mult_saxi_wr.v 26.5 KB
Newer Older
1 2 3
/*******************************************************************************
 * Module: mult_saxi_wr
 * Date:2015-07-08  
4
 * Author: Andrey Filippov     
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
 * Description: send data from up to 4 sources to the system memory over S_AXI.
 * Each source should have a 32-bit wide buffer running at the same clock (mclk).
 * Buffer should contain at least burst size (4,8,16,32,64 bytes)
 * Burst size parameter-configurable (per-port) 
 *
 * Copyright (c) 2015 Elphel, Inc .
 * mult_saxi_wr.v is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 *  mult_saxi_wr.v is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/> .
 *******************************************************************************/
`timescale 1ns/1ps

module  mult_saxi_wr #(
    parameter MULT_SAXI_ADDR =           'h380,  // need to modify addresses and masks to fit into overall command range
    parameter MULT_SAXI_CNTRL_ADDR =     'h3a0,  // 
    parameter MULT_SAXI_STATUS_REG =     'h30,  // uses 4 consecutive locations
    parameter MULT_SAXI_HALF_BRAM =       1,     // 0 - use full 36Kb BRAM for the buffer, 1 - use just half
    parameter MULT_SAXI_BSLOG0 =          4,     // number of bits to represent burst size (4 - b.s. = 16, 0 - b.s = 1)
    parameter MULT_SAXI_BSLOG1 =          4,
    parameter MULT_SAXI_BSLOG2 =          4,
    parameter MULT_SAXI_BSLOG3 =          4,
    parameter MULT_SAXI_MASK =           'h3f8,  // 4 address/length pairs. In bytes, but lower bits are set to 0?
    parameter MULT_SAXI_CNTRL_MASK =     'h3fe,  // mode and status - 2 locations
    parameter HIST_SAXI_AWCACHE =         4'h3, //..7 cache mode (4 bits, default 4'h3)
    parameter MULT_SAXI_ADV_WR =          4, // number of clock cycles before end of write to genearte adv_wr_done
    parameter MULT_SAXI_ADV_RD =          3 // number of clock cycles before end of write to genearte adv_wr_done
    
) (
    input                      rst,           // global reset
    input                      mclk,          // system clock
    input                      aclk,          // global clock to run s_axi (@150MHz?)
    // command interface
    input                [7:0] cmd_ad,        // byte-serial command address/data (up to 6 bytes: AL-AH-D0-D1-D2-D3 
    input                      cmd_stb,       // strobe (with first byte) for the command a/d
    output               [7:0] status_ad,     // status address/data - up to 5 bytes: A - {seq,status[1:0]} - status[2:9] - status[10:17] - status[18:25]
    output                     status_rq,     // input request to send status downstream
    input                      status_start,  // Acknowledge of the first status packet byte (address)

    input                      has_burst0,    // channel has at least 1 burst (should go down immediately after read_burst0 if no more data)
    output                     read_burst0,   // request to read a burst of data from channel 0
    input               [31:0] data_in_chn0,  // data read from channel 0 (with some latency)
    input                      pre_valid_chn0,// data valid (same latency)
    
    input                      has_burst1,    // channel has at least 1 burst (should go down immediately after read_burst0 if no more data)
    output                     read_burst1,   // request to read a burst of data from channel 0
    input               [31:0] data_in_chn1,  // data read from channel 0 (with some latency)
    input                      pre_valid_chn1,// data valid (same latency)
    
    input                      has_burst2,    // channel has at least 1 burst (should go down immediately after read_burst0 if no more data)
    output                     read_burst2,   // request to read a burst of data from channel 0
    input               [31:0] data_in_chn2,  // data read from channel 0 (with some latency)
    input                      pre_valid_chn2,// data valid (same latency)
    
    input                      has_burst3,    // channel has at least 1 burst (should go down immediately after read_burst0 if no more data)
    output                     read_burst3,   // request to read a burst of data from channel 0
    input               [31:0] data_in_chn3,  // data read from channel 0 (with some latency)
    input                      pre_valid_chn3,// data valid (same latency)

    // S_AXI inerface w/o read channel
    // write address    
    output              [31:0] saxi_awaddr,            // AXI PS Slave GP0 AWADDR[31:0], input
    output                     saxi_awvalid,           // AXI PS Slave GP0 AWVALID, input
    input                      saxi_awready,           // AXI PS Slave GP0 AWREADY, output
    output               [5:0] saxi_awid,              // AXI PS Slave GP0 AWID[5:0], input
    output               [1:0] saxi_awlock,            // AXI PS Slave GP0 AWLOCK[1:0], input
    output              [ 3:0] saxi_awcache,           // AXI PS Slave GP0 AWCACHE[3:0], input
    output              [ 2:0] saxi_awprot,            // AXI PS Slave GP0 AWPROT[2:0], input
    output              [ 3:0] saxi_awlen,             // AXI PS Slave GP0 AWLEN[3:0], input
    output              [ 1:0] saxi_awsize,            // AXI PS Slave GP0 AWSIZE[1:0], input
    output              [ 1:0] saxi_awburst,           // AXI PS Slave GP0 AWBURST[1:0], input
    output              [ 3:0] saxi_awqos,             // AXI PS Slave GP0 AWQOS[3:0], input
    // write data
    output              [31:0] saxi_wdata,             // AXI PS Slave GP0 WDATA[31:0], input
    output                     saxi_wvalid,            // AXI PS Slave GP0 WVALID, input
    input                      saxi_wready,            // AXI PS Slave GP0 WREADY, output
    output              [ 5:0] saxi_wid,               // AXI PS Slave GP0 WID[5:0], input
    output                     saxi_wlast,             // AXI PS Slave GP0 WLAST, input
    output              [ 3:0] saxi_wstrb,             // AXI PS Slave GP0 WSTRB[3:0], input
    // write response Not used - may add guaranteed address (as for the histogram)?
    input                      saxi_bvalid,            // AXI PS Slave GP0 BVALID, output   // @SuppressThisWarning VEditor unused
    output                     saxi_bready,            // AXI PS Slave GP0 BREADY, input    // @SuppressThisWarning VEditor unused
    input               [ 5:0] saxi_bid,               // AXI PS Slave GP0 BID[5:0], output //TODO:  Update range !!!  // @SuppressThisWarning VEditor unused
    input               [ 1:0] saxi_bresp              // AXI PS Slave GP0 BRESP[1:0], output    // @SuppressThisWarning VEditor unused
);
//    parameter MULT_SAXI_BSLOG0 =          4,     // number of bits to represent burst size (4 - b.s. = 16, 0 - b.s = 1)

//    localparam BURSTS_CAP0= (MULT_SAXI_HALF_BRAM ? 'h400 : 'h800 ) / MULT_SAXI_BURST0 / 4;
    localparam BRAM_A_WDTH = MULT_SAXI_HALF_BRAM?9:10;
    
    wire                 [3:0] en_chn_mclk;
    wire                 [3:0] run_chn_mclk;
    reg                  [7:0] mode_reg;
    wire                       en_mclk= |en_chn_mclk; // at least one channel enabled
    reg                  [3:0] en_chn_aclk;
    wire                       en_aclk= |en_chn_aclk; // at least one channel enabled
    wire                 [3:0] rq_wr;
    wire                 [3:0] grant_wr;
    wire     [BRAM_A_WDTH-3:0] wa_chn[0:3];
    wire                 [3:0] adv_wr_done; // outputs grant_wr for short bursts, or several clocks before end of wr
    wire                 [3:0] rq_out_chn;
    wire     [BRAM_A_WDTH-3:0] ra_chn[0:3];
    wire                 [3:0] pre_re;
    
    reg                        en_we_arb; // @mclk  should be reset by we_grant
    wire                       we_grant;  // @mclk
    wire                 [1:0] we_cur_chn; // @mclk
    wire                [31:0] data_in[0:3];
    wire                 [3:0] pre_valid;
    reg                  [3:0] valid;
    reg      [BRAM_A_WDTH-1:0] buf_wa; // multiplexed buffer write adderss
    reg                 [31:0] buf_wd; // multiplexed buffer write data
    reg                        buf_we; // multiplexed buffer write enable

    wire                 [3:0] grant_rd;
    wire                       grant_rd_any;
    wire                       en_out_arb;
    wire                 [1:0] re_cur_chn;

    reg      [BRAM_A_WDTH-1:0] buf_ra; // multiplexed buffer write adderss
    wire                [31:0] inter_buf_data; // multiplexed buffer write data
    reg                  [2:0] buf_re; // multiplexed buffer write enable
    
    wire                       fifo_half_full; // output FIFO  saxi_wdata is half full (stop writing to)
    wire                       fifo_nempty; // output FIFO  saxi_wdata is not empty (can read)
    wire                 [3:0] wdata_busy_chn; // output data busy (ends early to start next arbitration)
    wire                 [3:0] first_re; // reading first word in a burst from the buffer
    wire                 [3:0] last_re; // reading first word in a burst from the buffer
    
    wire                 [3:0] cmd_a; 
    wire                [31:0] cmd_data;
     
    wire                       we_ctrl;
    wire                       cmd_we_sa_len;
    
    always @ (posedge rst or posedge mclk) begin
        if      (rst)                  mode_reg <= 0;
        else if (we_ctrl && !cmd_a[0]) mode_reg <= cmd_data[7:0];
    end

    assign {read_burst3, read_burst2, read_burst1, read_burst0} = grant_wr; // single clock pulse
    assign data_in[0] = data_in_chn0;
    assign data_in[1] = data_in_chn1;
    assign data_in[2] = data_in_chn2;
    assign data_in[3] = data_in_chn3;
    assign pre_valid = {pre_valid_chn3, pre_valid_chn2, pre_valid_chn1, pre_valid_chn0};
    
    assign en_chn_mclk =  mode_reg[3:0];
    assign run_chn_mclk = mode_reg[7:4];
    
// Arbiter requests on copying from one of teh input channels to the internal buffer
    
    

    mult_saxi_wr_chn #(
        .MULT_SAXI_HALF_BRAM (MULT_SAXI_HALF_BRAM),
        .MULT_SAXI_BSLOG     (MULT_SAXI_BSLOG0),
        .MULT_SAXI_ADV_WR    (MULT_SAXI_ADV_WR),
        .MULT_SAXI_ADV_RD    (MULT_SAXI_ADV_RD)
        
    ) mult_saxi_wr_sub0_i (
        .mclk          (mclk),             // input
        .aclk          (aclk),             // input
        .en            (en_chn_mclk[0]),   // input
        .has_burst     (has_burst0),       // input
        .valid         (valid[0]),         // input
        .rq_wr         (rq_wr[0]),         // output
        .grant_wr      (grant_wr[0]),      // input
        .wa            (wa_chn[0]),        // output[7:0]
        .adv_wr_done   (adv_wr_done[0]),   // output
        .rq_out        (rq_out_chn[0]),    // output reg 
        .grant_out     (grant_rd[0]),      // input
        .fifo_half_full(fifo_half_full),   // input
        .ra            (ra_chn[0]),        // output[7:0] 
        .pre_re        (pre_re[0]),        // output
        .first_re      (first_re[0]),      // output reg // 1 clock later than pre_re
        .last_re       (last_re[0]),       // output reg // 1 clock later than pre_re
        .wdata_busy    (wdata_busy_chn[0]) // output reg 
    );

    mult_saxi_wr_chn #(
        .MULT_SAXI_HALF_BRAM (MULT_SAXI_HALF_BRAM),
        .MULT_SAXI_BSLOG     (MULT_SAXI_BSLOG1),
        .MULT_SAXI_ADV_WR    (MULT_SAXI_ADV_WR),
        .MULT_SAXI_ADV_RD    (MULT_SAXI_ADV_RD)
    ) mult_saxi_wr_sub1_i (
        .mclk          (mclk),             // input
        .aclk          (aclk),             // input
        .en            (en_chn_mclk[1]),   // input
        .has_burst     (has_burst1),       // input
        .valid         (valid[1]),         // input
        .rq_wr         (rq_wr[1]),         // output
        .grant_wr      (grant_wr[1]),      // input
        .wa            (wa_chn[1]),        // output[7:0] 
        .adv_wr_done   (adv_wr_done[1]),   // output
        .rq_out        (rq_out_chn[1]),    // output reg 
        .grant_out     (grant_rd[1]),      // input
        .fifo_half_full(fifo_half_full),   // input
        .ra            (ra_chn[1]),        // output[7:0] 
        .pre_re        (pre_re[1]),        // output
        .first_re      (first_re[1]),      // output reg // 1 clock later than pre_re
        .last_re       (last_re[1]),       // output reg // 1 clock later than pre_re
        .wdata_busy    (wdata_busy_chn[1]) // output reg 
    );

    mult_saxi_wr_chn #(
        .MULT_SAXI_HALF_BRAM (MULT_SAXI_HALF_BRAM),
        .MULT_SAXI_BSLOG     (MULT_SAXI_BSLOG2),
        .MULT_SAXI_ADV_WR    (MULT_SAXI_ADV_WR),
        .MULT_SAXI_ADV_RD    (MULT_SAXI_ADV_RD)
    ) mult_saxi_wr_sub2_i (
        .mclk          (mclk),             // input
        .aclk          (aclk),             // input
        .en            (en_chn_mclk[2]),   // input
        .has_burst     (has_burst2),       // input
        .valid         (valid[2]),         // input
        .rq_wr         (rq_wr[2]),         // output
        .grant_wr      (grant_wr[2]),      // input
        .wa            (wa_chn[2]),        // output[7:0] 
        .adv_wr_done   (adv_wr_done[2]),   // output
        .rq_out        (rq_out_chn[2]),    // output reg 
        .grant_out     (grant_rd[2]),      // input
        .fifo_half_full(fifo_half_full),   // input
        .ra            (ra_chn[2]),        // output[7:0] 
        .pre_re        (pre_re[2]),        // output
        .first_re      (first_re[2]),      // output reg // 1 clock later than pre_re
        .last_re       (last_re[2]),       // output reg // 1 clock later than pre_re
        .wdata_busy    (wdata_busy_chn[2]) // output reg 
    );

    mult_saxi_wr_chn #(
        .MULT_SAXI_HALF_BRAM (MULT_SAXI_HALF_BRAM),
        .MULT_SAXI_BSLOG     (MULT_SAXI_BSLOG3),
        .MULT_SAXI_ADV_WR    (MULT_SAXI_ADV_WR),
        .MULT_SAXI_ADV_RD    (MULT_SAXI_ADV_RD)
    ) mult_saxi_wr_sub3_i (
        .mclk          (mclk),             // input
        .aclk          (aclk),             // input
        .en            (en_chn_mclk[3]),   // input
        .has_burst     (has_burst3),       // input
        .valid         (valid[3]),         // input
        .rq_wr         (rq_wr[3]),         // output
        .grant_wr      (grant_wr[3]),      // input
        .wa            (wa_chn[3]),        // output[7:0] 
        .adv_wr_done   (adv_wr_done[3]),   // output
        .rq_out        (rq_out_chn[3]),    // output reg 
        .grant_out     (grant_rd[3]),      // input
        .fifo_half_full(fifo_half_full),   // input
        .ra            (ra_chn[3]),        // output[7:0] 
        .pre_re        (pre_re[3]),        // output
        .first_re      (first_re[3]),      // output reg // 1 clock later than pre_re
        .last_re       (last_re[3]),       // output reg // 1 clock later than pre_re
        .wdata_busy    (wdata_busy_chn[3]) // output reg 
    );


    round_robin #(
        .FIXED_PRIORITY (0),  // 0 - round-robin, 1 - fixed channel priority (0 - highest)
        .BITS           (2)  // number of bits to encode channel number (1 << BITS) - number of inputs
    ) round_robin_mclk_i (
        .clk            (mclk),                 // input
        .srst           (!en_mclk),             // input sync. reset - needed to reset current channel output
        .rq             (rq_wr & run_chn_mclk), // input[3:0] 
        .en             (en_we_arb),            // input enable to grant highest priority request (should be reset by grant out)
        .grant          (we_grant),             // output stays on until reset by !en
        .chn            (we_cur_chn),           // output[1:0] 
        .grant_chn      (grant_wr)              // output[3:0] 1-hot grant output per-channel, single-clock pulse
    );

// multiplex channel data to a common buffer
    wire      pre_pre_buf_we;
    reg       pre_buf_we;
    reg [1:0] chn_wr;
    assign pre_pre_buf_we = pre_valid[we_cur_chn];
    always @ (posedge mclk) begin
        // Use advanced 'valid' signal (from the input channel external buffers) to copy we_cur_chn
        // to chn_wr - that allows to start arbitration (that will result in modification of the we_cur_chn)
        // early, before write operation to the buffer (using channel for multiplexing and address MSB)
        // is finished.
        valid <= pre_valid;
        pre_buf_we <= pre_pre_buf_we;
        buf_we <= pre_buf_we; // valid[we_cur_chn];
        if (pre_pre_buf_we &&  !pre_buf_we) chn_wr <= we_cur_chn; // to re-start arbitration early
        
        // multiplex address and data
        buf_wa <= {chn_wr, wa_chn[chn_wr]};
        buf_wd <= data_in[chn_wr];
        // early re-enable arbitration (en_we_arb)
        if (!en_mclk || adv_wr_done[chn_wr]) en_we_arb <= 1;
        else if (we_grant)                   en_we_arb <= 0; 
 //       else if
    end

// Buffer output to S_AXI (will need a smaller FIFO 
    reg  [1:0] chn_rd;
    reg  [1:0] chn_rd_data;        // channel valid with read data
    reg        pre_first_rd_valid; // first inter_buf_data in a burst will be valid next cycle
    reg  [1:0] is_last_rd;         // [1] accompanies last  inter_buf_data in a burst (to generate wlast)
    wire [1:0] chn_fifo_out;       // channel number out from fifo (for wid)
//    wire       is_last_fifo_out;   // last data word out from fifo (for wlast)
    
    always @ (posedge aclk) begin
        en_chn_aclk <=en_chn_mclk;
        chn_rd <= re_cur_chn; // delay by 1 clock (to increase overlap)
        buf_ra <= {chn_rd, ra_chn[chn_rd]};
        buf_re <= {buf_re[1:0], pre_re[chn_rd]};
        pre_first_rd_valid <= first_re[chn_rd];
        is_last_rd <= {is_last_rd[0], last_re[chn_rd]};
        if (pre_first_rd_valid) chn_rd_data <= chn_rd; // extend to later time to use as wid with overlapping requests
        // in parallel - read channel parameters (address, length, pointer)
        
        
        
    end

    round_robin #(
        .FIXED_PRIORITY (0),  // 0 - round-robin, 1 - fixed channel priority (0 - highest)
        .BITS           (2)  // number of bits to encode channel number (1 << BITS) - number of inputs
    ) round_robin_aclk_i (
        .clk            (aclk),            // input
        .srst           (!en_aclk),        // input sync. reset - needed to reset current channel output
        .rq             (rq_out_chn),       // input[3:0] 
        .en             (en_out_arb),       // input enable to grant highest priority request (should be reset by grant out)
        .grant          (grant_rd_any),     // output stays on until reset by !en
        .chn            (re_cur_chn),       // output[1:0] 
        .grant_chn      (grant_rd)          // output[3:0] 1-hot grant output per-channel, single-clock pulse
    );

// Process address, length and current pointers (all in 32-bit words). Pointers are updated once per burst (parameter defined per each channel)
    wire        axi_ptr_busy; // 
    wire [29:0] axi_addr; // 
    wire [ 3:0] axi_len;
    assign saxi_awaddr = {axi_addr,2'b0};
    assign saxi_awlen = axi_len;
    
    assign saxi_awlock=  2'h0;               // AXI PS Slave GP0 AWLOCK[1:0], input
    assign saxi_awcache= HIST_SAXI_AWCACHE;  // awcache_mode; // 4'h3;          // AXI PS Slave GP0 AWCACHE[3:0], input
    assign saxi_awprot=  3'h0;               // AXI PS Slave GP0 AWPROT[2:0], input
    assign saxi_awsize=  2'h2;               // 4 bytes; AXI PS Slave GP0 AWSIZE[1:0], input
    assign saxi_awburst= 2'h1;               // Increment address bursts AXI PS Slave GP0 AWBURST[1:0], input
    assign saxi_awqos=   4'h0;               // AXI PS Slave GP0 AWQOS[3:0], input
    
    
    
    wire [29:0] pntr_wd; // @aclk, re-clock and write to status
    wire  [1:0] pntr_wa; 
    wire        pntr_we;
    
    mult_saxi_wr_pointers #(
        .MULT_SAXI_BSLOG0   (MULT_SAXI_BSLOG0),
        .MULT_SAXI_BSLOG1   (MULT_SAXI_BSLOG1),
        .MULT_SAXI_BSLOG2   (MULT_SAXI_BSLOG2),
        .MULT_SAXI_BSLOG3   (MULT_SAXI_BSLOG3)
    ) mult_saxi_wr_pointers_i (
        .mclk         (mclk),           // input
        .aclk         (aclk),           // input
        .chn_en_mclk  (en_chn_mclk),    // input[3:0] 
        .sa_len_di    (cmd_data[29:0]), // input[29:0] 
        .sa_len_wa    (cmd_a[2:0]),     // input[2:0] 
        .sa_len_we    (cmd_we_sa_len),  // input
        .chn          (re_cur_chn),     // input[1:0] 
        .start        (grant_rd_any),   // input make sure 1 cycle
        .busy         (axi_ptr_busy),   // output OR this busy with write data channel busy for en_out_arb
        .axi_addr     (axi_addr),       // output[29:0] reg valid 2 cycles after start of grant_rd_any
        .axi_len      (axi_len),        // output[3:0] reg 
        .pntr_wd      (pntr_wd),        // output[29:0] 
        .pntr_wa      (pntr_wa),        // output[1:0] 
        .pntr_we      (pntr_we)         // output
    );

    // interface axi_aw channel
    reg         awvalid; //
    reg   [2:0] aw_seq;
//    wire        aw_busy; // use to control en_out_arb = !(aw_busy || <data_channel_busy>);
    reg   [1:0] chn_out;
    always @ (posedge aclk) begin
        if (!en_aclk) aw_seq <= 0;
        else          aw_seq <= {aw_seq[1:0], grant_rd_any};
    
        if      (!en_aclk)     awvalid <= 0;
        else if (aw_seq[0])    awvalid <= 1;
        else if (saxi_awready) awvalid <= 0;
        
        if (grant_rd_any) chn_out <= re_cur_chn;
    end 
//    assign aw_busy = axi_ptr_busy | awvalid; 
    assign saxi_awvalid = awvalid;
    assign saxi_awid = {4'b0, chn_out};
    assign en_out_arb = !(axi_ptr_busy || awvalid || (|wdata_busy_chn));
    wire      fifo_re;
    
    assign fifo_re= saxi_wvalid && saxi_wready;
//  s_axi write channel
    // Small extra FIFO to tolerate ram_var_w_var_r latency
//    assign fifo_re= saxi_wvalid && saxi_wready;
    assign saxi_wid={4'b0, chn_fifo_out};
    assign saxi_wvalid = en_aclk && fifo_nempty; 
    assign saxi_wstrb =    4'hf; // All bytes

    always @ (posedge aclk) begin
    end
    
    fifo_same_clock #(
        .DATA_WIDTH(35),
        .DATA_DEPTH(4)
    ) fifo_same_clock_i (
        .rst       (rst),  // input
        .clk       (aclk), // input
        .sync_rst  (!en_aclk), // input
        .we        (buf_re[2]), // input
        .re        (fifo_re), // input 
        .data_in   ({chn_rd_data,is_last_rd[1],inter_buf_data}), // input[31:0] 
        .data_out  ({chn_fifo_out,saxi_wlast, saxi_wdata}), // output[31:0] 
        .nempty    (fifo_nempty), // output
        .half_full (fifo_half_full) // output reg 
    );

    generate
        if (MULT_SAXI_HALF_BRAM)
            ram18_var_w_var_r #(
                .REGISTERS(1),
                .LOG2WIDTH_WR(5),
                .LOG2WIDTH_RD(5),
                .DUMMY(0)
            ) ram_var_w_var_r_i (
                .rclk      (aclk), // input
                .raddr     (buf_ra[8:0]), // input[9:0] 
                .ren       (buf_re[0]), // input
                .regen     (buf_re[1]), // input
                .data_out  (inter_buf_data), // output[31:0] 
                .wclk      (mclk), // input
                .waddr     (buf_wa[8:0]), // input[9:0] 
                .we        (buf_we), // input
                .web       (4'hff), // input[7:0] 
                .data_in   (buf_wd) // input[31:0] 
            );
        else
            ram_var_w_var_r #(
                .REGISTERS(1),
                .LOG2WIDTH_WR(5),
                .LOG2WIDTH_RD(5),
                .DUMMY(0)
            ) ram_var_w_var_r_i (
                .rclk      (aclk), // input
                .raddr     ({buf_ra[BRAM_A_WDTH-1],buf_ra[8:0]}), // input[9:0] 
                .ren       (buf_re[0]), // input
                .regen     (buf_re[1]), // input
                .data_out  (inter_buf_data), // output[31:0] 
                .wclk      (mclk), // input
                .waddr     ({buf_wa[BRAM_A_WDTH-1],buf_wa[8:0]}), // input[9:0] 
                .we        (buf_we), // input
                .web       (8'hff), // input[7:0] 
                .data_in   (buf_wd) // input[31:0] 
            );
    endgenerate

    cmd_deser #(
        .ADDR        (MULT_SAXI_ADDR),
        .ADDR_MASK   (MULT_SAXI_MASK),
        .NUM_CYCLES  (6),
        .ADDR_WIDTH  (4),
        .DATA_WIDTH  (32),
        .ADDR1       (MULT_SAXI_CNTRL_ADDR),
        .ADDR_MASK1  (MULT_SAXI_CNTRL_MASK),
        .ADDR2       (0),
        .ADDR_MASK2  (0)
    ) cmd_deser_sens_i2c_i (
        .rst         (rst),                     // input
        .clk         (mclk),                    // input
        .ad          (cmd_ad),                  // input[7:0] 
        .stb         (cmd_stb),                 // input
        .addr        (cmd_a),                   // output[3:0] 
        .data        (cmd_data),                // output[31:0] 
        .we          ({cmd_we_sa_len,we_ctrl})  // output
    );
    
    // now - converting all to parallel (TODO: use RAM for multi-word status data)
    reg   [29:0] status_pntr0;
    reg   [29:0] status_pntr1;
    reg   [29:0] status_pntr2;
    reg   [29:0] status_pntr3;
    wire         pntr_we_mclk;
    wire [128:0] status_data;
    reg          status_tgl;
    assign status_data = {2'b0, status_pntr3, 2'b0, status_pntr2, 2'b0, status_pntr1, 2'b0, status_pntr0, status_tgl};
    always @ (posedge mclk) begin
        if      (!en_mclk)     status_tgl <= 0;
        else if (pntr_we_mclk) status_tgl <= ~status_tgl;
    
        if (pntr_we_mclk && (pntr_wa == 2'h0)) status_pntr0 <= pntr_wd;
        if (pntr_we_mclk && (pntr_wa == 2'h1)) status_pntr1 <= pntr_wd;
        if (pntr_we_mclk && (pntr_wa == 2'h2)) status_pntr2 <= pntr_wd;
        if (pntr_we_mclk && (pntr_wa == 2'h3)) status_pntr3 <= pntr_wd;
    end
    
    pulse_cross_clock status_wr_i (.rst(rst), .src_clk(aclk), .dst_clk(mclk), .in_pulse(pntr_we), .out_pulse(pntr_we_mclk),.busy());

    status_generate #(
        .STATUS_REG_ADDR   (MULT_SAXI_STATUS_REG+4), // not used
        .PAYLOAD_BITS      (0),
        .REGISTER_STATUS   (1),
        .EXTRA_WORDS       (4),
        .EXTRA_REG_ADDR    (MULT_SAXI_STATUS_REG)
    ) status_generate_i (
        .rst             (rst), // input
        .clk             (mclk), // input
        .we              (we_ctrl && cmd_a[0]), // input
        .wd              (cmd_data[7:0]),       // input[7:0] 
        .status          (status_data),         // input[128:0] 
        .ad              (status_ad),           // output[7:0] 
        .rq              (status_rq),           // output
        .start           (status_start)         // input
    );


endmodule