
 1

Functional Setup With TSL: Attaching GREP To Eclipse/ExDT 

Preface 
In this paper we consider a sample task of attaching a new tool to the Eclipse/ExDT environment 
and solve it illustrating the logic of functional setup with TSL. As a sample, we select GREP – a 
great powerful command-line tool to search for a static text or for a basic or an extended regular 
expression, which came from the UNIX world. 

Describing GREP Input Language In TSL 
To attach a tool to Eclipse/ExDT, we need to establish relationships between tool’s parameters, 
its graphic setup dialogs and its command line options must be established. In Eclipse/ExDT 
these relationships ares described in custom TSL – Tools Specification Language. 

Getting Started 
Well, let’s start writing a TSL specification for GREP. First, create a file named grep.xml in the 
Eclipse subdirectory plugins/com.elphel.vdt_1.1.0/tools and write down the standard 
TSL frame: 
 
<?xml version="1.0" encoding="UTF-8"?> 
<elphel-project> 
</elphel-project> 

 
GREP is a simple utility. It is not a part of any package that would need spaical setup, neither it 
takes any configuration or command files on input – only a single command line. Thus we do not 
need to describe any package ot project-template contexts – the only tool context with a 
setup dialog and a single control line will suffice: 
 
<elphel-project> 
  <interface name = "GREPInterface"> 
  </interface> 
  <tool name      = "grep" 
        label     = "GREP tool" 
        exe       = "grep.exe" 
        interface = "GREPInterface"> 
  </tool> 
</elphel-project> 

 
In the header of the tool context section we specify the tool’s internal name, the setup dialog’s 
title, the executable program’s name and the internal name of the interface describing the general 
syntax of the tool’s control language. Also we insert this interface section with the same name. 
Internal names serve for references between objects only, thus we may invent them arbitrarily. 

GREP’s Control Language 
If we run GREP with the single parameter ‘--help’, we'll see a long list of its input parameters. 
First of all, notice that most of parameters are specified either in a form of ‘--parameter-name’ 
or ‘--parameter-name=value’. This is what we call a general syntax of GREP’s options. The 
only parameters that do not fall into these two cases are the pattern to match (which is specified 
as ‘‘value’’) and the list of input files to search in. 
 
Parameters of the first sort are of logical nature – they serve only to enable or disable some 
program’s behavior, or operation mode: when such a parameter is present in the command line, 
the behavior is enabled, otherwise it is disabled.  



 2

 
Parameters of the second sort serve to pass some value associated with some behavior to GREP. 
As we can observe, there is the only parameter (pattern to match) that can be an arbitrary text 
string, se values are either some arbitrary texts, two parameters that are numbers (of lines) and 
some parameters whose values are some predefined texts from a fixed set (e.g. output-only). 
 
So, we need to define some data types for three purposes: to represent the values of these 
parameters internally, to know how to input them and how to check their correctness, to know 
how to write these values in the command line. Since we see that all the variety of parameters 
values falls in some common forms (logical, string, numeric and enumeration types), we can also 
speak of some general semantics of GREP’s parameters. 
 
Now the rule to learn and follow is: all general rules and forms (syntax and semantics) are 
defined in the interface section, as they may be shared among several tools (not in the case of 
GREP, however); and all concrete forms for certain parameters are defined in the tool section 
(as tool-specific). 
 
Let’s do this in turns. 

Interface Definition 
We’ve found out that general forms of GREP’s options are not numerous. Let’s write in their 
output formats: 
 
<interface ... > 
  <syntax name = "EquationParamSyntax" 
          format = "--%%ParamName=%%ParamValue"/> 
  <syntax name = "BoolParamSyntax" 
          format = "--%%ParamName"/> 
  <syntax name = "InputPatternSyntax" 
          format = "’%%ParamValue’"/> 
</interface> 

 
Format names are internal names invented for reference purposes only. Format strings are 
patterns consisting of fixed text parts and variable parts. Variable parts are denoted by predefined  
patterns-generators which will be replaced by certain texts. E.g., the %%ParamName will be 
replaced by the parameter name and  %%ParamValue – by the parameter’s value. 
 
The output format EquationParamSyntax is purposed for value parameters, BoolParamSyntax 
is for logical parameters, and InputPatternSyntax is for the pattern to match, which is just a 
string value in apostrophes. 
 
Now turn to types. Usually, their definitions come at the beginning of the interface section.  
 
We need string and numeric types for describing GREP’s parameters. However, as they are 
commonly used data, there are predefined types String and Cardinal in the basic interface 
(called BasicInterface) which we can use without special notes. 
 
Things become a bit less obvious with a logical parameter type. In GREP, the output form of any 
logical parameter is either the parameter name prefixed by ‘--’, or an empty string. It is easy to 
see that we do not have a format which allows to generate both forms, neither can build it using 
two above generators. Quite an elegant solution of this problem will be given later, using a 
special attribute. Right now, we just point out that TSL boolean types are of no use with GREP. 
 



 3

At last, to represent fixed values set types we will use TSL enumeration types that need be 
defined. Let’s define such a type for parameter ‘--binary-files’: 
 
<interface ... > 
  <typedef name = "BinaryFilesType"> 
    <paramtype kind = "enum" base = "String"> 
      <item label = "Text"     value = "text"/> 
      <item label = "Binary"   value = "binary"/> 
      <item label = "No match" value = "without-match"/> 
    </paramtype> 
  </typedef> 
  ... 
</interface> 

 
The internal type name is used for references only and is invented arbitrarily. Labels specify how 
the values of this type will be shown in the input drop-down list. Value attributes specify how 
values will be substituted in the output formats, replacing the %%ParamValue pattern. 
 
All other necessary enumeration types may be declared in similar ways. 

Parameters Definition 
Now we turn  to the tool specification, to define all GREP parameters.  
 
Each parameter is to be described inside the tool section. Let’s add, for example, a definition of  
parameter ignore-case: 
 
<tool ... > 
  ... 
  <parameter id      = "ignore_case" 
             outid   = "ignore-case" 
             label   = "Ignore case distinctions" 
             type    = "BoolOnOff" 
             format  = "BoolParamSyntax" 
             default = "false" 
             omit    = "false"/> 
  ... 
</tool> 

 
Internal identifier id serves for references to the parameter from other parts of the specification. 
Note that the value of this attribute must contain only Latin letters, digits and underscore 
characters. Therefore there is the optional attribute outid, which is free of such restrictions. It 
contains the output name of the parameter, as substituted in the format for %%ParamName. We 
need not to specify outid if it equal to id. 
 
Attribute label defines a text shown in the tool’s setup dialog to explain this parameter. 
 
Atttibute default contains the default value of the parameter; the optional attribute omit 
contains the value that suppresses outputting this parameter into the command line. 
 
This parameter’s type BoolOnOff is defined in the basic interface. Actually, we could use any 
boolean type here, because its output forms formatTrue and formatFalse will never get into 
the command line. Why? The point is that there is no the pattern %%ParamValue in the output 
format BoolParamSyntax of this parameter. 
 



 4

Together with attribute omit this gives the promised solution of the problem with logical 
parameters: indeed, when the parameter has the true value, its output form will be ‘--ignore-
case’ (see format BoolParamSyntax); but when the value is false, omit forces to output 
nothing into the command line.   
 
Almost all parameters may be defined in this way.  
 
Note now that some GREP’s parameters are mutually exclusive. E.g., consider options ‘--
extended-regexp’, ‘--fixed-strings‘, and ‘--basic-regexp’. If we introduce three different 
parameters for them, it will be possible to pass two or more of them together. Well, we can do 
this anyway when calling GREP, and it will be its problem how to interpret this, but we better 
find a way to avoid such collisions at the specification level.  
 
The solution, in fact, is quite simple: let’s consider all these parameters as different states of 
some operation mode and let’s define a parameter of an enumeration type for this mode, that has 
names of these options as values (or, at least, as their output forms). For the above three 
parameters we define this type and an additional output format as follows: 
 
<interface ... > 
  ... 
  <typedef name = "PatternTypeType"> 
    <paramtype kind = "enum" base = "String"> 
      <item label = "Fixed"           value = "fixed-strings"/> 
      <item label = "Basic regexp"    value = "basic-regexp"/> 
      <item label = "Extended regexp" value = "extended-regexp"/> 
    </paramtype> 
  </typedef> 
  ... 
  <syntax name = "EnumParamSyntax" 
          format = "--%%ParamValue"/> 
</interface> 

 
The mode parameter itself looks as: 
 
<tool ... > 
  ... 
  <parameter id      = "pattern_type" 
             outid   = "pattern-type" 
             type    = "PatternTypeType" 
             format  = "EnumParamSyntax" 
             default = "fixed-strings" 
             omit    = "fixed-strings" 
             label   = "Pattern type"/> 
</tool> 

Setup Dialog Definition 
After all parameters are defined, it is time to design the appearance of the GREP setup dialog to 
input parameters values in the Eclipse/ExDT shell. 
 
We design to segregate all parameters into two groups: one group of parameters to control the 
search mode, and another group of parameters to control results output mode. 
 
All we need to do is to fill the input section with parameters names by groups: 
 
<tool ... > 
  ... 
  <input label="GREP Preferences"> 



 5

    <group label="Match"> 
      "pattern" 
      "pattern_type" 
      "word_regexp" 
      "line_regexp" 
      "ignore_case" 
      "invert_match" 
    </group> 
    <group label="Output"> 
      "no_messages" 
      "with_filename" 
      "binary_files" 
      "byte_offset" 
      "line_number" 
      "directories" 
      "output_only" 
      "count" 
      "before_context" 
      "after_context" 
    </group> 
  </input> 
</tool> 

 
Note that here we write internal parameters names (ids, with underscores) not output options 
names (outids, with minuses)! 
 

Label attributes specify the dialog’s and tabs’ titles. The tabs and parameters in tabs will apeear 
in the order of enumeration here. Each parameter will contain an explanatory text defined for it 
and an input control: a checkbox for a boolean parameter, a drop-down list for an tnumeration 
parameter and an input field for text and numeric parameters. 

Command Line Format Definition 
Finally, let’s create the output section and fill it with names of all introduced parameters: 
 
<tool ... > 
  ... 
  <output> 
    <line name = "command_line" sep = " "> 
      "%pattern_type" 
      "%word_regexp" 
      "%line_regexp" 
      "%ignore_case" 
      "%invert_match" 
      "%no_messages" 
      "%with_filename" 
      "%binary_files" 
      "%byte_offset" 
      "%line_number" 
      "%directories" 
      "%output_only" 
      "%count" 
      "%before_context" 
      "%after_context" 
      "%pattern" 
      "%(%%FileList%| %)" 
    </line> 
  </output> 
</tool> 

 



 6

The only line section with name="command_line" means that there is only one control line for 
GREP utility and this line is passed as a command line to it. Attribute sep says that options will 
be separated by a single blank. The list of output elements specifies the format of the command 
line. Their order is only important if it makes sense for the utility. 
 
Each element in the list is just a string. All these strings are concatenated via the separator to 
meke the whole format. The format may contain any fixed texts, if you need them (not in our 
case, however). But typically, the list looks as above: internal parameters names are prefixed by 
single percent characters to make patterns-options, which expand to parameters format strings 
according to their definitions. E.g., for the pattern_type parameter the defined format is 
EnumParamSyntax which is "--%%ParamValue", hence the output option may look like ‘--
basic-regexp’. 
 
The last element in the list, “%(%%FileList%| %)“ is a so-called pattern-repetitor. When GREP 
is launched, this pattern will be replaced with the full list of files in the user’s project separated 
by blanks. 
 
The final GREP definition may be found in file tools\Simple Samples\grep.xml. 

Attaching GREP To Eclipse/ExDT 
Now, when the description of GREP’s control language is over, we must think of making it 
available from Eclipse/ExDT shell. 
 
All tools in Eclipse/ExDT are available from the design menu. Let’s select a menu where we 
wish to put GREP tool in – let it be the sample MainDesignMenu3. All we need to do,to add the 
new tool is to define a new menu item in the right place of the menu (see this in 
plugins/com.elphel.vdt_1.1.0/tools/DesignMenu.xml file): 
 
<menu name="MainDesignMenu3" ...> 
  ... 
  <menuitem name="GREP" 
            label="Run GREP" 
            call="grep"/> 
</menu> 

 
The name attribute here is the menu item name. Label is a tool name, as it will be seen in the 
menu. Call refers to the tool context that describes all of the GREP’s stuff that we have done  
above. 
 
Now, to make GREP available, you only need to set the MainDesignMenu3 menu as the working 
menu for your project. 

Installation Setup Of GREP 
Attachment is done, but we still need to point to Eclipse where to find GREP program. 
 
This is done in the installation setup dialog available from the menu. Since GREP is a stand-
alone utility, you will find it in the list of available package and stand-alone utilities. Open its 
setup dialog and specify (by browsing) the absolute location of the program. If you set this path 
to empty, the call line generated for this utility will not contain any path at all. This may work, if 
your system PATH environment contains the path to GREP already. 
 
Well, we did it! 


