ram_var_w_var_r.v 33.2 KB
Newer Older
Andrey Filippov's avatar
Andrey Filippov committed
1 2 3
/*******************************************************************************
 * Copyright (c) 2014 Elphel, Inc.
 * Dual port memory wrapper, with variable width write and variable width read
4
 * using "SDP" ot "TDP" modes of RAMB36E1
Andrey Filippov's avatar
Andrey Filippov committed
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
 * ram_var_w_var_r.v is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * ram_var_w_var_r.v is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *******************************************************************************/
/*
   Address/data widths
   Connect unused data to 1b0, unused addresses - to 1'b1
   
   RAMB18E1 in True Dual Port (TDP) Mode - each port individually
   +-----------+---------+---------+---------+
   |Data Width | Address |   Data  | Parity  |
   +-----------+---------+---------+---------+
   |     1     | A[13:0] | D[0]    |  ---    |
   |     2     | A[13:1] | D[1:0]  |  ---    |
   |     4     | A[13:2] | D[3:0[  |  ---    |
   |     9     | A[13:3] | D[7:0]  | DP[0]   |
   |    18     | A[13:4] | D[15:0] | DP[1:0] |
   +-----------+---------+---------+---------+

   RAMB18E1 in Simple Dual Port (SDP) Mode
   one of the ports (r or w) - 32/36 bits, other - variable 
   +------------+---------+---------+---------+
   |Data Widths | Address |   Data  | Parity  |
   +------------+---------+---------+---------+
   |   32/  1   | A[13:0] | D[0]    |  ---    |
   |   32/  2   | A[13:1] | D[1:0]  |  ---    |
   |   32/  4   | A[13:2] | D[3:0[  |  ---    |
   |   36/  9   | A[13:3] | D[7:0]  | DP[0]   |
   |   36/ 18   | A[13:4] | D[15:0] | DP[1:0] |
   |   36/ 36   | A[13:5] | D[31:0] | DP[3:0] |
   +------------+---------+---------+---------+
   
   RAMB36E1 in True Dual Port (TDP) Mode - each port individually
   +-----------+---------+---------+---------+
   |Data Width | Address |   Data  | Parity  |
   +-----------+---------+---------+---------+
   |     1     | A[14:0] | D[0]    |  ---    |
   |     2     | A[14:1] | D[1:0]  |  ---    |
   |     4     | A[14:2] | D[3:0[  |  ---    |
   |     9     | A[14:3] | D[7:0]  | DP[0]   |
   |    18     | A[14:4] | D[15:0] | DP[1:0] |
   |    36     | A[14:5] | D[31:0] | DP[3:0] |
   |1(Cascade) | A[15:0] | D[0]    |  ---    |
   +-----------+---------+---------+---------+

   RAMB36E1 in Simple Dual Port (SDP) Mode
   one of the ports (r or w) - 64/72 bits, other - variable 
   +------------+---------+---------+---------+
   |Data Widths | Address |   Data  | Parity  |
   +------------+---------+---------+---------+
   |   64/  1   | A[14:0] | D[0]    |  ---    |
   |   64/  2   | A[14:1] | D[1:0]  |  ---    |
   |   64/  4   | A[14:2] | D[3:0[  |  ---    |
   |   64/  9   | A[14:3] | D[7:0]  | DP[0]   |
   |   64/ 18   | A[14:4] | D[15:0] | DP[1:0] |
   |   64/ 36   | A[14:5] | D[31:0] | DP[3:0] |
   |   64/ 72   | A[14:6] | D[63:0] | DP[7:0] |
   +------------+---------+---------+---------+
*/
module  ram_var_w_var_r
#(
  parameter integer REGISTERS    = 0, // 1 - registered output
  parameter integer LOG2WIDTH_WR = 6,  // WIDTH= 1  << LOG2WIDTH
77 78
  parameter integer LOG2WIDTH_RD = 6,  // WIDTH= 1  << LOG2WIDTH
  parameter         DUMMY = 0
Andrey Filippov's avatar
Andrey Filippov committed
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
 )
   (
      input                         rclk,     // clock for read port
//      input  [ 9:0] raddr,    // read address
      input        [14-LOG2WIDTH_RD:0] raddr,    // read address
      input                            ren,      // read port enable
      input                            regen,    // output register enable
      output [(1 << LOG2WIDTH_RD)-1:0] data_out, // data out
      
      input                            wclk,     // clock for read port
      input        [14-LOG2WIDTH_WR:0] waddr,    // write address
      input                            we,       // write port enable
      input                     [ 7:0] web,      // write byte enable
      input  [(1 << LOG2WIDTH_WR)-1:0] data_in   // data out
    );
    generate
95 96 97 98 99 100 101
        if (DUMMY)
            ram_dummy #(
                .LOG2WIDTH_RD(LOG2WIDTH_RD)
            ) ramp_dummy_i (
                .data_out(data_out) 
            );
        else if ((LOG2WIDTH_WR == 6) && (LOG2WIDTH_RD == 6))
Andrey Filippov's avatar
Andrey Filippov committed
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
            ram_64w_64r #(
                .REGISTERS    (REGISTERS)
            ) ram_i (
                .rclk         (rclk),     // input
                .raddr        (raddr),    // input[8:0] 
                .ren          (ren),      // input
                .regen        (regen),    // input
                .data_out     (data_out), // output[63:0] 
                .wclk         (wclk),     // input
                .waddr        (waddr),    // input[8:0] 
                .we           (we),       // input
                .web          (web),      // input[7:0] 
                .data_in      (data_in)   // input[63:0] 
            );
        else if ((LOG2WIDTH_WR == 6) && (LOG2WIDTH_RD < 6))
            ram_64w_lt64r #(
                .REGISTERS    (REGISTERS),
                .LOG2WIDTH_RD (LOG2WIDTH_RD)
            ) ram_i (
                .rclk         (rclk),     // input
                .raddr        (raddr),    // input[(>8):0] 
                .ren          (ren),      // input
                .regen        (regen),    // input
                .data_out     (data_out), // output[(<32):0] 
                .wclk         (wclk),     // input
                .waddr        (waddr),    // input[8:0] 
                .we           (we),       // input
                .web          (web),      // input[7:0] 
                .data_in      (data_in)   // input[63:0] 
            );
        else if ((LOG2WIDTH_WR < 6) && (LOG2WIDTH_RD == 6))
            ram_lt64w_64r #(
                .REGISTERS    (REGISTERS),
                .LOG2WIDTH_WR (LOG2WIDTH_WR)
            ) ram_i (
                .rclk         (rclk),     // input
                .raddr        (raddr),    // input[8:0] 
                .ren          (ren),      // input
                .regen        (regen),    // input
                .data_out     (data_out), // output[63:0] 
                .wclk         (wclk),     // input
                .waddr        (waddr),    // input[(>8):0] 
                .we           (we),       // input
                .web          (web),      // input[7:0] 
                .data_in      (data_in)   // input[(<32):0] 
            );
        else if ((LOG2WIDTH_WR < 6) && (LOG2WIDTH_RD < 6))
            ram_lt64w_lt64r #(
                .REGISTERS    (REGISTERS),
                .LOG2WIDTH_WR (LOG2WIDTH_WR),
                .LOG2WIDTH_RD (LOG2WIDTH_RD)
            ) ram_i (
                .rclk         (rclk),     // input
                .raddr        (raddr),    // input[(>8):0] 
                .ren          (ren),      // input
                .regen        (regen),    // input
                .data_out     (data_out), // output[(<32):0] 
                .wclk         (wclk),     // input
                .waddr        (waddr),    // input[(>8):0] 
                .we           (we),       // input
                .web          (web),      // input[7:0] 
                .data_in      (data_in)   // input[(<32):0] 
            );
    endgenerate
endmodule

// Both ports with 64 bit widths
module  ram_64w_64r
#(
  parameter integer REGISTERS    = 0 // 1 - registered output
 )
   (
      input                         rclk,     // clock for read port
      input                   [8:0] raddr,    // read address
      input                         ren,      // read port enable
      input                         regen,    // output register enable
      output                 [63:0] data_out, // data out
      
      input                         wclk,     // clock for read port
      input                  [ 8:0] waddr,    // write address
      input                         we,       // write port enable
      input                  [ 7:0] web,      // write byte enable
      input                  [63:0] data_in  // data out
    );
    localparam  PWIDTH_WR=72;
    localparam  PWIDTH_RD=72;
    
    RAMB36E1
    #(
    .RSTREG_PRIORITY_A         ("RSTREG"),       // Valid: "RSTREG" or "REGCE"
    .RSTREG_PRIORITY_B         ("RSTREG"),       // Valid: "RSTREG" or "REGCE"
    .DOA_REG                   (REGISTERS),      // Valid: 0 (no output registers) and 1 - one output register (in SDP - to lower 36)
    .DOB_REG                   (REGISTERS),      // Valid: 0 (no output registers) and 1 - one output register (in SDP - to lower 36)
    .RAM_EXTENSION_A           ("NONE"),         // Cascading, valid: "NONE","UPPER", LOWER"
    .RAM_EXTENSION_B           ("NONE"),         // Cascading, valid: "NONE","UPPER", LOWER"
    .READ_WIDTH_A              (PWIDTH_RD),      // Valid: 0,1,2,4,9,18,36 and in SDP mode - 72 (should be 0 if port is not used)
    .READ_WIDTH_B              (0),              // Valid: 0,1,2,4,9,18,36 and in SDP mode - 72 (should be 0 if port is not used)
    .WRITE_WIDTH_A             (0),              // Valid: 0,1,2,4,9,18,36 and in SDP mode - 72 (should be 0 if port is not used)
    .WRITE_WIDTH_B             (PWIDTH_WR),      // Valid: 0,1,2,4,9,18,36 and in SDP mode - 72 (should be 0 if port is not used)
    .RAM_MODE                  ("SDP"),          // Valid "TDP" (true dual-port) and "SDP" - simple dual-port
    .WRITE_MODE_A              ("WRITE_FIRST"),  // Valid: "WRITE_FIRST", "READ_FIRST", "NO_CHANGE"
    .WRITE_MODE_B              ("WRITE_FIRST"),  // Valid: "WRITE_FIRST", "READ_FIRST", "NO_CHANGE"
    .RDADDR_COLLISION_HWCONFIG ("DELAYED_WRITE"),// Valid: "DELAYED_WRITE","PERFORMANCE" (no access to the same page)
    .SIM_COLLISION_CHECK       ("ALL"),          // Valid: "ALL", "GENERATE_X_ONLY", "NONE", and "WARNING_ONLY"
    .INIT_FILE                 ("NONE"),         // "NONE" or filename with initialization data
    .SIM_DEVICE                ("7SERIES"),      // Simulation device family - "VIRTEX6", "VIRTEX5" and "7_SERIES" // "7SERIES"
    .EN_ECC_READ               ("FALSE"),        // Valid:"FALSE","TRUE" (ECC decoder circuitry)
    .EN_ECC_WRITE              ("FALSE")         // Valid:"FALSE","TRUE" (ECC decoder circuitry)
    ) RAMB36E1_i
    (
        // Port A (Read port in SDP mode):
        .DOADO           (data_out[31:0]), // Port A data/LSB data[31:0], output
        .DOPADOP         (),               // Port A parity/LSB parity[3:0], output
        .DIADI           (data_in[31:0]),  // Port A data/LSB data[31:0], input
        .DIPADIP         (4'h0),           // Port A parity/LSB parity[3:0], input
        .ADDRARDADDR     ({1'b1,raddr[8:0],6'b111111}),  // Port A (read port in SDP) address [15:0]. used from [14] down, unused should be high, input
        .CLKARDCLK       (rclk),           // Port A (read port in SDP) clock, input
        .ENARDEN         (ren),            // Port A (read port in SDP) Enable, input
        .REGCEAREGCE     (regen),          // Port A (read port in SDP) register enable, input
        .RSTRAMARSTRAM   (1'b0),           // Port A (read port in SDP) set/reset, input
        .RSTREGARSTREG   (1'b0),           // Port A (read port in SDP) register set/reset, input
        .WEA             (4'b0),           // Port A (read port in SDP) Write Enable[3:0], input
        // Port B
        .DOBDO           (data_out[63:32]),// Port B data/MSB data[31:0], output
        .DOPBDOP         (),               // Port B parity/MSB parity[3:0], output
        .DIBDI           (data_in[63:32]), // Port B data/MSB data[31:0], input
        .DIPBDIP         (4'b0),           // Port B parity/MSB parity[3:0], input
        .ADDRBWRADDR     ({1'b1,waddr[8:0],6'b111111}), // Port B (write port in SDP) address [15:0]. used from [14] down, unused should be high, input
        .CLKBWRCLK       (wclk),           // Port B (write port in SDP) clock, input
        .ENBWREN         (we),             // Port B (write port in SDP) Enable, input
        .REGCEB          (1'b0),           // Port B (write port in SDP) register enable, input
        .RSTRAMB         (1'b0),           // Port B (write port in SDP) set/reset, input
        .RSTREGB         (1'b0),           // Port B (write port in SDP) register set/reset, input
        .WEBWE           (web),            // Port B (write port in SDP) Write Enable[7:0], input
        // Error correction circuitry
        .SBITERR         (),               // Single bit error status, output
        .DBITERR         (),               // Double bit error status, output
        .ECCPARITY       (),               // Genearted error correction parity [7:0], output
        .RDADDRECC       (),               // ECC read address[8:0], output
        .INJECTSBITERR   (1'b0),           // inject a single-bit error, input
        .INJECTDBITERR   (1'b0),           // inject a double-bit error, input
        // Cascade signals to create 64Kx1
        .CASCADEOUTA     (),               // A-port cascade, output   
        .CASCADEOUTB     (),               // B-port cascade, output
        .CASCADEINA      (1'b0),           // A-port cascade, input
        .CASCADEINB      (1'b0)            // B-port cascade, input
    );

endmodule

252
// Both ports with less than 64 bit widths - TODO: see if it is still possible to use SDP
Andrey Filippov's avatar
Andrey Filippov committed
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
module  ram_lt64w_lt64r
#(
  parameter integer REGISTERS    = 0, // 1 - registered output
  parameter integer LOG2WIDTH_WR = 5,  // WIDTH= 1  << LOG2WIDTH
  parameter integer LOG2WIDTH_RD = 5   // WIDTH= 1  << LOG2WIDTH
 )
   (
      input                            rclk,     // clock for read port
//      input  [ 9:0] raddr,    // read address
      input        [14-LOG2WIDTH_RD:0] raddr,    // read address
      input                            ren,      // read port enable
      input                            regen,    // output register enable
      output [(1 << LOG2WIDTH_RD)-1:0] data_out, // data out
      
      input                            wclk,     // clock for read port
      input        [14-LOG2WIDTH_WR:0] waddr,    // write address
      input                            we,       // write port enable
      input                     [ 7:0] web,      // write byte enable
      input  [(1 << LOG2WIDTH_WR)-1:0] data_in   // data out
    );
    localparam  PWIDTH_WR = (LOG2WIDTH_WR > 2)? (9 << (LOG2WIDTH_WR - 3)): (1 << LOG2WIDTH_WR);
    localparam  PWIDTH_RD = (LOG2WIDTH_RD > 2)? (9 << (LOG2WIDTH_RD - 3)): (1 << LOG2WIDTH_RD);
    localparam  WIDTH_WR  = 1 << LOG2WIDTH_WR;
    localparam  WIDTH_RD  = 1 << LOG2WIDTH_RD;
    wire          [31:0] data_out32;
    wire [WIDTH_WR+31:0] data_in_ext = {32'b0,data_in};
    wire          [31:0] data_in32=data_in_ext[31:0];
    assign data_out=data_out32[WIDTH_RD-1:0];
    RAMB36E1
    #(
    .RSTREG_PRIORITY_A         ("RSTREG"),       // Valid: "RSTREG" or "REGCE"
    .RSTREG_PRIORITY_B         ("RSTREG"),       // Valid: "RSTREG" or "REGCE"
    .DOA_REG                   (REGISTERS),      // Valid: 0 (no output registers) and 1 - one output register (in SDP - to lower 36)
    .DOB_REG                   (REGISTERS),      // Valid: 0 (no output registers) and 1 - one output register (in SDP - to lower 36)
    .RAM_EXTENSION_A           ("NONE"),         // Cascading, valid: "NONE","UPPER", LOWER"
    .RAM_EXTENSION_B           ("NONE"),         // Cascading, valid: "NONE","UPPER", LOWER"
    .READ_WIDTH_A              (PWIDTH_RD),      // Valid: 0,1,2,4,9,18,36 and in SDP mode - 72 (should be 0 if port is not used)
    .READ_WIDTH_B              (0),              // Valid: 0,1,2,4,9,18,36 and in SDP mode - 72 (should be 0 if port is not used)
    .WRITE_WIDTH_A             (0),              // Valid: 0,1,2,4,9,18,36 and in SDP mode - 72 (should be 0 if port is not used)
    .WRITE_WIDTH_B             (PWIDTH_WR),      // Valid: 0,1,2,4,9,18,36 and in SDP mode - 72 (should be 0 if port is not used)
293
    .RAM_MODE                  ("TDP"),          // Valid "TDP" (true dual-port) and "SDP" - simple dual-port
Andrey Filippov's avatar
Andrey Filippov committed
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
    .WRITE_MODE_A              ("WRITE_FIRST"),  // Valid: "WRITE_FIRST", "READ_FIRST", "NO_CHANGE"
    .WRITE_MODE_B              ("WRITE_FIRST"),  // Valid: "WRITE_FIRST", "READ_FIRST", "NO_CHANGE"
    .RDADDR_COLLISION_HWCONFIG ("DELAYED_WRITE"),// Valid: "DELAYED_WRITE","PERFORMANCE" (no access to the same page)
    .SIM_COLLISION_CHECK       ("ALL"),          // Valid: "ALL", "GENERATE_X_ONLY", "NONE", and "WARNING_ONLY"
    .INIT_FILE                 ("NONE"),         // "NONE" or filename with initialization data
    .SIM_DEVICE                ("7SERIES"),      // Simulation device family - "VIRTEX6", "VIRTEX5" and "7_SERIES" // "7SERIES"

    .EN_ECC_READ               ("FALSE"),        // Valid:"FALSE","TRUE" (ECC decoder circuitry)
    .EN_ECC_WRITE              ("FALSE")         // Valid:"FALSE","TRUE" (ECC decoder circuitry)
//    .INIT_A(36'h0),               // Output latches initialization data
//    .INIT_B(36'h0),               // Output latches initialization data
//    .SRVAL_A(36'h0),              // Output latches initialization data (copied at when RSTRAM/RSTREG activated)    
//    .SRVAL_B(36'h0)               // Output latches initialization data (copied at when RSTRAM/RSTREG activated)
/*
    parameter IS_CLKARDCLK_INVERTED = 1'b0;
    parameter IS_CLKBWRCLK_INVERTED = 1'b0;
    parameter IS_ENARDEN_INVERTED = 1'b0;
    parameter IS_ENBWREN_INVERTED = 1'b0;
    parameter IS_RSTRAMARSTRAM_INVERTED = 1'b0;
    parameter IS_RSTRAMB_INVERTED = 1'b0;
    parameter IS_RSTREGARSTREG_INVERTED = 1'b0;
    parameter IS_RSTREGB_INVERTED = 1'b0;
*/    
    
    ) RAMB36E1_i
    (
        // Port A (Read port in SDP mode):
        .DOADO           (data_out32),     // Port A data/LSB data[31:0], output
        .DOPADOP         (),               // Port A parity/LSB parity[3:0], output
        .DIADI           (32'h0),          // Port A data/LSB data[31:0], input
        .DIPADIP         (4'h0),           // Port A parity/LSB parity[3:0], input
        .ADDRARDADDR     ({1'b1,raddr,{LOG2WIDTH_RD{1'b1}}}),  // Port A (read port in SDP) address [15:0]. used from [14] down, unused should be high, input
        .CLKARDCLK       (rclk),           // Port A (read port in SDP) clock, input
        .ENARDEN         (ren),            // Port A (read port in SDP) Enable, input
        .REGCEAREGCE     (regen),          // Port A (read port in SDP) register enable, input
        .RSTRAMARSTRAM   (1'b0),           // Port A (read port in SDP) set/reset, input
        .RSTREGARSTREG   (1'b0),           // Port A (read port in SDP) register set/reset, input
        .WEA             (4'b0),           // Port A (read port in SDP) Write Enable[3:0], input
        // Port B
        .DOBDO           (),               // Port B data/MSB data[31:0], output
        .DOPBDOP         (),               // Port B parity/MSB parity[3:0], output
        .DIBDI           (data_in32),      // Port B data/MSB data[31:0], input
        .DIPBDIP         (4'b0),           // Port B parity/MSB parity[3:0], input
        .ADDRBWRADDR     ({1'b1,waddr,{LOG2WIDTH_WR{1'b1}}}), // Port B (write port in SDP) address [15:0]. used from [14] down, unused should be high, input
        .CLKBWRCLK       (wclk),           // Port B (write port in SDP) clock, input
        .ENBWREN         (we),             // Port B (write port in SDP) Enable, input
        .REGCEB          (1'b0),           // Port B (write port in SDP) register enable, input
        .RSTRAMB         (1'b0),           // Port B (write port in SDP) set/reset, input
        .RSTREGB         (1'b0),           // Port B (write port in SDP) register set/reset, input
        .WEBWE           (web[7:0]),       // Port B (write port in SDP) Write Enable[7:0], input
        // Error correction circuitry
        .SBITERR         (),               // Single bit error status, output
        .DBITERR         (),               // Double bit error status, output
        .ECCPARITY       (),               // Genearted error correction parity [7:0], output
        .RDADDRECC       (),               // ECC read address[8:0], output
        .INJECTSBITERR   (1'b0),           // inject a single-bit error, input
        .INJECTDBITERR   (1'b0),           // inject a double-bit error, input
        // Cascade signals to create 64Kx1
        .CASCADEOUTA     (),               // A-port cascade, output   
        .CASCADEOUTB     (),               // B-port cascade, output
        .CASCADEINA      (1'b0),           // A-port cascade, input
        .CASCADEINB      (1'b0)            // B-port cascade, input
    );

endmodule

// Write port less than 64bits, read port 64 bit widths
module  ram_lt64w_64r
#(
  parameter integer REGISTERS    = 0, // 1 - registered output
  parameter integer LOG2WIDTH_WR = 5  // WIDTH= 1  << LOG2WIDTH
 )
   (
      input                            rclk,     // clock for read port
//      input  [ 9:0] raddr,    // read address
      input                      [8:0] raddr,    // read address
      input                            ren,      // read port enable
      input                            regen,    // output register enable
      output                    [63:0] data_out, // data out
      
      input                            wclk,     // clock for read port
      input        [14-LOG2WIDTH_WR:0] waddr,    // write address
      input                            we,       // write port enable
      input                     [ 7:0] web,      // write byte enable
      input  [(1 << LOG2WIDTH_WR)-1:0] data_in   // data out
    );
    localparam  PWIDTH_WR = (LOG2WIDTH_WR > 2)? (9 << (LOG2WIDTH_WR - 3)): (1 << LOG2WIDTH_WR);
    localparam  PWIDTH_RD = 72;
    localparam  WIDTH_WR  = 1 << LOG2WIDTH_WR;
//    localparam  WIDTH_RD  = 64;
    wire [WIDTH_WR+31:0] data_in_ext = {32'b0,data_in};
    wire          [31:0] data_in32=data_in_ext[31:0];
    RAMB36E1
    #(
    .RSTREG_PRIORITY_A         ("RSTREG"),       // Valid: "RSTREG" or "REGCE"
    .RSTREG_PRIORITY_B         ("RSTREG"),       // Valid: "RSTREG" or "REGCE"
    .DOA_REG                   (REGISTERS),      // Valid: 0 (no output registers) and 1 - one output register (in SDP - to lower 36)
    .DOB_REG                   (REGISTERS),      // Valid: 0 (no output registers) and 1 - one output register (in SDP - to lower 36)
    .RAM_EXTENSION_A           ("NONE"),         // Cascading, valid: "NONE","UPPER", LOWER"
    .RAM_EXTENSION_B           ("NONE"),         // Cascading, valid: "NONE","UPPER", LOWER"
    .READ_WIDTH_A              (PWIDTH_RD),      // Valid: 0,1,2,4,9,18,36 and in SDP mode - 72 (should be 0 if port is not used)
    .READ_WIDTH_B              (0),              // Valid: 0,1,2,4,9,18,36 and in SDP mode - 72 (should be 0 if port is not used)
    .WRITE_WIDTH_A             (0),              // Valid: 0,1,2,4,9,18,36 and in SDP mode - 72 (should be 0 if port is not used)
    .WRITE_WIDTH_B             (PWIDTH_WR),      // Valid: 0,1,2,4,9,18,36 and in SDP mode - 72 (should be 0 if port is not used)
    .RAM_MODE                  ("SDP"),          // Valid "TDP" (true dual-port) and "SDP" - simple dual-port
    .WRITE_MODE_A              ("WRITE_FIRST"),  // Valid: "WRITE_FIRST", "READ_FIRST", "NO_CHANGE"
    .WRITE_MODE_B              ("WRITE_FIRST"),  // Valid: "WRITE_FIRST", "READ_FIRST", "NO_CHANGE"
    .RDADDR_COLLISION_HWCONFIG ("DELAYED_WRITE"),// Valid: "DELAYED_WRITE","PERFORMANCE" (no access to the same page)
    .SIM_COLLISION_CHECK       ("ALL"),          // Valid: "ALL", "GENERATE_X_ONLY", "NONE", and "WARNING_ONLY"
    .INIT_FILE                 ("NONE"),         // "NONE" or filename with initialization data
    .SIM_DEVICE                ("7SERIES"),      // Simulation device family - "VIRTEX6", "VIRTEX5" and "7_SERIES" // "7SERIES"

    .EN_ECC_READ               ("FALSE"),        // Valid:"FALSE","TRUE" (ECC decoder circuitry)
    .EN_ECC_WRITE              ("FALSE")         // Valid:"FALSE","TRUE" (ECC decoder circuitry)
    ) RAMB36E1_i
    (
        // Port A (Read port in SDP mode):
        .DOADO           (data_out[31:0]), // Port A data/LSB data[31:0], output
        .DOPADOP         (),               // Port A parity/LSB parity[3:0], output
        .DIADI           (32'h0),          // Port A data/LSB data[31:0], input
        .DIPADIP         (4'h0),           // Port A parity/LSB parity[3:0], input
        .ADDRARDADDR     ({1'b1,raddr[8:0],6'b111111}),  // Port A (read port in SDP) address [15:0]. used from [14] down, unused should be high, input
        .CLKARDCLK       (rclk),           // Port A (read port in SDP) clock, input
        .ENARDEN         (ren),            // Port A (read port in SDP) Enable, input
        .REGCEAREGCE     (regen),          // Port A (read port in SDP) register enable, input
        .RSTRAMARSTRAM   (1'b0),           // Port A (read port in SDP) set/reset, input
        .RSTREGARSTREG   (1'b0),           // Port A (read port in SDP) register set/reset, input
        .WEA             (4'b0),           // Port A (read port in SDP) Write Enable[3:0], input
        // Port B
        .DOBDO           (data_out[63:32]), // Port B data/MSB data[31:0], output
        .DOPBDOP         (),               // Port B parity/MSB parity[3:0], output
        .DIBDI           (data_in32),      // Port B data/MSB data[31:0], input
        .DIPBDIP         (4'b0),           // Port B parity/MSB parity[3:0], input
        .ADDRBWRADDR     ({1'b1,waddr,{LOG2WIDTH_WR{1'b1}}}), // Port B (write port in SDP) address [15:0]. used from [14] down, unused should be high, input
        .CLKBWRCLK       (wclk),           // Port B (write port in SDP) clock, input
        .ENBWREN         (we),             // Port B (write port in SDP) Enable, input
        .REGCEB          (1'b0),           // Port B (write port in SDP) register enable, input
        .RSTRAMB         (1'b0),           // Port B (write port in SDP) set/reset, input
        .RSTREGB         (1'b0),           // Port B (write port in SDP) register set/reset, input
        .WEBWE           (web[7:0]),       // Port B (write port in SDP) Write Enable[7:0], input
        // Error correction circuitry
        .SBITERR         (),               // Single bit error status, output
        .DBITERR         (),               // Double bit error status, output
        .ECCPARITY       (),               // Genearted error correction parity [7:0], output
        .RDADDRECC       (),               // ECC read address[8:0], output
        .INJECTSBITERR   (1'b0),           // inject a single-bit error, input
        .INJECTDBITERR   (1'b0),           // inject a double-bit error, input
        // Cascade signals to create 64Kx1
        .CASCADEOUTA     (),               // A-port cascade, output   
        .CASCADEOUTB     (),               // B-port cascade, output
        .CASCADEINA      (1'b0),           // A-port cascade, input
        .CASCADEINB      (1'b0)            // B-port cascade, input
    );

endmodule

// Write port 64 bita, read port - less than 64 bits
module  ram_64w_lt64r
#(
  parameter integer REGISTERS    = 0, // 1 - registered output
//  parameter integer LOG2WIDTH_WR = 5,  // WIDTH= 1  << LOG2WIDTH
  parameter integer LOG2WIDTH_RD = 5   // WIDTH= 1  << LOG2WIDTH
 )
   (
      input                            rclk,     // clock for read port
//      input  [ 9:0] raddr,    // read address
      input        [14-LOG2WIDTH_RD:0] raddr,    // read address
      input                            ren,      // read port enable
      input                            regen,    // output register enable
      output [(1 << LOG2WIDTH_RD)-1:0] data_out, // data out
      
      input                            wclk,     // clock for read port
      input                      [8:0] waddr,    // write address
      input                            we,       // write port enable
      input                     [ 7:0] web,      // write byte enable
      input                     [63:0] data_in   // data out
    );
    localparam  PWIDTH_WR = 72;
    localparam  PWIDTH_RD = (LOG2WIDTH_RD > 2)? (9 << (LOG2WIDTH_RD - 3)): (1 << LOG2WIDTH_RD);
    localparam  WIDTH_RD  = 1 << LOG2WIDTH_RD;
    wire          [31:0] data_out32;
    assign data_out=data_out32[WIDTH_RD-1:0];
    RAMB36E1
    #(
    .RSTREG_PRIORITY_A         ("RSTREG"),       // Valid: "RSTREG" or "REGCE"
    .RSTREG_PRIORITY_B         ("RSTREG"),       // Valid: "RSTREG" or "REGCE"
    .DOA_REG                   (REGISTERS),      // Valid: 0 (no output registers) and 1 - one output register (in SDP - to lower 36)
    .DOB_REG                   (REGISTERS),      // Valid: 0 (no output registers) and 1 - one output register (in SDP - to lower 36)
    .RAM_EXTENSION_A           ("NONE"),         // Cascading, valid: "NONE","UPPER", LOWER"
    .RAM_EXTENSION_B           ("NONE"),         // Cascading, valid: "NONE","UPPER", LOWER"
    .READ_WIDTH_A              (PWIDTH_RD),      // Valid: 0,1,2,4,9,18,36 and in SDP mode - 72 (should be 0 if port is not used)
    .READ_WIDTH_B              (0),              // Valid: 0,1,2,4,9,18,36 and in SDP mode - 72 (should be 0 if port is not used)
    .WRITE_WIDTH_A             (0),              // Valid: 0,1,2,4,9,18,36 and in SDP mode - 72 (should be 0 if port is not used)
    .WRITE_WIDTH_B             (PWIDTH_WR),      // Valid: 0,1,2,4,9,18,36 and in SDP mode - 72 (should be 0 if port is not used)
    .RAM_MODE                  ("SDP"),          // Valid "TDP" (true dual-port) and "SDP" - simple dual-port
    .WRITE_MODE_A              ("WRITE_FIRST"),  // Valid: "WRITE_FIRST", "READ_FIRST", "NO_CHANGE"
    .WRITE_MODE_B              ("WRITE_FIRST"),  // Valid: "WRITE_FIRST", "READ_FIRST", "NO_CHANGE"
    .RDADDR_COLLISION_HWCONFIG ("DELAYED_WRITE"),// Valid: "DELAYED_WRITE","PERFORMANCE" (no access to the same page)
    .SIM_COLLISION_CHECK       ("ALL"),          // Valid: "ALL", "GENERATE_X_ONLY", "NONE", and "WARNING_ONLY"
    .INIT_FILE                 ("NONE"),         // "NONE" or filename with initialization data
    .SIM_DEVICE                ("7SERIES"),      // Simulation device family - "VIRTEX6", "VIRTEX5" and "7_SERIES" // "7SERIES"

    .EN_ECC_READ               ("FALSE"),        // Valid:"FALSE","TRUE" (ECC decoder circuitry)
    .EN_ECC_WRITE              ("FALSE")         // Valid:"FALSE","TRUE" (ECC decoder circuitry)
    ) RAMB36E1_i
    (
        // Port A (Read port in SDP mode):
        .DOADO           (data_out32),     // Port A data/LSB data[31:0], output
        .DOPADOP         (),               // Port A parity/LSB parity[3:0], output
        .DIADI           (data_in[31:0]),  // Port A data/LSB data[31:0], input
        .DIPADIP         (4'h0),           // Port A parity/LSB parity[3:0], input
        .ADDRARDADDR     ({1'b1,raddr,{LOG2WIDTH_RD{1'b1}}}),  // Port A (read port in SDP) address [15:0]. used from [14] down, unused should be high, input
        .CLKARDCLK       (rclk),           // Port A (read port in SDP) clock, input
        .ENARDEN         (ren),            // Port A (read port in SDP) Enable, input
        .REGCEAREGCE     (regen),          // Port A (read port in SDP) register enable, input
        .RSTRAMARSTRAM   (1'b0),           // Port A (read port in SDP) set/reset, input
        .RSTREGARSTREG   (1'b0),           // Port A (read port in SDP) register set/reset, input
        .WEA             (4'b0),           // Port A (read port in SDP) Write Enable[3:0], input
        // Port B
        .DOBDO           (),               // Port B data/MSB data[31:0], output
        .DOPBDOP         (),               // Port B parity/MSB parity[3:0], output
        .DIBDI           (data_in[63:32]), // Port B data/MSB data[31:0], input
        .DIPBDIP         (4'b0),           // Port B parity/MSB parity[3:0], input
        .ADDRBWRADDR({1'b1,waddr[8:0],6'b111111}), // Port B (write port in SDP) address [15:0]. used from [14] down, unused should be high, input
        .CLKBWRCLK       (wclk),           // Port B (write port in SDP) clock, input
        .ENBWREN         (we),             // Port B (write port in SDP) Enable, input
        .REGCEB          (1'b0),           // Port B (write port in SDP) register enable, input
        .RSTRAMB         (1'b0),           // Port B (write port in SDP) set/reset, input
        .RSTREGB         (1'b0),           // Port B (write port in SDP) register set/reset, input
        .WEBWE           (web[7:0]),       // Port B (write port in SDP) Write Enable[7:0], input
        // Error correction circuitry
        .SBITERR         (),               // Single bit error status, output
        .DBITERR         (),               // Double bit error status, output
        .ECCPARITY       (),               // Genearted error correction parity [7:0], output
        .RDADDRECC       (),               // ECC read address[8:0], output
        .INJECTSBITERR   (1'b0),           // inject a single-bit error, input
        .INJECTDBITERR   (1'b0),           // inject a double-bit error, input
        // Cascade signals to create 64Kx1
        .CASCADEOUTA     (),               // A-port cascade, output   
        .CASCADEOUTB     (),               // B-port cascade, output
        .CASCADEINA      (1'b0),           // A-port cascade, input
        .CASCADEINB      (1'b0)            // B-port cascade, input
    );

endmodule

540 541 542 543 544 545 546 547 548 549
module  ram_dummy
#(
  parameter integer LOG2WIDTH_RD = 5   // WIDTH= 1  << LOG2WIDTH
 )
   (
      output [(1 << LOG2WIDTH_RD)-1:0] data_out // data out
   );
   assign data_out=0;
endmodule