ramtp_var_w_var_r.v 12.4 KB
Newer Older
1 2 3
/*******************************************************************************
 * Module: ramtp_var_w_var_r
 * Date:2015-05-29  
4
 * Author: Andrey Filippov     
5 6 7 8
 * Description:  Dual port memory wrapper, with variable width write and variable
 * width read,  using "TDP" mode of RAMB36E1. Same R/W widths in each port.
 * Uses parity bits to increase total data width. Widths down to 9 are valid.
 *
9
 * Copyright (c) 2015 Elphel, Inc.
10 11 12 13 14 15 16 17 18 19 20 21
 * ramtp_var_w_var_r.v is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 *  ramtp_var_w_var_r.v is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/> .
22 23 24 25 26 27
 *
 * Additional permission under GNU GPL version 3 section 7:
 * If you modify this Program, or any covered work, by linking or combining it
 * with independent modules provided by the FPGA vendor only (this permission
 * does not extend to any 3-rd party modules, "soft cores" or macros) under
 * different license terms solely for the purpose of generating binary "bitstream"
28
 * files and/or simulating the code, the copyright holders of this Program give
29 30
 * you the right to distribute the covered work without those independent modules
 * as long as the source code for them is available from the FPGA vendor free of
Andrey Filippov's avatar
Andrey Filippov committed
31
 * charge, and there is no dependence on any encrypted modules for simulating of
32 33 34
 * the combined code. This permission applies to you if the distributed code
 * contains all the components and scripts required to completely simulate it
 * with at least one of the Free Software programs.
35 36
 *******************************************************************************/
`timescale 1ns/1ps
37
`include "system_defines.vh" 
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
/*
   Address/data widths
   Connect unused data to 1b0, unused addresses - to 1'b1
   
   RAMB18E1 in True Dual Port (TDP) Mode - each port individually
   +-----------+---------+---------+---------+
   |Data Width | Address |   Data  | Parity  |
   +-----------+---------+---------+---------+
   |     1     | A[13:0] | D[0]    |  ---    |
   |     2     | A[13:1] | D[1:0]  |  ---    |
   |     4     | A[13:2] | D[3:0[  |  ---    |
   |     9     | A[13:3] | D[7:0]  | DP[0]   |
   |    18     | A[13:4] | D[15:0] | DP[1:0] |
   +-----------+---------+---------+---------+

   RAMB18E1 in Simple Dual Port (SDP) Mode
   one of the ports (r or w) - 32/36 bits, other - variable 
   +------------+---------+---------+---------+
   |Data Widths | Address |   Data  | Parity  |
   +------------+---------+---------+---------+
   |   32/  1   | A[13:0] | D[0]    |  ---    |
   |   32/  2   | A[13:1] | D[1:0]  |  ---    |
   |   32/  4   | A[13:2] | D[3:0[  |  ---    |
   |   36/  9   | A[13:3] | D[7:0]  | DP[0]   |
   |   36/ 18   | A[13:4] | D[15:0] | DP[1:0] |
   |   36/ 36   | A[13:5] | D[31:0] | DP[3:0] |
   +------------+---------+---------+---------+
   
   RAMB36E1 in True Dual Port (TDP) Mode - each port individually
   +-----------+---------+---------+---------+
   |Data Width | Address |   Data  | Parity  |
   +-----------+---------+---------+---------+
   |     1     | A[14:0] | D[0]    |  ---    |
   |     2     | A[14:1] | D[1:0]  |  ---    |
   |     4     | A[14:2] | D[3:0[  |  ---    |
   |     9     | A[14:3] | D[7:0]  | DP[0]   |
   |    18     | A[14:4] | D[15:0] | DP[1:0] |
   |    36     | A[14:5] | D[31:0] | DP[3:0] |
   |1(Cascade) | A[15:0] | D[0]    |  ---    |
   +-----------+---------+---------+---------+

   RAMB36E1 in Simple Dual Port (SDP) Mode
   one of the ports (r or w) - 64/72 bits, other - variable 
   +------------+---------+---------+---------+
   |Data Widths | Address |   Data  | Parity  |
   +------------+---------+---------+---------+
   |   64/  1   | A[14:0] | D[0]    |  ---    |
   |   64/  2   | A[14:1] | D[1:0]  |  ---    |
   |   64/  4   | A[14:2] | D[3:0[  |  ---    |
   |   64/  9   | A[14:3] | D[7:0]  | DP[0]   |
   |   64/ 18   | A[14:4] | D[15:0] | DP[1:0] |
   |   64/ 36   | A[14:5] | D[31:0] | DP[3:0] |
   |   64/ 72   | A[14:6] | D[63:0] | DP[7:0] |
   +------------+---------+---------+---------+
*/

module  ramtp_var_w_var_r
#(
  parameter integer REGISTERS_A = 0, // 1 - registered output
  parameter integer REGISTERS_B = 0, // 1 - registered output
  parameter integer LOG2WIDTH_A = 5,  // WIDTH= 9  << (LOG2WIDTH - 3)
Andrey Filippov's avatar
Andrey Filippov committed
99 100 101
  parameter integer LOG2WIDTH_B = 5,  // WIDTH= 9  << (LOG2WIDTH - 3)
  parameter WRITE_MODE_A =        "NO_CHANGE", //Valid: "WRITE_FIRST", "READ_FIRST", "NO_CHANGE"
  parameter WRITE_MODE_B =        "NO_CHANGE"  //Valid: "WRITE_FIRST", "READ_FIRST", "NO_CHANGE"
102 103 104 105
`ifdef PRELOAD_BRAMS
    ,
    `include "includes/ram36_declare_init.vh"
`endif
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
 )(
      input                               clk_a,     // clock for port A
      input            [14-LOG2WIDTH_A:0] addr_a,    // address port A
      input                               en_a,      // enable port A (read and write)
      input                               regen_a,   // output register enable port A
      input                               we_a,      // write port enable port A
      output [(9 << (LOG2WIDTH_A-3))-1:0] data_out_a,// data out port A
      input  [(9 << (LOG2WIDTH_A-3))-1:0] data_in_a, // data in port A
      
      input                               clk_b,     // clock for port BA
      input            [14-LOG2WIDTH_B:0] addr_b,    // address port B
      input                               en_b,      // read enable port B
      input                               regen_b,   // output register enable port B
      input                               we_b,      // write port enable port B
      output [(9 << (LOG2WIDTH_B-3))-1:0] data_out_b,// data out port B
      input  [(9 << (LOG2WIDTH_B-3))-1:0] data_in_b  // data in port B
);
    localparam  PWIDTH_A = (LOG2WIDTH_A > 2)? (9 << (LOG2WIDTH_A - 3)): (1 << LOG2WIDTH_A);
    localparam  PWIDTH_B = (LOG2WIDTH_B > 2)? (9 << (LOG2WIDTH_B - 3)): (1 << LOG2WIDTH_B);
    localparam  WIDTH_A  = 1 << LOG2WIDTH_A;
    localparam  WIDTH_AP = 1 << (LOG2WIDTH_A-3);
    localparam  WIDTH_B  = 1 << LOG2WIDTH_B;
    localparam  WIDTH_BP = 1 << (LOG2WIDTH_B-3);
    
    wire          [31:0] data_out32_a;
    wire          [ 3:0] datap_out4_a;
    assign data_out_a={datap_out4_a[WIDTH_AP-1:0], data_out32_a[WIDTH_A-1:0]};

    wire          [31:0] data_out32_b;
    wire          [ 3:0] datap_out4_b;
    assign data_out_b={datap_out4_b[WIDTH_BP-1:0], data_out32_b[WIDTH_B-1:0]};


    wire [WIDTH_A+31:0] data_in_ext_a =  {32'b0,data_in_a[WIDTH_A-1:0]};
    wire         [31:0] data_in32_a =    data_in_ext_a[31:0];
    wire [WIDTH_AP+3:0] datap_in_ext_a = {4'b0,data_in_a[WIDTH_A+:WIDTH_AP]};
    wire          [3:0] datap_in4_a=     datap_in_ext_a[3:0];

    wire [WIDTH_B+31:0] data_in_ext_b =  {32'b0,data_in_b[WIDTH_B-1:0]};
    wire         [31:0] data_in32_b =    data_in_ext_b[31:0];
    wire [WIDTH_BP+3:0] datap_in_ext_b = {4'b0,data_in_b[WIDTH_B+:WIDTH_BP]};
    wire          [3:0] datap_in4_b=     datap_in_ext_b[3:0];

    RAMB36E1
    #(
    .RSTREG_PRIORITY_A         ("RSTREG"),       // Valid: "RSTREG" or "REGCE"
    .RSTREG_PRIORITY_B         ("RSTREG"),       // Valid: "RSTREG" or "REGCE"
    .DOA_REG                   (REGISTERS_A),    // Valid: 0 (no output registers) and 1 - one output register (in SDP - to lower 36)
    .DOB_REG                   (REGISTERS_B),    // Valid: 0 (no output registers) and 1 - one output register (in SDP - to lower 36)
    .RAM_EXTENSION_A           ("NONE"),         // Cascading, valid: "NONE","UPPER", LOWER"
    .RAM_EXTENSION_B           ("NONE"),         // Cascading, valid: "NONE","UPPER", LOWER"
    .READ_WIDTH_A              (PWIDTH_A),       // Valid: 0,1,2,4,9,18,36 and in SDP mode - 72 (should be 0 if port is not used)
    .READ_WIDTH_B              (PWIDTH_B),       // Valid: 0,1,2,4,9,18,36 and in SDP mode - 72 (should be 0 if port is not used)
    .WRITE_WIDTH_A             (PWIDTH_A),              // Valid: 0,1,2,4,9,18,36 and in SDP mode - 72 (should be 0 if port is not used)
    .WRITE_WIDTH_B             (PWIDTH_B),       // Valid: 0,1,2,4,9,18,36 and in SDP mode - 72 (should be 0 if port is not used)
    .RAM_MODE                  ("TDP"),          // Valid "TDP" (true dual-port) and "SDP" - simple dual-port
Andrey Filippov's avatar
Andrey Filippov committed
162 163
    .WRITE_MODE_A              (WRITE_MODE_A),   // Valid: "WRITE_FIRST", "READ_FIRST", "NO_CHANGE"
    .WRITE_MODE_B              (WRITE_MODE_B),   // Valid: "WRITE_FIRST", "READ_FIRST", "NO_CHANGE"
164 165 166 167 168 169 170
    .RDADDR_COLLISION_HWCONFIG ("DELAYED_WRITE"),// Valid: "DELAYED_WRITE","PERFORMANCE" (no access to the same page)
    .SIM_COLLISION_CHECK       ("ALL"),          // Valid: "ALL", "GENERATE_X_ONLY", "NONE", and "WARNING_ONLY"
    .INIT_FILE                 ("NONE"),         // "NONE" or filename with initialization data
    .SIM_DEVICE                ("7SERIES"),      // Simulation device family - "VIRTEX6", "VIRTEX5" and "7_SERIES" // "7SERIES"

    .EN_ECC_READ               ("FALSE"),        // Valid:"FALSE","TRUE" (ECC decoder circuitry)
    .EN_ECC_WRITE              ("FALSE")         // Valid:"FALSE","TRUE" (ECC decoder circuitry)
171 172 173
`ifdef PRELOAD_BRAMS
    `include "includes/ram36_pass_init.vh"
`endif
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    ) RAMB36E1_i
    (
        // Port A (Read port in SDP mode):
        .DOADO           (data_out32_a),    // Port A data/LSB data[31:0], output
        .DOPADOP         (datap_out4_a),    // Port A parity/LSB parity[3:0], output
        .DIADI           (data_in32_a),     // Port A data/LSB data[31:0], input
        .DIPADIP         (datap_in4_a),     // Port A parity/LSB parity[3:0], input
        .ADDRARDADDR     ({1'b1,addr_a,{LOG2WIDTH_A{1'b1}}}),  // Port A (read port in SDP) address [15:0]. used from [14] down, unused should be high, input
        .CLKARDCLK       (clk_a),           // Port A (read port in SDP) clock, input
        .ENARDEN         (en_a),            // Port A (read port in SDP) Enable, input
        .REGCEAREGCE     (regen_a),         // Port A (read port in SDP) register enable, input
        .RSTRAMARSTRAM   (1'b0),            // Port A (read port in SDP) set/reset, input
        .RSTREGARSTREG   (1'b0),            // Port A (read port in SDP) register set/reset, input
        .WEA             ({4{we_a}}),       // Port A (read port in SDP) Write Enable[3:0], input
        // Port B
        .DOBDO           (data_out32_b),    // Port B data/MSB data[31:0], output
        .DOPBDOP         (datap_out4_b),    // Port B parity/MSB parity[3:0], output
        .DIBDI           (data_in32_b),     // Port B data/MSB data[31:0], input
        .DIPBDIP         (datap_in4_b),     // Port B parity/MSB parity[3:0], input
        .ADDRBWRADDR     ({1'b1,addr_b,{LOG2WIDTH_B{1'b1}}}), // Port B (write port in SDP) address [15:0]. used from [14] down, unused should be high, input
        .CLKBWRCLK       (clk_b),           // Port B (write port in SDP) clock, input
        .ENBWREN         (en_b),            // Port B (write port in SDP) Enable, input
        .REGCEB          (regen_b),         // Port B (write port in SDP) register enable, input
        .RSTRAMB         (1'b0),            // Port B (write port in SDP) set/reset, input
        .RSTREGB         (1'b0),            // Port B (write port in SDP) register set/reset, input
        .WEBWE           ({4'b0,{4{we_b}}}), // Port B (write port in SDP) Write Enable[7:0], input
        // Error correction circuitry
        .SBITERR         (),                // Single bit error status, output
        .DBITERR         (),                // Double bit error status, output
        .ECCPARITY       (),                // Genearted error correction parity [7:0], output
        .RDADDRECC       (),                // ECC read address[8:0], output
        .INJECTSBITERR   (1'b0),            // inject a single-bit error, input
        .INJECTDBITERR   (1'b0),            // inject a double-bit error, input
        // Cascade signals to create 64Kx1
        .CASCADEOUTA     (),                // A-port cascade, output   
        .CASCADEOUTB     (),                // B-port cascade, output
        .CASCADEINA      (1'b0),            // A-port cascade, input
        .CASCADEINB      (1'b0)             // B-port cascade, input
    );


endmodule