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Introduction

This Addendum to VDT User Manual (VDT-UserManual.pdf,VDT-UserManual.odt) is written to
cover the new features and controls implemented since the original VDT was released and documented.
Some of the functionality described in the original document was removed, but most is still applicable.
Please see ExXDT-TSL-Eng.pdf (ExDT-TSL-Eng.odt) for the description of the TSL — Tool
Specification Language — this language is used to configure all the parameter menus and describe the
external tool functionality.

Current release supports Xilinx® Vivado® as well as ISE tools, but it should be possible to integrate
tools from other FPGA manufacturers to have the same IDE for Xilinx and Altera.

Changes in Version 2.0

VDT plugin for Eclipse IDE is updated to support wide range of development tools. This is the list of
the features that were added in the current release:

* Control of the “tool sessions” where commands are sent to the open tool and response is read
back from the tool output, extending the possibility of launching external tools through the
command line parameters;

* Launching tools on a remote host, separate from the development environment, simplifying
isolation of the proprietary tools and the Free Software programs;

* Supplementing Eclipse mechanism of handling problems (errors, warnings, info) reported by
the external tools with the use of external text pre-processors/parsers, that receive the running
tools stdout and stderr streams, filter/modify them and feed back to VDT for Eclipse;

*  Processing of “SupressWarnings” keyword accompanied by “all” or list of tool names in a line
preceding the source line causing a problem to reduce “noise” of known tool warnings;

* Recording, managing and playing back tool log files — this allows to change message filter
settings and restore Eclipse problem markers without running the actual tools;

* Saving/restoring the tool states using external tool functionality or archiving the tool work area
files, managing state timestamps

*  Support of launching related tools, re-running ones that a “dirty” (source files, states or



parameter settings were modified since it ran) or the needed state is not current and was not
saved;

* managing of tool dependency state - “pinning” tools so it will be considered current regardless
of the input changes;

Tool tree view and controls

a8 verilog/MHDL - Eclipse Platform 2 o

File Edit MNavigate Search Project Run Window Help

delbl B W TURREVIEAE T B I - S T, Quick Access & | [Resource |0 Verilog/vHDL
= MNavigator &2 ¢ B|EE Y =0 npmtestSE.mrmp npmtestSE-map. [ npmtesty 2 ™3 = 8 oz outl 2 Her = B3
i 1 Tti le 1 1] B
& npr_timing xcf L 1"193&.3 e Ins / 1p S = 12, &£ E
[ nprn_timing xdc b ) npmtest_ise : module
& npm xcf Engineer:
[ npmitest_tb.v Create Date: 01/28/2014 12:30:27 PM
] Design Name:
Module Mame: npmtest
L7 parsers s Project Mame:
1 Target Devices:
2 Design Menu 52 = g 1 Tool versions:
1 Description: =
FEOi 8- -&-8 B
14 Dependencies:
b [V verilog Development Tools 15
< §7ISE Tools 1 Revision: _
. . 1 Revision 0.01 - File Created
= 5 ISE utilities 1 Additional Comments:
Copy Xilinx ISE primitives library to the local project C 1
#¥ Run ISE partgeno 21
— = project
%‘I ; @ Launch ISE shell on remote npmtest ise( -
a Synthesize it 7 danarate public key kL |
1% Run NGDBUil\ZZ Setup connection to elphel@192.168.0.126
|8 Map design i |5 Console v =8
© Report post- i
| &3 Playback |atest log for ISE rnings. 0 others
Place & rout
& # Select/playback log for ISE | =
© Report post-i[ — (10 items) !
| i Installation Parameters
Generate bit
. d | 1 Package Parameters of "Start remote ISE session"
= & Vivado Tools =2 Project Parameters of "Start remote ISE session"
b 5 Vivado utilitid = 1oo| parameters

& start remote Vivado session )
b 4 Synthesis Tools
b & Implementation tools

# Generate bitstream O Al

2

Launching Launch_ISE

Fig. 1. Tool tree view with multi-action context menu

Tools are presented as a collapsible tree view, tool can be launched by double-click on the tree item,
using the tool action button on the horizontal tool bar or using the top lines in the tool context menu.
One tool item may have several related actions, on the Fig.1. there are 3 possible action for the same
tool. When the tool is launched using double-click, the first action is always selected.

Design menu horizontal tool-bar

To the right of the action icons on the horizontal tool bar there are 3 toggle buttons, some of them may
be disabled if the action is not possible for the current tool or tool state:

# - Tool link. If some tool is launched, this causes scanning of the preceding tools and launch them
first if their state is not current. When the button is pressed, the link is broken and the tool launch does
not trigger the other ones

[=l- Save state (only active if the current state is not saved). When this button is pressed, it will stay
pressed until the current state is saved as a file (filename includes the time stamp) and the linked



resource is created to point to this state as “latest”

U- Stop. When this button is activated, the launch sequence will stop at the end of the currently
running tool (before auto-save if it is enabled). If the shift key is held when stop is activated, the tool
will be marked is failed and the tool launch lock (currently only one tool can run simultaneously) will
be released. It is not a clean interruption of the external tool.

To the right this button group there are controls for installation, package, project and tool properties
settings as described in VDT-UserManual. The are additions to the next drop-down menu, as shown on

the Fig.2.:

e
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0 errors, 10 warnings, 0 others
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Launching Launch_ISE

Options to clear parameter settings for different contexts and an option to change design menu (see
VDT-UserManual) There are four new items:

" Clear all but the latest snapshot files — mark all the tools as if they never ran;

" Clear all but the latest log files — preserve only the latest log for each tool, erase all the older ones;

" Clear tool states — preserve only the latest available state file for each tool ran, erase all others;

" Clear project state (debug feature) — erase all the persistent properties attached to the current

project;

Tools context menu actions

In addition to the tool actions (circled red on the Fig.1.) and the parameter setup menus (identical to the
corresponding horizontal tool-bar buttons) there are several new actions that might be enabled in the



menu as shown on Fig.3.

* Pin <tool-name> - this is a toggle button available for the tools that were completed
successfully before. When checked the tool state icon (shown to the right of the tool name)
changes to a pin and this tool will not automatically rerun when a dependent tool is launched
and the files/states this one depends on are modified.
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Fig.3. Tool context menu options
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! Launching Launch_ISE

W8 Restore latest <tool-name> - restore the latest saved state of the tool. This tool will be “pinned”
(and marked with a pin icon) to prevent this tool to re-run even if it is older than the files/states it
depends on;

-?i Restore selected <tool-name> - open file selection dialog (appropriately filtered) to select one of
the saved state files for the tool;

ﬁ Playback latest log for <tool-name> - read the latest saved log file for the tool and run it through
the same parsers/filters as specified for the tool, obeying current (possibly modified) parameter

settings. This allows to restore Eclipse problem (error/warning/info) markers and to fine-tune the parser

settings;

ﬁ Select/playback log for <tool-name> - open file selection dialog and play back selected log file for

the tool;



Tool states
There are two distinct types of the tools used in VDT:

* regular tools that involve a sequence of actions that terminate in in “success”, “failure” or
“undefined” state and the tool sequencer waits for it to finish and

* console sessions — tools that do not terminate after the particular command is over and stay
open, ready for the next commands. Many of the regular tools include sending some commands
to one of the console sessions, capturing the output as log files and watching for the output
keywords to determine success/failure and “finished” state. Current software version uses a
“@@FINISH@@” pattern to be output (using “echo” commands for the shell scripts and
“puts” for TCL).

Console sessions may be in a “new”, “failed” or “heartbeat’” states, other states are applicable to the

regular tools only. Tool states are indicated by an icon in the tree view, shown to the right of the tool
label.

{:} New — tool that never ran before (or the tool history was erased with “clear tool state” command).

Console session tools are always marked as new when the program session starts (regular tools
preserve their state between sessions through the project persistent properties) or the related console
window is manually closed.

® Heartbeat — this animated icon indicates that the console session program is up and running, ready
to receive commands from the regular tools.

#' Running — this animated icon is shown when the tool is running at the moment.

Waiting - this animated icon is used for the tool that was selected for launch, but can not run yet as
some other tools must run first to satisfy the dependencies of the selected one.

#73 Success — tool successfully finished execution.

Success (“dirty”) - tool successfully ran before, but now some of the parameters values it depends
on are changed or the files/states it depends on were modified after it ran.

Note:relevant parameter modification is determined by calculating hash codes of the command strings
excluding parser parameters, so a) modification of the parser parameters does not make a tool “dirty”
and b) restoring parameter values to the same as when the tool ran removes the “dirty” status from
that tool.

IE:) Failure — tool failed. Launch sequence is immediately terminated without waiting for the
“@@FINISHED@(@” signature, so actual tools may still be running. You may verify the tool
finished by watching the appropriate console.

2| Undefined — both success and failure signature sequences are provided in tool command line
description, but none of them was detected in the tool output before the “@@FINISH@ @ marker.

ﬁi-' Pinned — the tool finished with success and is in “pinned” state, so tool sequence will not try to re-

run it even if the source files, states or parameters it depends on have changed since. This state can
be individually set from the tool context menu, globally from the horizontal tool-bar. This state is
automatically assigned when the tool state is manually restored from the context menu.

There is also blinking “Success” variant of the state — it indicates that the current state is in the process
of being restored from a previously created snapshot or the tool has finished execution with success and
now is creating and saving a snapshot of this state.



Automatic tool sequencing in VDT

When one of the tools is launched it may trigger execution of multiple related related tools (if tool
linking is not disabled in the horizontal tool-bar):

First VDT analyses the states and files this tool depends, and if some dependencies are not
satisfied it goes upstream to find the tool that is needed to run first to satisfy the dependencies

Then before launching the found tool VDT verifies that required console session(s) is (are)
open, and if not — starts it (them)

If VDT founds that the current session state does not match the required one to run next tool,
but the snapshot exists, it runs “restore” tool (if available) instead of running the tool itself

When some tool finishes successfully (in the
case of a failure the tool launch sequence is
terminated immediately), VDT looks if it
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Using playback feature to analyze tool output

VDT provides flexible means to parse tool output and integrating the results with the embedded editor
so the detected problems can are shown in the source code context. These feature are designed to be
suitable for different tools, so there is nothing tool-specific in the VDT plugin core code Parsing of the
tool output is not a trivial task, even the same tool displays similar information in different formats. So
the overall parsing is split into two parts:

Final parsing is performed using VDT plugin code that relies on Eclipse problem reporting and
navigation with additional tool-agnostic regex-based filtering to access editor object database



* external pre-processor that can be easily modified (or replaced) by the user.

Current (and rather simple) version of such parser is written in Python for synthesis tools of the two
Xilinx products: Vivado and ISE. In the simple cases tool includes source file name and line number, so
converting it to a link to the source location can be achieved with just regular expressions, but
significant part of the tools output does not provide such information — just a reference to instances,
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access to the internal object
database of the editor can easily
handle consolidation of the messages related to the same bus and formatting the object reference in a
consistent manner to be parsed by VDT (there is still possible to customize object format recognized by
VDT through several regex parameters).

Fig. 5. Processing output of Xilinx Vivado synthesis tool
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segments (where possible). Then it e ol = -

tries to locate the objects in the
editor database, starting with
literal match, then allowing provided regex for suffixes that may be automatically inserted by the tools.
And finally broadening matches by allowing any suffixes. The matched portions of the hierarchical
names have links attached, so a signal may be traced through the hierarchy, the problem marker is
attached to the last segment definition in the source code.

F ig. 6. Processing output of Xilinx ISE (XST) synthesis tool

When the actual tool is running, the raw output is normally recorded as a log file and can be later fed to
the same external parser. This is rather convenient as the same output console is reused by multiple



tools and the contents is regularly overwritten when tools are running in a sequence. It is also useful
when working on a custom parser modification - external script code or fine-tuning regular expressions
for filtering.

Configuring a remote server to run external tools

Current configuration of the tools made for the GNU/Linux distributions uses ssh and rsync programs
to communicate and launch programs on the remote host. This is not a part of the VDT plugin itself, so
it should be possible to use other programs when host and/or client computers run different operating
systems. Initial release only supports GNU/Linux on both computers.

It is possible to run tools on the same physical computer as the development environment, in that case
the remote IP will be 127.0.0.1 (localhost) and the default user name is the current OS user name.

Package Parameters ¥ &) X

Configuration of the remote access requires two oS-

steps to set up password-less ssh using key
pairS: Remote Host [P 192.168.0.126

_t._.g_é.j|\.-'ivad0 server advanced setup |Xi|inx ISE server advanced setup

. . Remote user name |elphel
* Generating keys on a client computer Vivado relesse  [2013.2

(should have empty passphrase) and Vivado root optlinxVivado
ISE release 14.7
ISE root foptfxilinx

* Providing the generated public key to
the remote host

First step can be automatically performed by
the VDT, you just need to setup package
parameters as shown on Fig.7 — host IP and the
user name (defaults are 127.0.0.1 and the

current system user) cancel || o]

With the username and host IP configured you Fig.7. Package parameters for remote server setup
may use “Generate public key” sub-action in

the context menu of the “Start remote ISE session” or “Start remote Vivado Session” as shown as an
example on Fig.1.

Next step - “Setup connection to <username(@host _ip>" requires entering your user password, and
there is no pre-configured way to do it in the VDT plugin on most distributions. It requires a program
ssh-askpass (or similar) that may be not universally installed on the systems. In *ubuntu GNU/Linux
you may run in the terminal:

sudo apt-get install ssh-askpass

and enter your password when prompted. Then run “Setup connection to <username@host ip>". You
may try that action first — if ssh-askpass is not available VDT will output the recommendations in the
console view. If the program is found then a separate window asking for a password to the remote host
will open (first question may be just yes/no to allow connection to the remote host).

Alternative way is to run the following command

ssh-copy-id <username@host ip>

from a system terminal manually (replacing <username(@host ip> with the actual username and IP). It
will ask for the password, and if successful you (and VDT) will be able to connect to the host server
from the current client automatically without entering a password — that would not be practical with
VDT that regularly connects multiple times when running each tool.
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