VDT User Manual Addendum

Table of Contents

INELOAUCTION. ...ttt ettt e et e st e e bt e s et e eabeesabeeabeesneeenseeensbeeeensseeennsneaas 1
Changes 1N VEISION 2.0........oeiiiieiieieiiieeeiie et et e ettt e et e e et e e saeeessbeeessbeeessseessseesnsseessaeesnsneaessnnssseees 1
TOOL tree VIEW and CONIIOLS......ccuiiiiiiiiieiieie ettt ettt e ettt e sate e bt e e esbeeeenbeeesnnneeas 2
Design menu horizontal tOOIDAT..........ccuiieiiiieiiie ettt ae e s aae e e e e eaaaee e e enenees 2
TOOIS CONEXE TNEIIU ACLIONS. ...eenetieeiieeiieetie ettt et te ettt eteestte e bt e st e ebeesateesbeessteeaseessseenseassseensseeesnsseeeansneens 3
TOO] SEALES. ..uteeeitieeiiie et e et e ettt e ettt e et e e st e e st eesabeeessbee e st eeeastee e saeeensbeeesaeeensaeeanseeeanseeeanseeeanaaaeeeennnn 5
Automatic tool sequencing i VDTcooiiiiiiiiiieiee ettt et 6
Configuring a remote server to run external t00IS.........ccvviviiieriieeiiie e e 6
Introduction

This Addendum to VDT User Manual (VDT-UserManual.pdf,VDT-UserManual.odt) is written to
cover the new features and controls implemented since the original VDT was released and documented.
Some of the functionality described in the original document was removed, but most is still applicable.
Please see ExXDT-TSL-Eng.pdf (ExDT-TSL-Eng.odt) for the description of the TSL — Tool
Specification Language — this language is used to configure all the parameter menus and describe the
external tool functionality.

Current release supports Xilinx® Vivado® as well as ISE tools, but it should be possible to integrate
tools from other FPGA manufacturers to have the same IDE for Xilinx and Altera.

Changes in Version 2.0

VDT plugin for Eclipse IDE is updated to support wide range of development tools. This is the list of
the features that were added in the current release:

* Control of the “tool sessions” where commands are sent to the open tool and response is read
back from the tool output, extending the possibility of launching external tools through the
command line parameters;

* Launching tools on a remote host, separate from the development environment, simplifying
isolation of the proprietary tools and the Free Software programs;

* Supplementing Eclipse mechanism of handling problems (errors, warnings, info) reported by
the external tools with the use of external text pre-processors/parsers, that receive the running
tools stdout and stderr streams, filter/modify them and feed back to VDT for Eclipse;

* Processing of “SupressWarnings” keyword accompanied by “all” or list of tool names in a line
preceding the source line causing a problem to reduce “noise” of known tool warnings;

* Recording, managing and playing back tool log files — this allows to change message filter
settings and restore Eclipse problem markers without running the actual tools;

* Saving/restoring the tool states using external tool functionality or archiving the tool work area
files, managing state timestamps

* Support of launching related tools, re-running ones that a “dirty” (source files, states or

parameter settings were modified since it ran) or the needed state is not current and was not
saved;

* managing of tool dependency state - “pinning” tools so it will be considered current regardless
of the input changes;

Tool tree view and controls

a8 verilog/MHDL - Eclipse Platform 2 o

File Edit MNavigate Search Project Run Window Help

delbl B W TURREVIEAE T B I - S T, Quick Access & | [Resource |0 Verilog/vHDL
= MNavigator &2 ¢ B|EE Y =0 npmtestSE.mrmp npmtestSE-map. [npmtesty 2 ™3 = 8 oz outl 2 Her = B3
i 1 Tti le 1 1] B
& npr_timing xcf L 1"193&.3 e Ins / 1p S = 12, &£ E
[nprn_timing xdc b) npmtest_ise : module
& npm xcf Engineer:
[npmitest_tb.v Create Date: 01/28/2014 12:30:27 PM
] Design Name:
Module Mame: npmtest
L7 parsers s Project Mame:
1 Target Devices:
2 Design Menu 52 = g 1 Tool versions:
1 Description: =
FEOi 8- -&-8 B
14 Dependencies:
b [V verilog Development Tools 15
< §7ISE Tools 1 Revision: _
. . 1 Revision 0.01 - File Created
= 5 ISE utilities 1 Additional Comments:
Copy Xilinx ISE primitives library to the local project C 1
#¥ Run ISE partgeno 21
— = project
%‘I ; @ Launch ISE shell on remote npmtest ise(-
a Synthesize it 7 danarate public key kL |
1% Run NGDBUil\ZZ Setup connection to elphel@192.168.0.126
|8 Map design i |5 Console v =8
© Report post- i
| &3 Playback |atest log for ISE rnings. 0 others
Place & rout
& # Select/playback log for ISE | =
© Report post-i[— (10 items) !
| i Installation Parameters
Generate bit
. d | 1 Package Parameters of "Start remote ISE session"
= & Vivado Tools =2 Project Parameters of "Start remote ISE session"
b 5 Vivado utilitid = 1oo| parameters

& start remote Vivado session)
b 4 Synthesis Tools
b & Implementation tools

Generate bitstream O Al

2

Launching Launch_ISE

Fig. 1. Tool tree view with multi-action context menu

Tools are presented as a collapsible tree view, tool can be launched by double-click on the tree item,
using the tool action button on the horizontal tool bar or using the top lines in the tool context menu.
One tool item may have several related actions, on the Fig.1. there are 3 possible action for the same
tool. When the tool is launched using double-click, the first action is always selected.

Design menu horizontal tool-bar

To the right of the action icons on the horizontal tool bar there are 3 toggle buttons, some of them may
be disabled if the action is not possible for the current tool or tool state:

- Tool link. If some tool is launched, this causes scanning of the preceding tools and launch them
first if their state is not current. When the button is pressed, the link is broken and the tool launch does
not trigger the other ones

[=l- Save state (only active if the current state is not saved). When this button is pressed, it will stay
pressed until the current state is saved as a file (filename includes the time stamp) and the linked

resource is created to point to this state as “latest”

U- Stop. When this button is activated, the launch sequence will stop at the end of the currently
running tool (before auto-save if it is enabled). If the shift key is held when stop is activated, the tool
will be marked is failed and the tool launch lock (currently only one tool can run simultaneously) will
be released. It is not a clean interruption of the external tool.

To the right this button group there are controls for installation, package, project and tool properties
settings as described in VDT-UserManual. The are additions to the next drop-down menu, as shown on

the Fig.2.:

e

File Edit MNavigate Search Preject Run Window Help

Verilog/VHDL - npmtestiSE/npmtest.v - Eclipse Platform

) &)

g - FIC R AR A B IR T, Quick Access B
%= Navigator 2 e B BE Y= 0 /| npmtest_th.w nprm.xcf npmtestv & M3 = 8
L] nprrLesL.y 1 “timescale 1ns / 1ps [<]
test 2 11 1!
; ompan
¥ L npmtestISE Engineer:
b (= .settings
. | reate Date: 01/28/2014 12:30:27 PM
b & ise_logs Design Mame:
P = ise_results Module Name: npmtest
= Project Name:
o Target Devices:
& Design Menu 52 = g 1 Tool Versions: |
2 Description:
AisEOI 1 s~ B
b [Verilog Development Tools i Clear Installation Parameters
< §7 ISE Tools H Clear Package Parameters
b 3¢ ISE utiities 1=} Clear Project Parameters reated
K
@ Start remote ISE session ® =) ey T P
S ” @ change Design Menu [/AAAIVIIELAEEETEL AR AL LT AL AT
17 Run NGDBuild @ -7 Clear all but latest snapshot files
|78 Map design # 7 Clear all but latest log files K4}
— »
© Report post-map timing # 7 Clear tool states |
& Place & route design @) 7 Clear project state (debug feature) v = g7

) Report post-implementation timing #
Generate bitstream file(s)n #)

Description

0 errors, 10 warnings, 0 others

v $. vivado Tools
b 2¢ Vivado utilities
@] Start remote Vivado session O
= & Synthesis Tools
A4, synthesize design O
© Timing report O
(3 Timing summary O

v &

Warnings (10 items)

@& The 10B CLK is either not constrained (LOC) to a specific location andjor has
& The I0B COUNT=0> is either not constrained (LOC) to a specific location an
& The I0B COUNT< 1= is either not constrained (LOC) to a specific location an
@ The I0B COUNT<2> is either not constrained (LOC) to a specific location an
@ The |0B COUNT<3=> is either not constrained (LOC) to a specific location an
& The I0B ENABLE is either not constrained (LOC) to a specific location andjor;

L=

[Resource | Verilog/vHDL

pzoutl 8 Hler = 0O
1% LS
< i npmtest_ise : module
g% CLK input
4L RESET :input
3% ENABLE : input
S5 COUNT : output [3:0]
F count : reg [3:0]
elk : wire

< IBUFG_inst(IBUFG)

= &% Implementation tools = | [l

\ |

Fig.2. Drop-down Clear menu

1 —

Launching Launch_ISE

Options to clear parameter settings for different contexts and an option to change design menu (see
VDT-UserManual) There are four new items:

" Clear all but the latest snapshot files — mark all the tools as if they never ran;

" Clear all but the latest log files — preserve only the latest log for each tool, erase all the older ones;

" Clear tool states — preserve only the latest available state file for each tool ran, erase all others;

" Clear project state (debug feature) — erase all the persistent properties attached to the current

project;

Tools context menu actions

In addition to the tool actions (circled red on the Fig.1.) and the parameter setup menus (identical to the
corresponding horizontal tool-bar buttons) there are several new actions that might be enabled in the

menu as shown on Fig.3.

* Pin <tool-name> - this is a toggle button available for the tools that were completed
successfully before. When checked the tool state icon (shown to the right of the tool name)
changes to a pin and this tool will not automatically rerun when a dependent tool is launched
and the files/states this one depends on are modified.

o

File Edit Mavigate Search Project Bun Window Help

Verilog/WVHDL - npmtestiSE/npmteskty - Eclipse Platform

)

)

1

R LY LA B
& Navigator 52 e BB Y= 0
V] NPITILEsLY 3
[test
< = npmtestISE
b (= .settings J
b =ise_logs
b = ise_results
.- =
Design Menu 3 = g
AlZBOlis-&@-8°7
b [verilog Development Tools =
v $. ISE Tools
b 24 ISE utilities
i@ | Start remote ISE session »
L

npmtest_th.v

1 “timescale 1ns / 1ps

npm.xcf npmtest.y B2

e RN N NN N N NN N N Ny Ny s
RN

3 // Company:
4 / Engineer:

_reate Date: 01/28/2014 12:30:27 PM
/ Design Name:

/ Module Name: npmtest

/ Project Name:

/ Target Devices:

/ Tool Versions:

/ Description:

/ Dependencies:
/ Revislon:

/ Revision 0.01 - File Created
/ Additional Comments:

2O FSILISAIT TSI TSI AT T AT I I I ldd ddi il iidiiidd
e NN

o
1} Run NGDB

K vep cesi

© Report pos|
& Place & ro
) Report pos|
Generate
< § vivado Tools
b 3 vivado util
@] Start remd

~ & Synthesis

& Synthesize with XST: npmtest.v

1/ Restote latest ISExst
i Restote selected ISExst

2 Playback latest log for ISExst
@ Select/playback log for ISExst

i Installation Parameters

4 Package Parameters of "Synthesize design"
=2 Project Parameters of "Synthesize design"
1 Tool Parameters

// ISE project

»,

@, Quick Access i

= 0

[T

roblems & Con

rors, 10 warnings, 0 others

scription

£ Warnings (10 items)

4 Synthesi

ze design Q)

© Timing report Q
@ Timing summary Q

~ & Implementation tools

Fig.3. Tool context menu options

& The IOB COUNT=<2> is either not constrained (LOC) to a specific location an
& The IOB COUNT<3> is either not constrained (LOC) to a specific location an
& The IOB ENABLE is either not constrained (LOC) to a specific location andjor =

& The IOB CLK is either not constrained (LOC) to a specific location andjor has
& The IOB COUNT<0=> is either not constrained (LOC) to a specific location an
& The IOB COUNT<1> is either not constrained (LOC) to a specific location an

&

[Resource | by Verilog/VHDL

8= outl 8 Hier = B

1% + E
<) npmtest_ise @ module
gL CLK tinput
FLRESET iinput
FLENABLE : input
43t COUNT @ output [3:0]
B count : reg [3:0]
ek : wire
+ IBUFG_inst(IBUFG)

[|

2

e

! Launching Launch_ISE

W8 Restore latest <tool-name> - restore the latest saved state of the tool. This tool will be “pinned”
(and marked with a pin icon) to prevent this tool to re-run even if it is older than the files/states it
depends on;

-?i Restore selected <tool-name> - open file selection dialog (appropriately filtered) to select one of
the saved state files for the tool;

ﬁ Playback latest log for <tool-name> - read the latest saved log file for the tool and run it through
the same parsers/filters as specified for the tool, obeying current (possibly modified) parameter

settings. This allows to restore Eclipse problem (error/warning/info) markers and to fine-tune the parser

settings;

ﬁ Select/playback log for <tool-name> - open file selection dialog and play back selected log file for

the tool;

Tool states
There are two distinct types of the tools used in VDT:

* regular tools that involve a sequence of actions that terminate in in “success”, “failure” or
“undefined” state and the tool sequencer waits for it to finish and

* console sessions — tools that do not terminate after the particular command is over and stay
open, ready for the next commands. Many of the regular tools include sending some commands
to one of the console sessions, capturing the output as log files and watching for the output
keywords to determine success/failure and “finished” state. Current software version uses a
“@@FINISH@@” pattern to be output (using “echo” commands for the shell scripts and
“puts” for TCL).

Console sessions may be in a “new”, “failed” or “heartbeat’” states, other states are applicable to the

regular tools only. Tool states are indicated by an icon in the tree view, shown to the right of the tool
label.

{:} New — tool that never ran before (or the tool history was erased with “clear tool state” command).

Console session tools are always marked as new when the program session starts (regular tools
preserve their state between sessions through the project persistent properties) or the related console
window is manually closed.

® Heartbeat — this animated icon indicates that the console session program is up and running, ready
to receive commands from the regular tools.

#' Running — this animated icon is shown when the tool is running at the moment.

Waiting - this animated icon is used for the tool that was selected for launch, but can not run yet as
some other tools must run first to satisfy the dependencies of the selected one.

#73 Success — tool successfully finished execution.

Success (“dirty”) - tool successfully ran before, but now some of the parameters values it depends
on are changed or the files/states it depends on were modified after it ran.

Note:relevant parameter modification is determined by calculating hash codes of the command strings
excluding parser parameters, so a) modification of the parser parameters does not make a tool “dirty”
and b) restoring parameter values to the same as when the tool ran removes the “dirty” status from
that tool.

IE:) Failure — tool failed. Launch sequence is immediately terminated without waiting for the
“@@FINISHED@(@” signature, so actual tools may still be running. You may verify the tool
finished by watching the appropriate console.

2| Undefined — both success and failure signature sequences are provided in tool command line
description, but none of them was detected in the tool output before the “@@FINISH@ @ marker.

ﬁi-' Pinned — the tool finished with success and is in “pinned” state, so tool sequence will not try to re-

run it even if the source files, states or parameters it depends on have changed since. This state can
be individually set from the tool context menu, globally from the horizontal tool-bar. This state is
automatically assigned when the tool state is manually restored from the context menu.

There is also blinking “Success” variant of the state — it indicates that the current state is in the process
of being restored from a previously created snapshot or the tool has finished execution with success and
now is creating and saving a snapshot of this state.

Automatic tool sequencing in VDT

When one of the tools is launched it may trigger execution of multiple related related tools (if tool
linking is not disabled in the horizontal tool-bar):

First VDT analyses the states and files this tool depends, and if some dependencies are not
satisfied it goes upstream to find the tool that is needed to run first to satisfy the dependencies

Then before launching the found tool VDT verifies that required console session(s) is (are)
open, and if not — starts it (them)

If VDT founds that the current session state does not match the required one to run next tool,
but the snapshot exists, it runs “restore” tool (if available) instead of running the tool itself

When some tool finishes successfully (in the
case of a failure the tool launch sequence is
terminated immediately), VDT looks if it

@ Design Menu £ =
I@l é:iii.i.i-a

has a “save” tool and auto-save is enabled b] Verilog Development Tools

(or manual save button on the horizontal v §. ISE Tools

tool-bar is activated). If it is the case, the
save tool runs. @] start remote ISE session ®

After a tool finishes successfully, and there & Synthesize design &

is no “save” tool left (not available or 1} Run NGDBuild &

already ran) VDT looks if there are any [} Map design 3,

enabled “report” tools — tools that do not © Report post-map timing O

change the state of the console session — & Place & route design O

such tools can run in any order without the
need to create/save snapshots. If multiple
such tools are found VDT determines the
sequence of running the tools granting
specified priority.

() Report post-implementation timing O

Generate bitstream file(s)n
« ¥ vivado Tools

b 2¢ Vivado utilities

& Start remote Vivado session O
When there are no save and report tools left
and the originally specified tool is still in the
wait state, VDT repeats the process of
determining if any other tools need to run
first. If none are left, VDT changes the tool
state from wait to running, runs it and then,
if the state has changed considers save and
report tools to launch. That concludes the Fig 4. Running a tool sequence
tool launch sequence.

b 4 Synthesis Tools
b &% Implementation tools
Generate bitstream O

Using playback feature to analyze tool output

VDT provides flexible means to parse tool output and integrating the results with the embedded editor
so the detected problems can are shown in the source code context. These feature are designed to be
suitable for different tools, so there is nothing tool-specific in the VDT plugin core code Parsing of the
tool output is not a trivial task, even the same tool displays similar information in different formats. So
the overall parsing is split into two parts:

Final parsing is performed using VDT plugin code that relies on Eclipse problem reporting and
navigation with additional tool-agnostic regex-based filtering to access editor object database

* external pre-processor that can be easily modified (or replaced) by the user.

Current (and rather simple) version of such parser is written in Python for synthesis tools of the two
Xilinx products: Vivado and ISE. In the simple cases tool includes source file name and line number, so
converting it to a link to the source location can be achieved with just regular expressions, but
significant part of the tools output does not provide such information — just a reference to instances,
modules and ports Of the deSign’ =)e Verilog/VHDL - x393_02/vivado_logs/VivadeSynthesis.log - Eclipse Platform Y & &
that also do not have direct match =& gt sviwe seach evies an uindow 2o ‘
A N P I R S T, Quick Access et .C,Resuurcalm
to the source because of the © Novgsor -
deSIgn Optlmlzatlon' Addltlonally N Fomles " : [synth 8-3285] tying undriven pin waddr_i:data_in[25] te constant @ ﬁm'”e‘
L . o : [Synth 8-3295] tying undriven pin waddr_i:data_in[24] to constant 0 not
1t 1S COmmon to Sce multlple [} axibramo.v [441WARNING: [Synth 8-3295] tying undriven pin waddr_i:data_in[23] to constant o available.

~HaE Tl Es

[VivadoSynthesis 52 ISEPAR.log test_ps7 | maste et = 8 o8

: [Synth 8-3285] tying undriven pin waddr_i:data_in[26] to constant 0

B gl 442WARNING: [Synth 8-3295] tying undriven pin waddr_i:data_in[22] to censtant 0
)

. 1 l f h A43WARNING: [Synth 8-3285] tying undriven pin waddr_i:data_in[21] to constant ©
similar 1ines o t c Output [> IVERILOG_INCLUDE v 444WARNING: [Synth 8-3295] tying undriven pin waddr_i:data_in[20] to constant o
e : B i A R e R
: [Synth 8- ying undriven pin waddr_i:data_in o constan
notlfymg of say automatic [> ram_Llo2_lioG2 447WARNING: [Synth 8-325] tying undriven pin axibram_i:araddr[31] to constant 0 v
. .. . [#) ramb36el_template.y [2
removal of the individual bits of B e
& Synthesize with Vivado: test_ps7.v 2 4 Search B R % | G B|E fB-r3- =08
some bus — each on its own line B} 2 check by Vivado Synthesis: axibram v Livadosyrthesis.og
WG CE TR SE_iRASE T SFeT | LS AKASE_SRASEVTE <
. . . ? @ Design M, Pin VivadeSynthesis le 'fifo_reg_W_D' [macros393.v:89 B
dule 'fif vo(a#) [A'H
making it difficult to read - some = i ;| o] sl viadosyriness (dle Thiforeq o (o) [acrosssaviel
1 . lk h -) Restote selected VivadoSynthesis module 'fifo_reg W D_ parameterizedo' (4#1) [macros393.v:89
le 'fifo_reg W D_ parameterizedl' [macros393.v:89:
removal is OK (like when you R 5 Ployback atest og for VivadoSynthess NMARMCORt e ATt v -+<3 e SR
. . - i dule 'axibram' (5#1) [axibram.v:8
- §7 Vivado @ selectjplayback log for VivadoSynthesis :gdule b : 1
3 _ps7' (6#1) [test ps7.v:l6
use JUSt Some range Of the Wlder b 2¢ Vivad i Installation Parameters ement fifo_reg_W_D.full reg is unused and will be removed from moc
" " fifo_reg W_D_ parametsrizedo.full reg is unused and will be
] start| H Package Parameters of *Synthesize design :::zt o
N "\ fifo_reg W 0 parametsrizedl.full reg is unused and will be
address bus), but removal of | & el e e s {020 S b g s L
. . T [Tool Parameters ement fifo_req W _D.inreq reg[29:18] is unused and will be removed
others indicate a real problem, | & ST T TTTYen pin Besdir sTd3te in (95101 to consiant OLVivadosynthesic6000]
© Timing report & 8-3295] tying undriven pin #axibram i:araddr[1:0] to constant O[VivadoSynthesis:0000] |,
Python script while not having e — e s

access to the internal object
database of the editor can easily
handle consolidation of the messages related to the same bus and formatting the object reference in a
consistent manner to be parsed by VDT (there is still possible to customize object format recognized by
VDT through several regex parameters).

Fig. 5. Processing output of Xilinx Vivado synthesis tool

Verilog/VHDL - x393_02fise_logs/ISExst.log - Eclipse Platform OO

L)
TWO lllustratlons: Flgs and Flg 6 Fle Edit Mavigate Search Project Run Window Help ‘
| & PR PR N IREE I B I IR T Quick Access T [{ Resource | Verilog/VHDL
show the output of the same = - .

. . . . Navigator &2 = g +*testbench_393_ ram_1kx32_1kx32 [ISExst.log &8 x393_02-par.twr el = 8 ” 8
d d o @ G nE < 414WARNING: Xst:2677 - Node =axibram_i/waddr_i/outreg_25= of sequential type is uncor An
eSIgn SyntheSIZe Wlth the TSEXE(2§1a0a0a1?’13’ 415 WARNING: Xst:2677 - Node <axibram_i/waddr_i/outreg 28> of sequential type 1s uncor outline is
.] - 1 415 WARNING: Xst:2677 - Node <axibram 1/waddr_i/outreg 27> of sequential type 1s uncor. not
dlfferent tools both haVe the raw i 417 WARNING: Xst:2677 - Node <axibram i/waddr_i/outreg 26= of sequential type is uncor available.
s » ise results A18WARNING: Xst:2677 - Node <axibram i/waddr_i/outreg 25> of sequential type is uncor
i . = ise] 415 WABRNTNG: ¥st: 2677 - Node <axibram i/waddr_i/outreg 24> of sequential type is uncor
1 h n imn h 110r b (ise stat] & Synthesize with XST: test_ps7.v Node <axibram_i/waddr_i/outreg 23> of sequential type is uncor
(> ise_stat| m
[Node <axibram_i/waddr_i/outreg 22> of sequential type is uncor
. = Pin ISExst Node <axibram_i/waddr_i/outreg_21> of sequential type 1s uncor
panel instead of the source code. — e rbran iy et o Sasentiat Syes 1o tnew
;Resmte at‘es“SdE"S‘ Node <axibram_i/waddr_i/outreg_19> of sequential type is uncor
1 @ Design Men| @) Restote selected ISExst Node <axibram_i/waddr_i/outreg_l8> of sequential type is uncor
Multiple messages about the Node Sonibran s uadd s ootret 1 o1 semvential Fype 12 incols

. : , i B :
different bits are compacted in the @ - e O B

. b [Verilog De i Installation Parameters Search o R R * B[#B-r5-=0
bottom-right (console) panels. o g SE oot | B Packege paramaters of Syrchesiadesart bselog
b 2 ISE wtil 1 Project Parameters of *Synthesize design FF/Latch fifo_reg_W D 3.inreg[0] (without init value) has a cons
. . §] Tool Parameters FF/Latch fifo_reg W D 3.inreg[0] in Unit <fifo_reg W_D_3= is ec
| Start res Node test ps7.axibram i.wresp i.full of sequential type is uncor
VDT recognizes module, instance .2 ream b e Somriel b L O avencial tyee 1o oo
. 2 1 - "ISExst" Llne 0000:Node test ps7.axibram i.waddr_i.Mram_ram4 of sequential type is
Fun NGDBUI - "ISExst" Line 0000:Node test ps7.axibram i.waddr_i.Mram ramS of sequential type is
and port references according to e T i S e et e 12 oo
h d d 1 . o - "ISExst" Line 0000:Mode test ps7.axibram i.raddr i.outreq[15:14] of sequential type
Report post-map timing - "ISExst" Line 0000:Mode test ps7.axibram i.wdata_i.outreg[36] of sequential type it
t S prOV1 C regu ar eXpreSSIOns & Place & route design - "ISExst" Line 0000:Node test ps7.axibram_i.wdata_i.full of sequential type is uncor]
. . . .) - "ISExst" Line 0000:Node test ps7.axibram_i.waddr_i.outreg[15:14] of sequential type
and Spllts hlerarchlcal names lntO © Report post-implementat - "ISExst" Line 0000:Node test_ps7.axibram_i.waddr_1.outreg[29:18] of sequential type
e hd NTCEvett | ime NONN:Nnds taet ne7 avihram wraen 1 half f11 nf cemential twna 1c [T

segments (where possible). Then it e ol = -

tries to locate the objects in the
editor database, starting with
literal match, then allowing provided regex for suffixes that may be automatically inserted by the tools.
And finally broadening matches by allowing any suffixes. The matched portions of the hierarchical
names have links attached, so a signal may be traced through the hierarchy, the problem marker is
attached to the last segment definition in the source code.

F ig. 6. Processing output of Xilinx ISE (XST) synthesis tool

When the actual tool is running, the raw output is normally recorded as a log file and can be later fed to
the same external parser. This is rather convenient as the same output console is reused by multiple

tools and the contents is regularly overwritten when tools are running in a sequence. It is also useful
when working on a custom parser modification - external script code or fine-tuning regular expressions
for filtering.

Configuring a remote server to run external tools

Current configuration of the tools made for the GNU/Linux distributions uses ssh and rsync programs
to communicate and launch programs on the remote host. This is not a part of the VDT plugin itself, so
it should be possible to use other programs when host and/or client computers run different operating
systems. Initial release only supports GNU/Linux on both computers.

It is possible to run tools on the same physical computer as the development environment, in that case
the remote IP will be 127.0.0.1 (localhost) and the default user name is the current OS user name.

Package Parameters ¥ &) X

Configuration of the remote access requires two oS-

steps to set up password-less ssh using key
pairS: Remote Host [P 192.168.0.126

t..g_é.j|\.-'ivad0 server advanced setup |Xi|inx ISE server advanced setup

. . Remote user name |elphel
* Generating keys on a client computer Vivado relesse [2013.2

(should have empty passphrase) and Vivado root optlinxVivado
ISE release 14.7
ISE root foptfxilinx

* Providing the generated public key to
the remote host

First step can be automatically performed by
the VDT, you just need to setup package
parameters as shown on Fig.7 — host IP and the
user name (defaults are 127.0.0.1 and the

current system user) cancel || o]

With the username and host IP configured you Fig.7. Package parameters for remote server setup
may use “Generate public key” sub-action in

the context menu of the “Start remote ISE session” or “Start remote Vivado Session” as shown as an
example on Fig.1.

Next step - “Setup connection to <username(@host _ip>" requires entering your user password, and
there is no pre-configured way to do it in the VDT plugin on most distributions. It requires a program
ssh-askpass (or similar) that may be not universally installed on the systems. In *ubuntu GNU/Linux
you may run in the terminal:

sudo apt-get install ssh-askpass

and enter your password when prompted. Then run “Setup connection to <username@host ip>". You
may try that action first — if ssh-askpass is not available VDT will output the recommendations in the
console view. If the program is found then a separate window asking for a password to the remote host
will open (first question may be just yes/no to allow connection to the remote host).

Alternative way is to run the following command

ssh-copy-id <username@host ip>

from a system terminal manually (replacing <username(@host ip> with the actual username and IP). It
will ask for the password, and if successful you (and VDT) will be able to connect to the host server
from the current client automatically without entering a password — that would not be practical with
VDT that regularly connects multiple times when running each tool.

mailto:username@host_ip
mailto:username@host_ip
mailto:username@host_ip
mailto:username@host_ip

	Introduction
	Changes in Version 2.0
	Tool tree view and controls
	Design menu horizontal tool-bar
	Tools context menu actions
	Tool states
	Automatic tool sequencing in VDT
	Using playback feature to analyze tool output
	Configuring a remote server to run external tools

