simul_saxi_gp_wr.v 16.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*!
 * <b>Module:</b>simul_saxi_gp_wr
 * @file simul_saxi_gp_wr.v
 * @date 2015-08-04  
 * @author Andrey Filippov     
 *
 * @brief Simplified model of AXI_GP write channel
 *
 * @copyright Copyright (c) 2015 Elphel, Inc.
 *
 * <b>License:</b>
12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 * simul_saxi_gp_wr.v is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 *  simul_saxi_gp_wr.v is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/> .
25 26 27 28 29 30
 *
 * Additional permission under GNU GPL version 3 section 7:
 * If you modify this Program, or any covered work, by linking or combining it
 * with independent modules provided by the FPGA vendor only (this permission
 * does not extend to any 3-rd party modules, "soft cores" or macros) under
 * different license terms solely for the purpose of generating binary "bitstream"
31
 * files and/or simulating the code, the copyright holders of this Program give
32 33
 * you the right to distribute the covered work without those independent modules
 * as long as the source code for them is available from the FPGA vendor free of
Andrey Filippov's avatar
Andrey Filippov committed
34
 * charge, and there is no dependence on any encrypted modules for simulating of
35 36 37
 * the combined code. This permission applies to you if the distributed code
 * contains all the components and scripts required to completely simulate it
 * with at least one of the Free Software programs.
38
 */
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
`timescale 1ns/1ps

module  simul_saxi_gp_wr(
    input         rst,
    // AXI signals
    input         aclk,
    output        aresetn, // do not use?
    // write address
    input  [31:0] awaddr,
    input         awvalid,
    output        awready,
    input  [ 5:0] awid,
    input  [ 1:0] awlock,   // verify the correct values are here
    input  [ 3:0] awcache,  // verify the correct values are here
    input  [ 2:0] awprot,   // verify the correct values are here
    input  [ 3:0] awlen,
    input  [ 1:0] awsize,
    input  [ 1:0] awburst,
    input  [ 3:0] awqos,    // verify the correct values are here
    // write data
    input  [31:0] wdata,
    input         wvalid,
    output        wready,
    input  [ 5:0] wid,
    input         wlast,
    input  [ 3:0] wstrb,
    // write response
    output        bvalid,
    input         bready,
    output [ 5:0] bid,
    output [ 1:0] bresp,
    
    // Simulation signals - use same aclk
    output [31:0] sim_wr_address,
    output [ 5:0] sim_wid,
    output        sim_wr_valid, // ready to provide simulation data
    input         sim_wr_ready, // simulation may pause this channel by keeping this signal inactive
    output [31:0] sim_wr_data,
    output [ 3:0] sim_wr_stb,
    output [ 1:0] sim_wr_size,    
    input  [ 3:0] sim_bresp_latency, // latency in writing data outside of the module 
    output [ 3:0] sim_wr_qos
);
    localparam AW_FIFO_DEPTH = 3;                 // FIFO number of address bits to fit AW_FIFO_NUM (number is one bit wider)
    localparam W_FIFO_DEPTH = 3;                  //  FIFO number of address bits to fit W_FIFO_NUM
    localparam [AW_FIFO_DEPTH:0] AW_FIFO_NUM = 8; // Maximal number of words in AW FIFO 8-words
    localparam  [W_FIFO_DEPTH:0] W_FIFO_NUM = 8;  // Maximal number of words in AW 8-words
    
    
    localparam VALID_AWLOCK =  2'b0; // TODO
    localparam VALID_AWCACHE = 4'b0011; //
    localparam VALID_AWPROT =  3'b000;
    localparam VALID_AWLOCK_MASK =  2'b11; // TODO
    localparam VALID_AWCACHE_MASK = 4'b0011; //
    localparam VALID_AWPROT_MASK =  3'b010;
/*
http://forums.xilinx.com/t5/Embedded-Processor-System-Design/Accessing-DDR-from-PL-on-Zynq/m-p/324877#M8413
Solved it!
To make it work, I set the (AR/AW)CACHE=0x11 and (AR/AW)PROT=0x00. In the CDMA datasheet, these were the recommended values, which I confirmed with ChipScope, when attached to CDMA's master port.
The default values set by VHLS were 0x00 and 0x10 respectively, which is also the case in the last post.
Alex
*/    

    wire        aw_nempty;
    wire        w_nempty;
    reg  [11:0] next_wr_address_w; // bits that are incremented in 32-bit mode (higher are kept according to AXI 4KB inc. limit)
    reg  [31:0] write_address;
    wire        fifo_wd_rd; // read data fifo
    wire        last_confirmed_write;


    wire  [5:0] awid_out; // verify it matches wid_out when outputting data
    wire  [1:0] awburst_out;
    wire  [1:0] awsize_out;
    wire  [3:0] awlen_out;
    wire [31:0] awaddr_out;
    wire  [5:0] wid_out;
    wire        wlast_out;
    wire  [3:0] wstrb_out;
    wire [31:0] wdata_out;

    reg         fifo_data_we_d;
    reg         fifo_addr_we_d;
    reg   [3:0] write_left;
    reg  [ 1:0] wburst;             // registered burst type
    reg  [ 3:0] wlen;               // registered awlen type (for wrapped over transfers)
    reg  [ 1:0] wsize;
    wire        start_write_burst_w;
    wire        write_in_progress_w; // should go inactive last confirmed upstream cycle
    reg         write_in_progress;
    reg  [ 7:0] num_full_data = 0; // Number of full data bursts in FIFO

    wire  [5:0] wresp_num_in_fifo;
    reg         was_wresp_re=0;
    wire        wresp_re;

    wire [AW_FIFO_DEPTH:0] wacount;
    wire [W_FIFO_DEPTH:0]  wcount;

        
    // documentation sais : "When set, allows the priority of a transaction at the head of the WrCmdQ to be promoted if higher
    // priority transactions are backed up behind it." Whqt about demotion? Assuming it is not demoted
    assign aresetn= ~rst; // probably not needed at all - docs say "do not use"


    // generate ready signals for address and data
//    assign wready= !wcount[7] && (!(&wcount[6:0]) || !fifo_data_we_d);
    assign wready =  (wcount <  W_FIFO_NUM)  && ((wcount  <  (W_FIFO_NUM-1)) || !fifo_data_we_d);
    always @ (posedge rst or posedge aclk) begin
        if (rst) fifo_data_we_d<=0;
        else fifo_data_we_d <= wready && wvalid;
    end
//    assign awready= !wacount[5] && (!(&wacount[4:0]) || !fifo_addr_we_d);
    assign awready = (wacount < AW_FIFO_NUM) && ((wacount < (AW_FIFO_NUM-1)) || !fifo_addr_we_d);
    always @ (posedge rst or posedge aclk) begin
        if (rst) fifo_addr_we_d<=0;
        else fifo_addr_we_d <= awready && awvalid;
    end
    
    // Count full data bursts ready in FIFO
    always @ (posedge rst or posedge aclk) begin
        if (rst) num_full_data <=0;
        else if (wvalid && wready && wlast     && !start_write_burst_w) num_full_data <= num_full_data + 1;
        else if (!(wvalid && wready && wlast)  &&  start_write_burst_w) num_full_data <= num_full_data - 1;
    end
    
    
    assign sim_wr_address= write_address;
    assign fifo_wd_rd=   write_in_progress && w_nempty && sim_wr_ready;
    assign sim_wr_valid= write_in_progress && w_nempty; // for continuing writes
    assign last_confirmed_write = (write_left==0) && fifo_wd_rd && wlast_out; // wlast_out should take precedence over write_left?
    assign start_write_burst_w= 
        aw_nempty && w_nempty &&
        (! write_in_progress || last_confirmed_write);

    assign write_in_progress_w= 
        (aw_nempty && w_nempty) || (write_in_progress && !last_confirmed_write); 

    // AXI: Bursts should not cross 4KB boundaries (... and to limit size of the address incrementer)
    // in 64 bit mode - low 3 bits are preserved, next 9 are incremented 
    always @* begin
        case (wburst)
            2'h0: next_wr_address_w[11:0] <= write_address[11:0];
            2'h1: next_wr_address_w[11:0] <= write_address[11:0] + (1 << wsize);
            2'h2:   case (wsize)
Andrey Filippov's avatar
Andrey Filippov committed
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
                        2'h3:  begin
                                   next_wr_address_w[11:3] <= (write_address[11:3] + 1) & {5'h1f, ~wlen[3:0]};
                                   next_wr_address_w[ 2:0] <= write_address[2:0]; 
                               end
                        2'h2:  begin
                                   next_wr_address_w[11:2] <= (write_address[11:2] + 1) & {6'h3f, ~wlen[3:0]};
                                   next_wr_address_w[ 1:0] <=  write_address[1:0]; 
                               end 
                        2'h1:  begin
                                   next_wr_address_w[11:1] <= (write_address[11:1] + 1) & {7'h7f, ~wlen[3:0]};
                                   next_wr_address_w[0:0]    <= write_address[0:0];
                               end  
                        2'h0:  begin
                                next_wr_address_w[11:0] <=  (write_address[11:0] + 1) & {8'hff, ~wlen[3:0]}; 
                               end 
199 200 201 202 203 204 205 206 207 208 209 210 211
                    endcase
            2'h3: next_wr_address_w[11:0] <= 12'bx;          
        endcase
    end
    wire  [3:0] sim_wr_mask =  (awsize_out == 0)? 4'h1 : ((awsize_out == 1)? 4'h3 : 4'hf);
    assign sim_wr_data= wdata_out; 
    assign sim_wid= wid_out;    
    assign sim_wr_stb=wstrb_out & sim_wr_mask; // limit by data size
    assign sim_wr_size = awsize_out;
    
    always @ (posedge  aclk) begin
        if (start_write_burst_w) begin
            if (awid_out != wid_out) begin
212
                $display ("%m: at time %t ERROR: awid=%h, wid=%h",$time,awid_out,wid_out);
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
                $stop;
            end
    
        end
        if (awvalid && awready) begin
            if (((awlock ^ VALID_AWLOCK) & VALID_AWLOCK_MASK) != 0) begin
                $display ("%m: at time %t ERROR: awlock = %h, valid %h with mask %h",$time, awlock, VALID_AWLOCK, VALID_AWLOCK_MASK);
                $stop;
            end
            if (((awcache ^ VALID_AWCACHE) & VALID_AWCACHE_MASK) != 0) begin
                $display ("%m: at time %t ERROR: awcache = %h, valid %h with mask %h",$time, awcache, VALID_AWCACHE, VALID_AWCACHE_MASK);
                $stop;
            end
            if (((awprot ^ VALID_AWPROT) & VALID_AWPROT_MASK) != 0) begin
                $display ("%m: at time %t ERROR: awprot = %h, valid %h with mask %h",$time, awprot, VALID_AWPROT, VALID_AWPROT_MASK);
                $stop;
            end
        end
    end
    
    
        
    always @ (posedge  aclk or posedge  rst) begin
      if   (rst)                    wburst[1:0] <= 0;
      else if (start_write_burst_w) wburst[1:0] <= awburst_out[1:0];

      if   (rst)                    wlen[3:0] <= 0;
      else if (start_write_burst_w) wlen[3:0] <= awlen_out[3:0];
      
      if   (rst)                    wsize[1:0] <= 0;
      else if (start_write_burst_w) wsize[1:0] <= awsize_out[1:0];
      
    
      if   (rst) write_in_progress <= 0;
      else       write_in_progress <= write_in_progress_w;

      if   (rst) write_left <= 0;
      else if (start_write_burst_w) write_left <= awlen_out[3:0]; // precedence over inc
      else if (fifo_wd_rd)           write_left <= write_left-1; //SuppressThisWarning ISExst Result of 32-bit expression is truncated to fit in 4-bit target.
            
      if   (rst)                    write_address <= 32'bx;
      else if (start_write_burst_w) write_address <= awaddr_out; // precedence over inc
      else if (fifo_wd_rd)          write_address <= {write_address[31:12],next_wr_address_w[11:0]};
      
    end
//    localparam AW_FIFO_NUM = 8; // Maximal number of words in AW FIFO 8-words
//    localparam W_FIFO_NUM = 8; // Maximal number of words in AW 8-words
        
    
fifo_same_clock_fill   #( .DATA_WIDTH(50),.DATA_DEPTH(AW_FIFO_DEPTH)) // read - 4, write - 32?
    waddr_i (
264 265 266 267 268 269 270
        .rst          (rst),
        .clk          (aclk),
        .sync_rst     (1'b0),
        .we           (awvalid && awready),
        .re           (start_write_burst_w),
        .data_in      ({awid[5:0],     awburst[1:0],    awsize[1:0],    awlen[3:0],    awaddr[31:0],     awqos[3:0]}),
        .data_out     ({awid_out[5:0], awburst_out[1:0],awsize_out[1:0],awlen_out[3:0],awaddr_out[31:0], sim_wr_qos[3:0]}),
271
        .nempty       (aw_nempty), // output
272 273 274 275 276 277 278
        .half_full    (),        // aw_half_full),
        .under        (),        // waddr_under),  // output reg 
        .over         (),        // waddr_over),   // output reg
        .wcount       (),        // waddr_wcount), // output[3:0] reg 
        .rcount       (),        // waddr_rcount), // output[3:0] reg 
        .wnum_in_fifo (wacount), // output[3:0] 
        .rnum_in_fifo ()         // output[3:0] 
279
    );
280
fifo_same_clock_fill   #( .DATA_WIDTH(43), .DATA_DEPTH(W_FIFO_DEPTH))    
281
    wdata_i (
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
        .rst          (rst),
        .clk          (aclk),
        .sync_rst     (1'b0),
        .we           (wvalid && wready),
        .re           (fifo_wd_rd), //start_write_burst_w), // wrong
        .data_in      ({wlast, wid[5:0],          wstrb[3:0],     wdata[31:0]}),
        .data_out     ({wlast_out,wid_out[5:0],  wstrb_out[3:0], wdata_out[31:0]}),
        .nempty       (w_nempty),
        .half_full    (),                  //w_half_full),
        .under        (), //wdata_under),  // output reg 
        .over         (), //wdata_over),   // output reg
        .wcount       (), //wdata_wcount), // output[3:0] reg 
        .rcount       (), //wdata_rcount), // output[3:0] reg 
        .wnum_in_fifo (wcount),            // output[3:0] 
        .rnum_in_fifo ()                   // output[3:0] 
297 298 299 300 301 302 303 304 305 306 307 308 309
    );
// **** Write response channel ****    
    wire [ 1:0] bresp_value=2'b0;
    wire [ 1:0] bresp_in;
    
    wire fifo_wd_rd_dly;
    wire [5:0] bid_in;

//    input  [ 3:0] sim_bresp_latency, // latency in writing data outside of the module 

    dly_16 #(
        .WIDTH(1)
    ) bresp_dly_16_i (
310 311 312
        .clk(aclk),                                // input
        .rst(rst),                                 // input
        .dly(sim_bresp_latency[3:0]),              // input[3:0] 
313
        .din(last_confirmed_write), //fifo_wd_rd), // input[0:0] 
314
        .dout(fifo_wd_rd_dly)                      // output[0:0] 
315 316 317 318 319 320
    );

    // first FIFO for bresp - latency outside of the module
// wresp per burst, not per item !    
fifo_same_clock_fill  #( .DATA_WIDTH(8),.DATA_DEPTH(5))    
    wresp_ext_i (
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
        .rst           (rst),
        .clk           (aclk),
        .sync_rst      (1'b0),
        .we            (last_confirmed_write),            // fifo_wd_rd),
        .re            (fifo_wd_rd_dly),                  // not allowing RE next cycle after bvalid
        .data_in       ({wid_out[5:0],bresp_value[1:0]}),
        .data_out      ({bid_in[5:0],bresp_in[1:0]}),
        .nempty        (),
        .half_full     (), //),
        .under         (), //wresp_under),                // output reg 
        .over          (), //wresp_over),                 // output reg
        .wcount        (), //wresp_wcount),               // output[3:0] reg 
        .rcount        (), //wresp_rcount),               // output[3:0] reg 
        .wnum_in_fifo  (), // wresp_num_in_fifo)          // output[3:0] 
        .rnum_in_fifo  () // wresp_num_in_fifo)           // output[3:0] 
336 337 338 339 340 341 342 343 344 345 346
    );

    assign wresp_re=bready && bvalid; // && !was_wresp_re;
    always @ (posedge rst or posedge aclk) begin
        if (rst) was_wresp_re<=0;
        else was_wresp_re <= wresp_re;
    end
    assign bvalid=|wresp_num_in_fifo[5:1] || (!was_wresp_re && wresp_num_in_fifo[0]);
    // second wresp FIFO (does it exist in the actual module)?
fifo_same_clock_fill  #( .DATA_WIDTH(8),.DATA_DEPTH(5))    
    wresp_i (
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
        .rst          (rst),
        .clk          (aclk),
        .sync_rst     (1'b0),
        .we           (fifo_wd_rd_dly),
        .re           (wresp_re), // not allowing RE next cycle after bvalid
        .data_in      ({bid_in[5:0],bresp_in[1:0]}),
        .data_out     ({bid[5:0],bresp[1:0]}),
        .nempty       (), //bvalid),
        .half_full    (), //),
        .under        (), //wresp_under), // output reg 
        .over         (), //wresp_over), // output reg
        .wcount       (), //wresp_wcount), // output[3:0] reg 
        .rcount       (), //wresp_rcount), // output[3:0] reg 
        .wnum_in_fifo (), // wresp_num_in_fifo) // output[3:0] 
        .rnum_in_fifo (wresp_num_in_fifo) // wresp_num_in_fifo) // output[3:0] 
362 363 364 365
    );

endmodule