.SENS_GAMMA_HEIGHT01
1127
        self.x393_axi_tasks.write_control_register(reg_addr, (height0_m1 & 0xffff) | ((height1_m1 & 0xffff) << 16));                   
1128 1129

        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_GAMMA_RADDR + vrlg.SENS_GAMMA_HEIGHT2;
1130
        self.x393_axi_tasks.write_control_register(reg_addr, height2_m1 & 0xffff);                   
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

    def set_sensor_gamma_ctl (self,
                              num_sensor,
                              bayer =      0,
                              table_page = 0,
                              en_input =   True,
                              repet_mode = True, #  Normal mode, single trigger - just for debugging  TODO: re-assign?
                              trig = False):
        """
        Setup sensor gamma correction
        @param num_sensor - sensor port number (0..3)
        @param bayer - Bayer shift (0..3)
        @param table_page - Gamma table page
        @param en_input -   Enable input
        @param repet_mode - Repetitive (normal) mode. Set False for debugging, then use trig for single frame trigger
        @param trig       - single trigger (when repet_mode is False), debug feature
        """
        data = self.func_sensor_gamma_ctl (
                                            bayer =      bayer,
                                            table_page = table_page,
                                            en_input =   en_input,
                                            repet_mode = repet_mode,
                                            trig =       trig)
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + vrlg.SENS_GAMMA_RADDR + vrlg.SENS_GAMMA_CTRL;
1155
        self.x393_axi_tasks.write_control_register(reg_addr, data);
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
        
    def set_sensor_histogram_window (self,
                                     num_sensor,
                                     subchannel,
                                     left,
                                     top,
                                     width_m1,
                                     height_m1):
        """
        Program histogram window
        @param num_sensor -     sensor port number (0..3)
        @param num_sub_sensor - sub-sensor attached to the same port through multiplexer (0..3)
        @param left - histogram window left margin
        @param top -  histogram window top margin
        @param width_m1 - one less than window width. If 0 - use frame right margin (end of HACT)
        @param height_m1 - one less than window height. If 0 - use frame bottom margin (end of VACT)
        """
        raddr = (vrlg.HISTOGRAM_RADDR0, vrlg.HISTOGRAM_RADDR1, vrlg.HISTOGRAM_RADDR2, vrlg.HISTOGRAM_RADDR3)
        reg_addr = (vrlg.SENSOR_GROUP_ADDR + num_sensor * vrlg.SENSOR_BASE_INC) + raddr[subchannel & 3]
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
        if self.DEBUG_MODE:
            print("set_sensor_histogram_window():")
            print("num_sensor = ", num_sensor)
            print("subchannel = ", subchannel)
            print("left =       ", left)
            print("top =        ", top)
            print("width_m1 =   ", width_m1)
            print("height_m1 =  ", height_m1)
            
        self.x393_axi_tasks.write_control_register(reg_addr + vrlg.HISTOGRAM_LEFT_TOP,     ((top & 0xffff) << 16) | (left & 0xffff))
        self.x393_axi_tasks.write_control_register(reg_addr + vrlg.HISTOGRAM_WIDTH_HEIGHT, ((height_m1 & 0xffff) << 16) | (width_m1 & 0xffff))
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
    def set_sensor_histogram_saxi (self,
                                   en,
                                   nrst,
                                   confirm_write,
                                   cache_mode = 3):
        """
        Setup SAXI GP channel to transfer histograms (16 pages, up to 16 sensors) to the system memory
        @param en - enable transfers
        @param nrst - negated reset False - immediate reset, True - normal run;
        @param confirm_write -  wait for the write confirmed (over B channel) before switching channels
        @param cache_mode AXI cache mode,  default should be 4'h3
        """ 
1198 1199 1200 1201 1202 1203
        if self.DEBUG_MODE:
            print("set_sensor_histogram_saxi():")
            print("en =            ", en)
            print("nrst =          ", nrst)
            print("confirm_write = ", confirm_write)
            print("cache_mode=     ", cache_mode)
1204 1205 1206 1207 1208
        data = 0;
        data |= (0,1)[en] <<            vrlg.HIST_SAXI_EN
        data |= (0,1)[nrst] <<          vrlg.HIST_SAXI_NRESET
        data |= (0,1)[confirm_write] << vrlg.HIST_CONFIRM_WRITE
        data |= (cache_mode & 0xf) <<   vrlg.HIST_SAXI_AWCACHE
1209
        self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + vrlg.HIST_SAXI_MODE_ADDR_REL, data)
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220

    def set_sensor_histogram_saxi_addr (self,
                                        num_sensor,
                                        subchannel,
                                        page):
        """
        Setup SAXI GP start address in 4KB pages (1 page - 1 subchannel histogram)
        @param num_sensor -     sensor port number (0..3)
        @param num_sub_sensor - sub-sensor attached to the same port through multiplexer (0..3)
        @param page -           system memory page address (in 4KB units)
        """ 
1221 1222 1223 1224 1225
        if self.DEBUG_MODE:
            print("set_sensor_histogram_saxi_addr():")
            print("num_sensor = ", num_sensor)
            print("subchannel = ", subchannel)
            print("page =       ", page)
1226 1227 1228 1229 1230
        num_histogram_frames = 1 << vrlg.NUM_FRAME_BITS
        channel = ((num_sensor & 3) << 2) + (subchannel & 3)
        channel_page = page + num_histogram_frames * channel
        self.x393_axi_tasks.write_control_register(vrlg.SENSOR_GROUP_ADDR + vrlg.HIST_SAXI_ADDR_REL + channel,
                                                   channel_page)
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255

    def setup_sensor_memory (self,
                             num_sensor,
                             frame_sa,
                             frame_sa_inc,
                             last_frame_num,
                             frame_full_width,
                             window_width,
                             window_height,
                             window_left,
                             window_top):
        """
        Setup memory controller for a sensor channel
        @param num_sensor -       sensor port number (0..3)
        @param frame_sa -         22-bit frame start address ((3 CA LSBs==0. BA==0)
        @param frame_sa_inc -     22-bit frame start address increment  ((3 CA LSBs==0. BA==0)
        @param last_frame_num -   16-bit number of the last frame in a buffer
        @param frame_full_width - 13-bit Padded line length (8-row increment), in 8-bursts (16 bytes)
        @param window_width -     13-bit - in 8*16=128 bit bursts
        @param window_height -    16-bit window height (in scan lines)
        @param window_left -      13-bit window left margin in 8-bursts (16 bytes)
        @param window_top -       16-bit window top margin (in scan lines
        """
        base_addr = vrlg.MCONTR_SENS_BASE + vrlg.MCONTR_SENS_INC * num_sensor;
        mode=   x393_mcntrl.func_encode_mode_scan_tiled(
1256
                                   skip_too_late = True,                     
1257 1258 1259 1260 1261 1262 1263 1264 1265
                                   disable_need = False,
                                   repetitive=    True,
                                   single =       False,
                                   reset_frame =  False,
                                   extra_pages =  0,
                                   write_mem =    True,
                                   enable =       True,
                                   chn_reset =    False)
                    
1266
        self.x393_axi_tasks.write_control_register(base_addr + vrlg.MCNTRL_SCANLINE_STARTADDR,
1267
                                                  frame_sa); # RA=80, CA=0, BA=0 22-bit frame start address (3 CA LSBs==0. BA==0)
1268
        self.x393_axi_tasks.write_control_register(base_addr + vrlg.MCNTRL_SCANLINE_FRAME_SIZE,
1269
                                                  frame_sa_inc);
1270
        self.x393_axi_tasks.write_control_register(base_addr + vrlg.MCNTRL_SCANLINE_FRAME_LAST,
1271
                                                  last_frame_num);
1272
        self.x393_axi_tasks.write_control_register(base_addr + vrlg.MCNTRL_SCANLINE_FRAME_FULL_WIDTH,
1273
                                                  frame_full_width);
1274
        self.x393_axi_tasks.write_control_register(base_addr + vrlg.MCNTRL_SCANLINE_WINDOW_WH,
1275
                                                  ((window_height & 0xffff) << 16) | (window_width & 0xffff)) #/WINDOW_WIDTH + (WINDOW_HEIGHT<<16));
1276
        self.x393_axi_tasks.write_control_register(base_addr + vrlg.MCNTRL_SCANLINE_WINDOW_X0Y0,
1277
                                                  ((window_top & 0xffff) << 16) | (window_left & 0xffff)) #WINDOW_X0+ (WINDOW_Y0<<16));
1278 1279
        self.x393_axi_tasks.write_control_register(base_addr + vrlg.MCNTRL_SCANLINE_WINDOW_STARTXY,   0)
        self.x393_axi_tasks.write_control_register(base_addr + vrlg.MCNTRL_SCANLINE_MODE,          mode) 
1280 1281