
TSL Conditional Clauses

Table of Contents
TSL Conditional Clauses.....................................................................................................1

Introduction.....................................................................................................................1
Structural Conditional Clauses........................................................................................1
String Conditional Clauses..............................................................................................4

Introduction

When describing  a  tool,  it  is  often  the  case  that  the  number  of  its  parameters,  their
formats, appearance of the setup dialog or a command line dynamically depend on some
external conditions or on current values of some tool’s parameters.

For example,  some parameter A may be reasonable only if some other parameter’s B
value  is  V. Otherwise  it  should not  be  passed into  the  command line  and,  naturally,
neither be input in the setup dialog.

Another sample. Many multi-lingual compilers (e.g. C/C++) contain language-dependent
options. That is, when a C program is passed on input to such a compiler tool, all C++-
specific parameters make no sense.

To support definition of such conditional properties, special syntactic clauses had been
introduced in TSL.  These clauses  are  of two kinds:  string conditionals  and structural
conditionals.

Structural Conditional Clauses

Conditionals of this kind serve for conditional (de)activation of entire groups parameters
and command lines.

In an XML-file, structural conditional clauses are specified with special XML tags. Their
common syntax is:

<COND param1=”value1”
      param2=”value2”
      ...
      paramN=”valueN”>
   ...
</COND>

1



Here COND is one of the words ”if”, ”if-not”, ”if-and”. 

The semantics of the if-clause is: its body (the text enclosed within the matching pair of
COND tags) makes sense if  and only if at least  one of the  parami parameters’ current
values  is  literally  equal  to  the  respective  valuei (i=1..N).  This  clause  may  be  also
thought of as if-or-clause.

The semantics of the if-not-clause is the opposite: the element makes sense if and only
if all current values of parami parameters are not equal to their respective valuei.

The semantics of the if-and-clause is: the element makes sense if and only if all current
values of parami parameteres are literally equal to their respective valuei.

We will write param=”value”, meaning «the current value of parameter param is literally
equal to value», and param≠”value”, meaning «the current value of parameter param is
not  equal  to  value».  Similarly, we will  write  param1=param2,  meaning «the  current
values  of  parameters  param1 and  param2  are  literally  equal»,  and  param1≠param2,
meaning «the current values of parameters param1 and param2 are not literally equal».
(Note, however, that the last pair of expressions cannot be written as conditions in the
structural conditional clause).

Conditional clauses may be nested.  For example,

<if param1=”value1”>
  <if-and param2=”value2” 
          param3=”value3”>
    <if-not param4=”value4”>

      <parameter id=”ParamA” .../>

    </if-not>
  </if-and>
</if>

In  this  case,  ParamA will  be  defined  only  if  conditions  param1=”value1”,
param2=”value2”, param3=”value3” and param4≠”value4” are all true.

Structural  conditional  clauses  may  be  used  in  the  following  sections  of  a  context
definition:
 in the parameters sections;
 in the input section (setup dialog description);
 in the output section (command lines and command files description).

For example, defining a C/C++ compiler tool, in the respective project context we specify
the parameter  UsedLanguage of type Enum,  which can accept values  ”C” and  ”C++”.
Then language-dependent parameters may be defined as follows:

<if UsedLanguage=”C”>

2



  <parameter id=”ANSI_C_Compliant” .../>
  <parameter id=”Allow_CPP_Comments” .../>
  ...
</if>
<if UsedLanguage=”C++”>
  <parameter id=”ANSI_CPP_Compliant” .../>
  <parameter id=”Enable_RTTI” .../>
  ...
</if>
<!—Common parameters -->
...

It is clear that these parameters must be included in or excluded from the setup dialog of
this tool context. To do that, we can use conditional clauses in the  input section, for
example:

<input>
  ...
  <group ...>
    ...
    <if UsedLanguage=”C”>
      ”ANSI_C_Compliant”
      ”Allow_CPP_Comments”
      ...
    </if>
    <if UsedLanguage=”C++”>
      ”ANSI_CPP_Compliant”
      ”Enable_RTTI”
    </if>
    ...
  </group>
  ...
</input>

Or switch on/off the entire groups of parameters:

<input>
  ...
  <if UsedLanguage=”C”>
    <group name=”CParams” label=”C specific options”>
      ”ANSI_C_Compliant”
      ”Allow_CPP_Comments”
      ...
    </group>
  </if>
  <if UsedLanguage=”C++”>
    <group name=”CPPParams” label=”C++ specific options”>
      ”ANSI_CPP_Compliant”
      ”Enable_RTTI”
    ...
    </group>
  </if>
  ...
</input>

3



Similarly,  conditional  parameters  can  modify  the  command  line  of  the  compiler,  for
example:

<output>
  <line name = "CommandLine">
    <if UsedLanguage=”C”>
      ”%ANSI_C_Compliant”
      ”%Allow_CPP_Comments”
      ...
    </if>
    <if UsedLanguage=”C++”>
      ”%ANSI_CPP_Compliant”
      ”%Enable_RTTI”
      ...
    </if>
    ...
  </line>
  ...
<output>

If necessary, the whole <line> section may be put into a conditional clause.

String Conditional Clauses

In many cases  it  is  necessary to  introduce  a  conditional  parameter,  whose properties
depend on other parameters.  Using structural  conditionals  for that may be unsuitable:
they  are  cumbersome  and  may  require  duplication  or  even  numerous  replication  of
definitions. Finally, structure conditionals are not flexible enough to represent arbitrary
conditions.

String  conditional  clauses  are  free  of  these  disadvantages  and  are  purposed  for
specification of conditional attributes of parameters, such as default values.

A string conditional clause is specified by either of two kinds of strings:

1. ”?strS: str1=res1, … , strN=resN[, resDef]”
2. ”?condition: resT, resF”

All fields  strX and  resX are arbitrary strings written unquoted. The bounds of these
strings are determined by expected preceding and subsequent separator characters in the
conditional clause pattern; therefore, the terminating separator should better be not used
within a string. Besides, leading and final blanks are cut (however, internal blanks are
preserved and are significant at string comparison). Thus, non-significant blanks may be
inserted for readability only before and after separators. The ”?” sign (used to recognize
the string as a conditional) must be always the first character in it.

The condition is written as a conventional logical expression:
 elementary comparisons – pairs of kind strA=strB or strA#strB;

4



 a condition is build of elementary comparisons and logical connectives ”|” (OR) and
”^” (AND) using parentheses to modify priorities of connectives. 

Within string fields strX and resX, generators %param may be used to substitute current
values of parameters  into the field.  It  is  their  usage that  brings non-trivial  sense to a
conditional expression.

Interpretation  of  a  conditional  expression  works  as  subsequent  expansion  of  all
parameters-generators  in  strings,  performing  a  series  of  comparisons  of  the  resulting
strings and outputting some string as a result of that conditional expression.

The conditional expression of type 1 is interpreted as a conventional select-by-parameter
statement. After expanding all generators, the string strS is subsequently compared with
all selector strings strk. If comparison with i-th selector was successful (no distinctions
found), the value of the respective result string  resi becomes the result of the whole
expression.  If  none  of  comparisons  succeeded,  but  the  resDef string  is  present,  it
becomes the result. If resDef is not specified, the result is an empty string.

The conditional expression of type 2 may be used in cases when the result string depends
on several parameters in a complex manner. It is interpreted as follows: first, condition
is evaluated; if it is true, the result is resT string, otherwise resF.

Some samples:

1) Expression:

?%MyParam: %AnotherParam=Fred, MyValue=Wilma, Barney

evaluates to”Fred” if  MyParam=AnotherParam. Otherwise, if  MyParam=”MyValue”, the
result is”Wilma”, otherwise ”Barney”.

2) Expression:

?(%par1 = %par2 | par3 = foo) ^ %par4 # bar: Fred, Wilma

evaluates  to  ”Fred”,  if  either  par1=par2 or  par4≠”bar”,  or  par3=”foo”,  and
par4≠”bar”. Otherwise the result is ”Wilma”.

String contitional clauses are allowed in the following attributes of parameters: default,
omit, visible and readonly.
 
For example, in our sample C/C++ compiler tool we may need a parameter defining an
extension for input file. It can be specified as:

<parameter id=”SourceExtension”
           default=”%?UsedLanguage=C: c, cpp”
           .../>

5



Or as:

<parameter id=”SourceExtension”
           default=”%?UsedLanguage: C=c, C++=cpp”
           .../>

The same parameter could be specified with a structural conditional clause, but longer:

<if UsedLanguage=”C”>
  <parameter id=”SourceExtension”
             default=”c”
             .../>
</if>
<if UsedLanguage=”C++”>
  <parameter id=”SourceExtension”
             default=”cpp”
             .../>
</if>

and if any other attribute of the parameter ever needs modification, we will have to do it
synchronously in both variants.

6


	TSL Conditional Clauses
	Introduction
	Structural Conditional Clauses
	String Conditional Clauses


