cmprs_afi_mux_ptr_wresp.v 8.09 KB
Newer Older
1 2 3
/*******************************************************************************
 * Module: cmprs_afi_mux_ptr_wresp
 * Date:2015-06-28  
4
 * Author: Andrey Filippov     
5 6 7
 * Description: Maintain 4-channel chunk pointers for wrirte response
 * Advance 32-byte chunk pointers for each AXI burst and each frame (4*2=8 pointers)
 *
8
 * Copyright (c) 2015 Elphel, Inc.
9 10 11 12 13 14 15 16 17 18 19 20
 * cmprs_afi_mux_ptr_wresp.v is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 *  cmprs_afi_mux_ptr_wresp.v is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/> .
21 22 23 24 25 26
 *
 * Additional permission under GNU GPL version 3 section 7:
 * If you modify this Program, or any covered work, by linking or combining it
 * with independent modules provided by the FPGA vendor only (this permission
 * does not extend to any 3-rd party modules, "soft cores" or macros) under
 * different license terms solely for the purpose of generating binary "bitstream"
27
 * files and/or simulating the code, the copyright holders of this Program give
28 29
 * you the right to distribute the covered work without those independent modules
 * as long as the source code for them is available from the FPGA vendor free of
Andrey Filippov's avatar
Andrey Filippov committed
30
 * charge, and there is no dependence on any encrypted modules for simulating of
31 32 33
 * the combined code. This permission applies to you if the distributed code
 * contains all the components and scripts required to completely simulate it
 * with at least one of the Free Software programs.
34 35 36 37 38 39 40 41 42 43
 *******************************************************************************/
`timescale 1ns/1ps

module  cmprs_afi_mux_ptr_wresp(
    input                         hclk,               // global clock to run axi_hp @ 150MHz, shared by all compressor channels
    // Write dual port 4x27 channel length RAM (shadows 1/2 of the similar RAM for main pointers)
    input                  [26:0] length_di,          // data to write per-channle buffer length in chunks
    input                  [ 1:0] length_wa,          // channel address to write lengths
    input                         length_we,          // write enable length data
    
44
    input                         en,                 // 0 - resets, 0->1 resets all pointers. While reset allows write response
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    input                  [ 3:0] reset_pointers,     // per-channel - reset pointers
    
    input                  [ 2:0] chunk_ptr_ra,       // chunk pointer read address {eof, chn[1:0]}
    output                 [26:0] chunk_ptr_rd,       // chunk pointer read data (non-registered
    
    output reg             [ 3:0] eof_written,        // per-channel end of frame confirmed written to system memory by write response

    // AFI write response channels    
    input                         afi_bvalid,
    output                        afi_bready,
    input                  [ 5:0] afi_bid // encodes channel, eof, and burst size minus 1 in chunks (0..3)
    
);
    reg   [3:0] reset_rq;               // request to reset pointers when ready
    reg   [3:0] reset_rq_pri;           // one-hot reset rq 
    wire  [1:0] reset_rq_enc;           // encoded reset_rq_pri
    wire        start_resetting_w;
    reg   [1:0] resetting;              // resetting chunk_pointer and eof_pointer
    wire  [2:0] ptr_wa;                 // pointer memory write port address, msb - eof/current, 2 LSB - channel
    reg         ptr_we;                 // pointer memory write enable
    reg  [26:0] ptr_ram[0:7];           // pointer (current and eof) memory (in 32-byte chunks
    wire [26:0] ptr_ram_di;             // data to be written to ptr_ram
    reg  [26:0] len_ram[0:3];           // start chunk/num cunks in a buffer (write port @mclk)
    reg  [26:0] chunk_ptr_inc;          // incremented by 1..4 chunk pointer
    reg  [27:0] chunk_ptr_rovr;         // incremented chunk pointer, decremented by length (MSB - sign)
70 71
    reg  [ 4:0] busy;                   // one-hot busy stages (usually end with [4]   

72
    reg  [ 4:0] id_r;                   // registered ID data - MSB is unused
73
    reg   [1:0] chn;                    // selected channel valid @busy[2]
74 75 76 77 78 79 80 81 82 83 84 85 86
    reg         eof;                    // eof register being written
    reg         last_burst_in_frame;    // this response is for eof
    reg   [2:0] chunk_inc;
    reg         afi_bready_r;           //
    reg         afi_bvalid_r;           // make it slow;
    wire        pre_busy;
    wire        pre_we;
    reg         en_d;                   //enable delayed by 1 cycle
    
    assign reset_rq_enc = {reset_rq_pri[3] | reset_rq_pri[2],
                           reset_rq_pri[3] | reset_rq_pri[1]};
    assign ptr_ram_di= resetting[1] ? 27'b0 : (chunk_ptr_rovr[27] ? chunk_ptr_inc : chunk_ptr_rovr[26:0]);
    
87
    assign ptr_wa = {eof,chn}; // valid @busy[2]
88 89 90
    assign afi_bready = afi_bready_r;
    
    assign pre_we= resetting[0] ||                   //  a pair of cycles to reset chunk pointer and frame chunk pointer
91 92 93 94
                   busy[3] ||                        // always update chunk pointer
                  (busy[4] && last_burst_in_frame); // optionally update frame chunk pointer (same value)
    assign pre_busy=             afi_bvalid_r && en && !(|busy[2:0]) && !pre_we;
    assign start_resetting_w =  !afi_bvalid_r && en && !(|busy[2:0]) && !pre_we && (|reset_rq);
95 96 97 98 99 100 101 102 103 104

    assign chunk_ptr_rd = ptr_ram[chunk_ptr_ra];
        
    always @ (posedge hclk) begin
        en_d <= en;
        // write length RAM
        if (length_we) len_ram[length_wa] <= length_di;
        afi_bvalid_r <= afi_bvalid;
        
        afi_bready_r <= !en || pre_busy; // (!busy[0] && !pre_busy && !resetting[0] && !start_resetting_w);
105
        busy <= {busy[3:0], pre_busy}; // adjust bits
106
        
107 108
//        if (afi_bready && afi_bvalid) id_r <= afi_bid[4:0]; // id_r[5] is never used - revoved
        if (afi_bvalid && pre_busy) id_r <= afi_bid[4:0]; // id_r[5] is never used - revoved
109 110 111 112 113 114 115 116 117 118 119 120 121
        
        if (start_resetting_w)  reset_rq_pri <= {reset_rq[3] & ~(|reset_rq[2:0]),
                                                 reset_rq[2] & ~(|reset_rq[1:0]),
                                                 reset_rq[1] &     ~reset_rq[0],
                                                 reset_rq[0]};
        
        if (en && !en_d) reset_rq <= 4'hf; // request reset all
        else             reset_rq <= reset_pointers | (reset_rq  & ~({4{resetting[0] &~ resetting[1]}} & reset_rq_pri));
        
        if (!en) resetting <= 0;
        else     resetting <= {resetting[0], start_resetting_w | (resetting[0] & ~resetting[1])};
        
        if      (resetting == 2'b01)  chn <= reset_rq_enc;
122
        else if (busy[1])             chn <= id_r[0 +: 2];
123
        
124
        if (busy[1]) begin // first busy cycle
125 126 127 128 129 130 131 132 133
            last_burst_in_frame <= id_r[2]; 
            chunk_inc <= {1'b0,id_r[3 +:2]} + 1; 
        end

        ptr_we <= pre_we;

        if ((resetting == 2'b01) || busy[0]) eof  <= 0;
        else if (ptr_we)                     eof  <= 1; // always second write cycle
        
134 135
        if (busy[2]) chunk_ptr_inc <= ptr_ram[ptr_wa] + chunk_inc; // second clock of busy
        if (busy[3]) chunk_ptr_rovr <={1'b0,chunk_ptr_inc} - {1'b0,len_ram[chn]}; // third clock of busy
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

        // write to ptr_ram (1 or 2 locations - if eof)
        if (ptr_we) ptr_ram[ptr_wa] <= ptr_ram_di;
        
        // Watch write response channel, detect EOF IDs, generate eof_written* output signals
        eof_written[0] <=  afi_bvalid_r && afi_bready_r && (id_r[2:0]== 3'h4);
        eof_written[1] <=  afi_bvalid_r && afi_bready_r && (id_r[2:0]== 3'h5);
        eof_written[2] <=  afi_bvalid_r && afi_bready_r && (id_r[2:0]== 3'h6);
        eof_written[3] <=  afi_bvalid_r && afi_bready_r && (id_r[2:0]== 3'h7);
        
        
        
    end
endmodule