ahci_sata_layers.v 26.4 KB
Newer Older
1 2 3
/*******************************************************************************
 * Module: ahci_sata_layers
 * Date:2016-01-19  
4
 * Author: Andrey Filippov     
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
 * Description: Link and PHY SATA layers
 *
 * Copyright (c) 2016 Elphel, Inc .
 * ahci_sata_layers.v is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 *  ahci_sata_layers.v is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/> .
 *******************************************************************************/
`timescale 1ns/1ps

module  ahci_sata_layers #(
`ifdef USE_DATASCOPE
    parameter ADDRESS_BITS =         10, //for datascope
    parameter DATASCOPE_START_BIT =  14, // bit of DRP "other_control" to start recording after 0->1 (needs DRP)
    parameter DATASCOPE_POST_MEAS =  16, // number of measurements to perform after event
`endif        
    parameter BITS_TO_START_XMIT =    6,   // wait H2D FIFO to have 1 << BITS_TO_START_XMIT to start FIS transmission (or all FIS fits)
    parameter DATA_BYTE_WIDTH =       4,
    parameter ELASTIC_DEPTH =         4, //5, With 4/7 got infrequent overflows!
    parameter ELASTIC_OFFSET =        7, //  5 //10
    parameter FREQ_METER_WIDTH =     12
    
)(
    input              exrst,   // master reset that resets PLL and GTX
    input              reliable_clk, // use aclk that runs independently of the GTX
    output             rst,     // PHY-generated reset after PLL lock
    output             clk,     // PHY-generated clock, 75MHz for SATA2
// Data/type FIFO, host -> device   
    // Data System memory or FIS -> device
    input       [31:0] h2d_data,     // 32-bit data from the system memory to HBA (dma data)
    input       [ 1:0] h2d_mask,     // set to 2'b11
    input       [ 1:0] h2d_type,     // 0 - data, 1 - FIS head, 2 - FIS LAST
    input              h2d_valid,    // output  register full
    output             h2d_ready,    // h2d FIFO has room for data (>= 8? dwords)
 
// Data/type FIFO, device -> host
    output      [31:0] d2h_data,         // FIFO input  data
    output      [ 1:0] d2h_mask,     // set to 2'b11
    output      [ 1:0] d2h_type,    // 0 - data, 1 - FIS head, 2 - R_OK, 3 - R_ERR (last two - after data, so ignore data with R_OK/R_ERR)
    output             d2h_valid,  // Data available from the transport layer in FIFO                
    output             d2h_many,    // Multiple DWORDs available from the transport layer in FIFO           
    input              d2h_ready,   // This module or DMA consumes DWORD
    
   // communication with link/phys layers
    output      [ 1:0] phy_speed,       // 0 - not ready, 1..3 - negotiated speed (Now 0/2)
    output             gtx_ready,       // How to use it?
    output             xmit_ok,         // received R_OK after transmission
    output             xmit_err,        // Error during/after sending of a FIS (got R_ERR)
    output             x_rdy_collision, // X_RDY/X_RDY collision on interface 
    output             syncesc_recv,    // Where to get it?

    input              pcmd_st_cleared,      // PxCMD.ST 1->0 transition by software
    input              syncesc_send,      // Send sync escape
    output             syncesc_send_done, // "SYNC escape until the interface is quiescent..."
    input              comreset_send,     // Not possible yet?
    output             cominit_got,
    input              set_offline, // electrically idle
    
    input              send_R_OK,    // Should it be originated in this layer SM?
    input              send_R_ERR,
    
    // additional errors from SATA layers (single-clock pulses):
    
    output             serr_DT,   // RWC: Transport state transition error
    output             serr_DS,   // RWC: Link sequence error
    output             serr_DH,   // RWC: Handshake Error (i.e. Device got CRC error)
    output             serr_DC,   // RWC: CRC error in Link layer
    output             serr_DB,   // RWC: 10B to 8B decode error
    output             serr_DW,   // RWC: COMMWAKE signal was detected
    output             serr_DI,   // RWC: PHY Internal Error
                                  // sirq_PRC,
    output             serr_EE,   // RWC: Internal error (such as elastic buffer overflow or primitive mis-alignment)
    output             serr_EP,   // RWC: Protocol Error - a violation of SATA protocol detected
    output             serr_EC,   // RWC: Persistent Communication or Data Integrity Error
    output             serr_ET,   // RWC: Transient Data Integrity Error (error not recovered by the interface)
    output             serr_EM,   // RWC: Communication between the device and host was lost but re-established
    output             serr_EI,   // RWC: Recovered Data integrity Error
    // additional control signals for SATA layers
    input        [3:0] sctl_ipm,  // Interface power management transitions allowed // @SuppressThisWarning Veditor Unused (yet)
    input        [3:0] sctl_spd,  // Interface maximal speed                        // @SuppressThisWarning Veditor Unused (yet)

    // Device high speed pads and clock inputs    
    // ref clk from an external source, shall be connected to pads
    input   wire        extclk_p, 
    input   wire        extclk_n,
    // sata link data pins
    output  wire        txp_out,
    output  wire        txn_out,
    input   wire        rxp_in,
    input   wire        rxn_in,
`ifdef USE_DATASCOPE
// Datascope interface (write to memory that can be software-read)
    output                    datascope_clk,
    output [ADDRESS_BITS-1:0] datascope_waddr,
    output                    datascope_we,
    output             [31:0] datascope_di,
`endif    
    
`ifdef USE_DRP
    input               drp_rst,
    input               drp_clk,
    input               drp_en, // @aclk strobes drp_ad
    input               drp_we,
    input        [14:0] drp_addr,       
    input        [15:0] drp_di,
    output              drp_rdy,
    output       [15:0] drp_do ,
`endif    
    output  [FREQ_METER_WIDTH - 1:0] xclk_period,      // relative (to 2*clk) xclk period
    output       [31:0] debug_phy,
    output       [31:0] debug_link,
    input               hclk // just for testing
    
    
);
    localparam PHY_SPEED = 2; // SATA2
    localparam FIFO_ADDR_WIDTH = 9;
    
    localparam D2H_TYPE_DMA =      0;
    localparam D2H_TYPE_FIS_HEAD = 1;
    localparam D2H_TYPE_OK =       2;
    localparam D2H_TYPE_ERR =      3;

    localparam H2D_TYPE_FIS_DATA = 0; // @SuppressThisWarning VEditor unused
    localparam H2D_TYPE_FIS_HEAD = 1;
    localparam H2D_TYPE_FIS_LAST = 2;
    
    wire               phy_ready;        // active when GTX gets aligned output
    wire               link_established; // Received 3 back-to-back non-ALIGNp 
    wire        [31:0] ll_h2d_data_in;
    wire         [1:0] ll_h2d_mask_in;
    wire               ll_strobe_out;
    wire               ll_h2d_last;
    wire         [1:0] h2d_type_out;
    
    wire        [31:0] ll_d2h_data_out;
    wire        [ 1:0] ll_d2h_mask_out;
    wire               ll_d2h_valid;
    wire               ll_d2h_almost_full;
    reg          [1:0] d2h_type_in;
    reg                fis_over_r;  // push 1 more DWORD (ignore) + type (ERR/OK) when received FIS is done/error         
    
    reg  ll_frame_req;         // -> link // request for a new frame transition
    wire ll_frame_ackn;        // acknowledge for ll_frame_req
     
    wire ll_incom_start;       // link -> // if started an incoming transaction    assuming this and next 2 are single-cycle
    wire ll_incom_done;        // link -> // if incoming transition was completed
    wire ll_incom_invalidate;  // link -> // if incoming transition had errors
    reg ll_incom_invalidate_r; // error delayed by 1 clock - if eof was incorrect (because of earlier data error)
                               // let last data dword to pass through
    
    wire ll_link_reset = ~phy_ready;        // -> link  // oob sequence is reinitiated and link now is not established or rxelecidle //TODO Alexey:mb it shall be independent
    
    wire [DATA_BYTE_WIDTH*8 - 1:0] ph2ll_data_out;
    wire [DATA_BYTE_WIDTH   - 1:0] ph2ll_charisk_out; // charisk
    wire [DATA_BYTE_WIDTH   - 1:0] ph2ll_err_out;     // disperr | notintable
    wire [DATA_BYTE_WIDTH*8 - 1:0] ll2ph_data_in;
    wire [DATA_BYTE_WIDTH   - 1:0] ll2ph_charisk_in;  // charisk

    wire     [FIFO_ADDR_WIDTH-1:0] h2d_raddr;
    wire                     [1:0] h2d_fifo_re_regen;    
    wire     [FIFO_ADDR_WIDTH-1:0] h2d_waddr;
    wire       [FIFO_ADDR_WIDTH:0] h2d_fill;
    wire                           h2d_nempty;
    
    wire     [FIFO_ADDR_WIDTH-1:0] d2h_raddr;
    wire                     [1:0] d2h_fifo_re_regen;    
    wire     [FIFO_ADDR_WIDTH-1:0] d2h_waddr;
    wire       [FIFO_ADDR_WIDTH:0] d2h_fill;
    wire                           d2h_nempty;
    wire                           h2d_fifo_rd = h2d_nempty && ll_strobe_out; // TODO: check latency in link.v
    wire                           h2d_fifo_wr = h2d_valid;
    
    wire                           d2h_fifo_rd = d2h_valid && d2h_ready;
    wire                           d2h_fifo_wr = ll_d2h_valid || fis_over_r; // fis_over_r will push FIS end to FIFO
    reg                            h2d_pending;    // HBA started sending FIS to fifo
    
    wire                           rxelsfull; 
    wire                           rxelsempty; 
    wire                           xclk;             // output receive clock, just to measure frequency
    
    wire debug_detected_alignp; // oob detects ALIGNp, but not the link layer
    wire                    [31:0] debug_phy0;
`ifdef USE_DATASCOPE
    wire [31:0]                    datascope0_di;
`endif    
assign ll_h2d_last =  (h2d_type_out == H2D_TYPE_FIS_LAST); 
assign d2h_valid = d2h_nempty;
assign d2h_many =  |d2h_fill[FIFO_ADDR_WIDTH:3]; // 

assign h2d_ready = !h2d_fill[FIFO_ADDR_WIDTH] && !(&h2d_fill[FIFO_ADDR_WIDTH:3]);
assign ll_d2h_almost_full   = d2h_fill[FIFO_ADDR_WIDTH] || &d2h_fill[FIFO_ADDR_WIDTH-1:6]; // 63 dwords (maybe use :5?) - time to tell device to stop 

//    assign ll_frame_req_w = !ll_frame_busy && h2d_pending && (((h2d_type == H2D_TYPE_FIS_LAST) && h2d_fifo_wr ) || (|h2d_fill[FIFO_ADDR_WIDTH : BITS_TO_START_XMIT]));
// Separating different types of errors, sync_escape from other problems. TODO: route individual errors to set SERR bits
//assign  incom_invalidate = state_rcvr_eof & crc_bad & ~alignes_pair | state_rcvr_data   & dword_val &  rcvd_dword[CODE_WTRMP];
//    assign phy_speed = phy_ready ? PHY_SPEED:0;
//    assign serr_DB = phy_ready && (|ph2ll_err_out);
//    assign serr_DH = phy_ready && (xmit_err);
assign phy_speed = link_established ? PHY_SPEED:0;
assign serr_DB =   link_established && (|ph2ll_err_out);
assign serr_DH =   link_established && (xmit_err);
//

// not yet assigned errors
///    assign serr_DT = phy_ready && (comreset_send); // RWC: Transport state transition error
///    assign serr_DS = phy_ready && (cominit_got);   // RWC: Link sequence error
///    assign serr_DC = phy_ready && (serr_DW);       // RWC: CRC error in Link layer
assign serr_DT = phy_ready && (0); // RWC: Transport state transition error
//    assign serr_DS = phy_ready && (0);   // RWC: Link sequence error
//    assign serr_DC = phy_ready && (0);       // RWC: CRC error in Link layer
//    assign serr_DB = phy_ready && (0);   // RWC: 10B to 8B decode error
assign serr_EE = phy_ready && (rxelsfull || rxelsempty);
assign serr_DI = phy_ready && (0);   // rxelsfull);   // RWC: PHY Internal Error // just debugging
assign serr_EP = phy_ready && (0);   // rxelsempty);   // RWC: Protocol Error - a violation of SATA protocol detected // just debugging
assign serr_EC = phy_ready && (0);   // RWC: Persistent Communication or Data Integrity Error
assign serr_ET = phy_ready && (0);   // RWC: Transient Data Integrity Error (error not recovered by the interface)
assign serr_EM = phy_ready && (0);   // RWC: Communication between the device and host was lost but re-established
assign serr_EI = phy_ready && (0);   // RWC: Recovered Data integrity Error

reg [1:0] debug_last_d2h_type_in;
reg [1:0] debug_last_d2h_type;

always @ (posedge clk) begin
    if (d2h_fifo_wr) debug_last_d2h_type_in<= d2h_type_in;
    if (d2h_fifo_rd) debug_last_d2h_type<=    d2h_type;
end
assign debug_phy = debug_phy0; 
    
`ifdef USE_DATASCOPE
    `ifdef DATASCOPE_INCOMING_RAW
        assign datascope_di   = {5'b0,debug_link[5],datascope0_di[25:0]};// aligns_pair tx
    `else
        // Mix transmitted alignes pair, but only to the closest group of 6 primitives
        reg dbg_was_link5; // alignes pair sent
        wire dbg_was_link5_xclk; // alignes pair sent

        always @ (posedge datascope_clk) begin
            if (dbg_was_link5_xclk) dbg_was_link5 <= 1;
            else if (datascope_we)  dbg_was_link5 <= 0; 
        end        

        pulse_cross_clock #(
            .EXTRA_DLY(0)
        ) dbg_was_link5_i (
            .rst       (rst),                // input
            .src_clk   (clk),                // input
            .dst_clk   (datascope_clk),      // input
            .in_pulse  (debug_link[5]),      // input// is actually a two-cycle
            .out_pulse (dbg_was_link5_xclk), // output
            .busy()                          // output
        );

        assign datascope_di   = {dbg_was_link5,datascope0_di[30:0]};// aligns_pair tx
    `endif
`endif    
    link #(
        .DATA_BYTE_WIDTH(4)
    ) link (
        .rst              (rst),                   // input wire 
        .clk              (clk),                   // input wire 
    // data inputs from transport layer
        .data_in          (ll_h2d_data_in),        // input[31:0] wire // input data stream (if any data during OOB setting => ignored)
    // TODO, for now not supported, all mask bits are assumed to be set
        .data_mask_in     (ll_h2d_mask_in),        // input[1:0] wire 
        .data_strobe_out  (ll_strobe_out),         // output wire  // buffer read strobe
        .data_last_in     (ll_h2d_last),           // input wire // transaction's last data budle pulse
        .data_val_in      (h2d_nempty),            // input wire // read data is valid (if 0 while last pulse wasn't received => need to hold the line)
        
        .data_out         (ll_d2h_data_out),       // output[31:0] wire  // read data, same as related inputs
        .data_mask_out    (ll_d2h_mask_out),       // output[1:0] wire // same thing - all 1s for now. TODO
        .data_val_out     (ll_d2h_valid),          // output wire // count every data bundle read by transport layer, even if busy flag is set // let the transport layer handle oveflows by himself
        .data_busy_in     (ll_d2h_almost_full),    // input wire  // transport layer tells if its inner buffer is almost full
        .data_last_out    (),                      // ll_d2h_last),        // output wire not used
        
        .frame_req        (ll_frame_req),          // input wire  // request for a new frame transmission
        .frame_busy       (), // ll_frame_busy),   // output wire // a little bit of overkill with the cound of response signals, think of throwing out 1 of them // LL tells back if it cant handle the request for now
        .frame_ack        (ll_frame_ackn),         // ll_frame_ack), // output wire // LL tells if the request is transmitting
        .frame_rej        (x_rdy_collision),       // output wire // or if it was cancelled because of simultanious incoming transmission
        .frame_done_good  (xmit_ok),               // output wire // TL tell if the outcoming transaction is done and how it was done
        .frame_done_bad   (xmit_err),              // output wire 
        
        .incom_start      (ll_incom_start),        // output wire // if started an incoming transaction
        .incom_done       (ll_incom_done),         // output wire // if incoming transition was completed
        .incom_invalidate (ll_incom_invalidate),   // output wire // if incoming transition had errors
        .incom_sync_escape(syncesc_recv),          // output wire  - received sync escape
        .incom_ack_good   (send_R_OK),             // input wire  // transport layer responds on a completion of a FIS
        .incom_ack_bad    (send_R_ERR),            // input wire  // oob sequence is reinitiated and link now is not established or rxelecidle
        .link_reset       (ll_link_reset),         // input wire  // oob sequence is reinitiated and link now is not established or rxelecidle
        .sync_escape_req  (syncesc_send),          // input wire  // TL demands to brutally cancel current transaction
        .sync_escape_ack  (syncesc_send_done),     // output wire // acknowlegement of a successful reception?
        .incom_stop_req   (pcmd_st_cleared),       // input wire  // TL demands to stop current receiving session
        .link_established (link_established),      // output wire
        .link_bad_crc     (serr_DC),               // output wire // Bad CRC at EOF
        // inputs from phy
        .phy_ready        (phy_ready),             // input wire        // phy is ready - link is established
        // data-primitives stream from phy
        .phy_data_in      (ph2ll_data_out),        // input[31:0] wire  // phy_data_in
        .phy_isk_in       (ph2ll_charisk_out),     // input[3:0] wire   // charisk
        .phy_err_in       (ph2ll_err_out),         // input[3:0] wire   // disperr | notintable
        // to phy
        .phy_data_out     (ll2ph_data_in),         // output[31:0] wire 
        .phy_isk_out      (ll2ph_charisk_in),       // output[3:0] wire   // charisk
        .debug_out        (debug_link)
    );
    
    always @ (posedge clk) begin
        ll_incom_invalidate_r <=                       ll_incom_invalidate;
        // FIS receive D2H
        // add head if ll_d2h_valid and  (d2h_type_in == D2H_TYPE_OK) || (d2h_type_in == D2H_TYPE_ERR)? Or signal some internal error 
        if (rst || ll_incom_start)                     d2h_type_in <= D2H_TYPE_FIS_HEAD; // FIS head
        else if (ll_d2h_valid)                         d2h_type_in <= D2H_TYPE_DMA;          // FIS BODY
        else if (ll_incom_done || ll_incom_invalidate_r) d2h_type_in <= ll_incom_invalidate_r ? D2H_TYPE_ERR: D2H_TYPE_OK;
        
        if (rst) fis_over_r <= 0;
        else fis_over_r <= (ll_incom_done || ll_incom_invalidate_r) && (d2h_type_in == D2H_TYPE_DMA); // make sure it is only once
        // Second - generate internal error?
        
        // FIS transmit H2D
        // Start if all FIS is in FIFO (last word received) or at least that many is in FIFO
        if      (rst || ll_frame_req)                            h2d_pending <= 0; // ?
        else if ((h2d_type == H2D_TYPE_FIS_HEAD) && h2d_fifo_wr) h2d_pending <= 1;
        
        if (rst)                                                        ll_frame_req <= 0;
//        else     ll_frame_req <= ll_frame_req_w;
        else if (h2d_pending &&
                  (((h2d_type == H2D_TYPE_FIS_LAST) && h2d_fifo_wr ) ||
                   (|h2d_fill[FIFO_ADDR_WIDTH : BITS_TO_START_XMIT])))  ll_frame_req <= 1;
        else if (ll_frame_ackn)                                         ll_frame_req <= 0;          
        
        
    end


    sata_phy #(
`ifdef USE_DATASCOPE
        .ADDRESS_BITS        (ADDRESS_BITS),  // for datascope
        .DATASCOPE_START_BIT (DATASCOPE_START_BIT),
        .DATASCOPE_POST_MEAS (DATASCOPE_POST_MEAS),
`endif    
        .DATA_BYTE_WIDTH     (DATA_BYTE_WIDTH),
        .ELASTIC_DEPTH       (ELASTIC_DEPTH),
        .ELASTIC_OFFSET      (ELASTIC_OFFSET)
    ) phy (
        .extrst              (exrst),             // input wire 
        .clk                 (clk),               // output wire 
        .rst                 (rst),               // output wire 
        .reliable_clk        (reliable_clk),      // input wire 
        .phy_ready           (phy_ready),         // output wire 
        .gtx_ready           (gtx_ready),         // output wire 
        .debug_cnt           (), // output[11:0] wire 
        .extclk_p            (extclk_p),          // input wire 
        .extclk_n            (extclk_n),          // input wire 
        .txp_out             (txp_out),           // output wire 
        .txn_out             (txn_out),           // output wire 
        .rxp_in              (rxp_in),            // input wire 
        .rxn_in              (rxn_in),            // input wire 
        .ll_data_out         (ph2ll_data_out),    // output[31:0] wire 
        .ll_charisk_out      (ph2ll_charisk_out), // output[3:0] wire 
        .ll_err_out          (ph2ll_err_out),     // output[3:0] wire 
        .ll_data_in          (ll2ph_data_in),     // input[31:0] wire 
        .ll_charisk_in       (ll2ph_charisk_in),  // input[3:0] wire
        .set_offline         (set_offline),       // input
        .comreset_send       (comreset_send),     // input
        .cominit_got         (cominit_got),       // output wire 
        .comwake_got         (serr_DW),           // output wire 
        .rxelsfull           (rxelsfull),         // output wire 
        .rxelsempty          (rxelsempty),        // output wire 

        .cplllock_debug      (),
        .usrpll_locked_debug (),
        .re_aligned          (serr_DS),           // output reg 
        .xclk                (xclk),             // output receive clock, just to measure frequency

`ifdef USE_DATASCOPE
        .datascope_clk     (datascope_clk),     // output
        .datascope_waddr   (datascope_waddr),   // output[9:0] 
        .datascope_we      (datascope_we),      // output
        .datascope_di      (datascope0_di),      // output[31:0] 
        .datascope_trig    (ll_incom_invalidate ), // ll_frame_ackn),     // input datascope external trigger
//        .datascope_trig    (debug_link[4:0] == 'h0a), // state_send_eof // input datascope external trigger
///        .datascope_trig    (debug_link[4:0] == 'h02), // state_rcvr_goodcrc // input datascope external trigger
        //debug_link
`endif        

`ifdef USE_DRP
        .drp_rst           (drp_rst),           // input
        .drp_clk           (drp_clk),           // input
        .drp_en            (drp_en),            // input
        .drp_we            (drp_we),            // input
        .drp_addr          (drp_addr),          // input[14:0] 
        .drp_di            (drp_di),            // input[15:0] 
        .drp_rdy           (drp_rdy),           // output
        .drp_do            (drp_do),            // output[15:0] 
`endif 
        .debug_sata      (debug_phy0)  
        ,.debug_detected_alignp(debug_detected_alignp)
    );

    fifo_sameclock_control #(
        .WIDTH(9)
    ) fifo_h2d_control_i (
        .clk      (clk),                    // input
        .rst      (rst || pcmd_st_cleared), // input
        .wr       (h2d_fifo_wr),            // input
        .rd       (h2d_fifo_rd),            // input
        .nempty   (h2d_nempty),             // output
        .fill_in  (h2d_fill),               // output[9:0] 
        .mem_wa   (h2d_waddr),              // output[8:0] reg 
        .mem_ra   (h2d_raddr),              // output[8:0] reg 
        .mem_re   (h2d_fifo_re_regen[0]),   // output
        .mem_regen(h2d_fifo_re_regen[1]),   // output
        .over     (),                       // output reg 
        .under    () //h2d_under)               // output reg 
    );
    
    ram18p_var_w_var_r #(
        .REGISTERS    (1),
        .LOG2WIDTH_WR (5),
        .LOG2WIDTH_RD (5)
    ) fifo_h2d_i (
        .rclk     (clk),                                            // input
        .raddr    (h2d_raddr),                                      // input[8:0] 
        .ren      (h2d_fifo_re_regen[0]),                           // input
        .regen    (h2d_fifo_re_regen[1]),                           // input
        .data_out ({h2d_type_out, ll_h2d_mask_in, ll_h2d_data_in}), // output[35:0] 
        .wclk     (clk),                                            // input
        .waddr    (h2d_waddr),                                      // input[8:0] 
        .we       (h2d_fifo_wr),                                    // input
        .web      (4'hf),                                           // input[3:0] 
        .data_in  ({h2d_type,h2d_mask,h2d_data})                    // input[35:0] 
    );

    fifo_sameclock_control #(
        .WIDTH(9)
    ) fifo_d2h_control_i (
        .clk      (clk),                    // input
        .rst      (rst || pcmd_st_cleared), // input
        .wr       (d2h_fifo_wr),            // input
        .rd       (d2h_fifo_rd),            // input
        .nempty   (d2h_nempty),             // output
        .fill_in  (d2h_fill),               // output[9:0] 
        .mem_wa   (d2h_waddr),              // output[8:0] reg 
        .mem_ra   (d2h_raddr),              // output[8:0] reg 
        .mem_re   (d2h_fifo_re_regen[0]),   // output
        .mem_regen(d2h_fifo_re_regen[1]),   // output
        .over     (), //d2h_over),               // output reg 
        .under    ()                        // output reg 
    );

    ram18p_var_w_var_r #(
        .REGISTERS    (1),
        .LOG2WIDTH_WR (5),
        .LOG2WIDTH_RD (5)
    ) fifo_d2h_i (
        .rclk     (clk),                                            // input
        .raddr    (d2h_raddr),                                      // input[8:0] 
        .ren      (d2h_fifo_re_regen[0]),                           // input
        .regen    (d2h_fifo_re_regen[1]),                           // input
        .data_out ({d2h_type, d2h_mask, d2h_data}),                 // output[35:0] 
        .wclk     (clk),                                            // input
        .waddr    (d2h_waddr),                                      // input[8:0] 
        .we       (d2h_fifo_wr),                                    // input
        .web      (4'hf),                                           // input[3:0] 
        .data_in  ({d2h_type_in, ll_d2h_mask_out, ll_d2h_data_out}) // input[35:0] 
    );

    freq_meter #(
        .WIDTH    (FREQ_METER_WIDTH),
        .PRESCALE (1)
    ) freq_meter_i (
        .rst   (rst),        // input
        .clk   (clk),        // input
        .xclk  (xclk), // hclk), //xclk),       // input
        .dout  (xclk_period) // output[11:0] reg 
    );

endmodule