Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
T
tile_processor_gpu
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Elphel
tile_processor_gpu
Commits
406eb708
Commit
406eb708
authored
Apr 07, 2020
by
Andrey Filippov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
preparing for separate compilation in java2
parent
3c3ebfa9
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
1206 additions
and
0 deletions
+1206
-0
dtt8x8.h
src/dtt8x8.h
+109
-0
test_tp.cu
src/test_tp.cu
+1097
-0
No files found.
src/dtt8x8.h
0 → 100644
View file @
406eb708
/**
**
** dtt8x8.h
**
** Copyright (C) 2018 Elphel, Inc.
**
** -----------------------------------------------------------------------------**
**
** dtt8x8.cuh is free software: you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation, either version 3 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program. If not, see <http://www.gnu.org/licenses/>.
**
** Additional permission under GNU GPL version 3 section 7
**
** If you modify this Program, or any covered work, by linking or
** combining it with NVIDIA Corporation's CUDA libraries from the
** NVIDIA CUDA Toolkit (or a modified version of those libraries),
** containing parts covered by the terms of NVIDIA CUDA Toolkit
** EULA, the licensors of this Program grant you additional
** permission to convey the resulting work.
** -----------------------------------------------------------------------------**
*/
/**
**************************************************************************
* \file dtt8x8.h
* \brief DCT-II, DST-II, DCT-IV and DST-IV for Complex Lapped Transform of 16x16 (stride 8)
* in GPU
* This file contains building blocks for the 16x16 stride 8 COmplex Lapped Transform (CLT)
* implementation. DTT-IV are used for forward and inverse 2D CLT, DTT-II - to convert correlation
* results from the frequency to pixel domain. DTT-III (inverse of DTT-II) is not implemented
* here it is used to convert convolution kernels and LPF to the frequency domain - done in
* software.
*
* This file is cpompatible with both runtime and driver API, runtime is used for development
* with Nvidia Nsight, driver API when calling these kernels from Java
*/
#ifndef JCUDA
#define DTT_SIZE_LOG2 3
#endif
#pragma once
#define DTT_SIZE (1 << DTT_SIZE_LOG2)
#define DTT_SIZE1 (DTT_SIZE + 1)
#define DTT_SIZE2 (2 * DTT_SIZE)
#define DTT_SIZE21 (DTT_SIZE2 + 1)
#define DTT_SIZE4 (4 * DTT_SIZE)
#define DTT_SIZE2M1 (DTT_SIZE2 - 1)
#define BAYER_RED 0
#define BAYER_BLUE 1
#define BAYER_GREEN 2
// assuming GR/BG as now
#define BAYER_RED_ROW 0
#define BAYER_RED_COL 1
#define DTTTEST_BLOCK_WIDTH 32
#define DTTTEST_BLOCK_HEIGHT 16
#define DTTTEST_BLK_STRIDE (DTTTEST_BLOCK_WIDTH+1)
extern
__constant__
float
idct_signs
[
4
][
4
][
4
];
extern
__constant__
int
imclt_indx9
[
16
];
extern
__constant__
float
HWINDOW2
[];
inline
__device__
void
dttii_shared_mem_nonortho
(
float
*
x0
,
int
inc
,
int
dst_not_dct
);
// does not scale by y[0] (y[7]) by 1/sqrt[0]
inline
__device__
void
dttii_shared_mem
(
float
*
x0
,
int
inc
,
int
dst_not_dct
);
// used in GPU_DTT24_DRV
inline
__device__
void
dttiv_shared_mem
(
float
*
x0
,
int
inc
,
int
dst_not_dct
);
// used in GPU_DTT24_DRV
inline
__device__
void
dttiv_nodiverg
(
float
*
x
,
int
inc
,
int
dst_not_dct
);
// not used
inline
__device__
void
dctiv_nodiverg
(
float
*
x0
,
int
inc
);
// used in TP
inline
__device__
void
dstiv_nodiverg
(
float
*
x0
,
int
inc
);
// used in TP
inline
__device__
void
dct_ii8
(
float
x
[
8
],
float
y
[
8
]);
// x,y point to 8-element arrays each // not used
inline
__device__
void
dct_iv8
(
float
x
[
8
],
float
y
[
8
]);
// x,y point to 8-element arrays each // not used
inline
__device__
void
dst_iv8
(
float
x
[
8
],
float
y
[
8
]);
// x,y point to 8-element arrays each // not used
inline
__device__
void
_dctii_nrecurs8
(
float
x
[
8
],
float
y
[
8
]);
// x,y point to 8-element arrays each // not used
inline
__device__
void
_dctiv_nrecurs8
(
float
x
[
8
],
float
y
[
8
]);
// x,y point to 8-element arrays each // not used
// kernels (not used so far)
extern
"C"
__global__
void
GPU_DTT24_DRV
(
float
*
dst
,
float
*
src
,
int
src_stride
,
int
dtt_mode
);
//=========================== 2D functions ===============
extern
__device__
void
corrUnfoldTile
(
int
corr_radius
,
float
*
qdata0
,
// [4][DTT_SIZE][DTT_SIZE1], // 4 quadrants of the clt data, rows extended to optimize shared ports
float
*
rslt
);
// [DTT_SIZE2M1][DTT_SIZE2M1]) // 15x15
extern
__device__
void
dttii_2d
(
float
*
clt_corr
);
// shared memory, [4][DTT_SIZE1][DTT_SIZE]
extern
__device__
void
dttiv_color_2d
(
float
*
clt_tile
,
int
color
);
extern
__device__
void
imclt
(
float
*
clt_tile
,
// [4][DTT_SIZE][DTT_SIZE1], // +1 to alternate column ports [4][8][9]
float
*
mclt_tile
);
extern
__device__
void
imclt8threads
(
int
do_acc
,
// 1 - add to previous value, 0 - overwrite
float
*
clt_tile
,
// [4][DTT_SIZE][DTT_SIZE1], // +1 to alternate column ports [4][8][9]
float
*
mclt_tile
,
// [2* DTT_SIZE][DTT_SIZE1+ DTT_SIZE], // +1 to alternate column ports[16][17]
int
debug
);
src/test_tp.cu
0 → 100644
View file @
406eb708
/**
**
** dtt8x8.cu - CPU test code to run GPU tile processor
**
** Copyright (C) 2018 Elphel, Inc.
**
** -----------------------------------------------------------------------------**
**
** dtt8x8.cu is free software: you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation, either version 3 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program. If not, see <http://www.gnu.org/licenses/>.
**
** Additional permission under GNU GPL version 3 section 7
**
** If you modify this Program, or any covered work, by linking or
** combining it with NVIDIA Corporation's CUDA libraries from the
** NVIDIA CUDA Toolkit (or a modified version of those libraries),
** containing parts covered by the terms of NVIDIA CUDA Toolkit
** EULA, the licensors of this Program grant you additional
** permission to convey the resulting work.
** -----------------------------------------------------------------------------**
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <cuda_runtime.h>
#include <helper_cuda.h>
#include <helper_functions.h>
// for reading binary files
#include <fstream>
#include <iterator>
#include <vector>
//#include "dtt8x8.cuh"
#include "dtt8x8.h"
#include "TileProcessor.cuh"
///#include "cuda_profiler_api.h"
//#include "cudaProfiler.h"
float * copyalloc_kernel_gpu(float * kernel_host,
int size, // size in floats
int full_size)
{
float *kernel_gpu;
checkCudaErrors(cudaMalloc((void **)&kernel_gpu, full_size * sizeof(float)));
checkCudaErrors(cudaMemcpy( // segfault
kernel_gpu,
kernel_host,
size * sizeof(float),
cudaMemcpyHostToDevice));
return kernel_gpu;
}
float * copyalloc_kernel_gpu(float * kernel_host,
int size)
{
return copyalloc_kernel_gpu(kernel_host,
size, // size in floats
size);
}
float * alloccopy_from_gpu(
float * gpu_data,
float * cpu_data, // if null, will allocate
int size)
{
if (!cpu_data) {
cpu_data = (float *)malloc(size*sizeof(float));
}
checkCudaErrors(cudaMemcpy( // segfault
cpu_data,
gpu_data,
size * sizeof(float),
cudaMemcpyDeviceToHost));
return cpu_data;
}
float * alloc_kernel_gpu(int size) // size in floats
{
float *kernel_gpu;
checkCudaErrors(cudaMalloc((void **)&kernel_gpu, size * sizeof(float)));
return kernel_gpu;
}
float ** copyalloc_pointers_gpu(float ** gpu_pointer,
int size) // number of entries (cameras)
{
float ** gpu_pointer_to_gpu_pointers;
checkCudaErrors(cudaMalloc((void **)&gpu_pointer_to_gpu_pointers, size * sizeof(float*)));
checkCudaErrors(cudaMemcpy(
gpu_pointer_to_gpu_pointers,
gpu_pointer,
size * sizeof(float*),
cudaMemcpyHostToDevice));
return gpu_pointer_to_gpu_pointers;
}
float * copyalloc_image_gpu(float * image_host,
size_t* dstride, // in floats !
int width,
int height)
{
float *image_gpu;
checkCudaErrors(cudaMallocPitch((void **)&image_gpu, dstride, width * sizeof(float), height));
checkCudaErrors(cudaMemcpy2D(
image_gpu,
*dstride, // * sizeof(float),
image_host,
width * sizeof(float), // make in 16*n?
width * sizeof(float),
height,
cudaMemcpyHostToDevice));
return image_gpu;
}
float * alloc_image_gpu(size_t* dstride, // in bytes!!
int width,
int height)
{
float *image_gpu;
checkCudaErrors(cudaMallocPitch((void **)&image_gpu, dstride, width * sizeof(float), height));
return image_gpu;
}
int readFloatsFromFile(float * data, // allocated array
const char * path) // file path
{
std::ifstream input(path, std::ios::binary );
// copies all data into buffer
std::vector<char> buffer((
std::istreambuf_iterator<char>(input)),
(std::istreambuf_iterator<char>()));
std::copy( buffer.begin(), buffer.end(), (char *) data);
return 0;
}
int writeFloatsToFile(float * data, // allocated array
int size, // length in elements
const char * path) // file path
{
// std::ifstream input(path, std::ios::binary );
std::ofstream ofile(path, std::ios::binary);
ofile.write((char *) data, size * sizeof(float));
return 0;
}
// Prepare low pass filter (64 long) to be applied to each quadrant of the CLT data
void set_clt_lpf(
float * lpf, // size*size array to be filled out
float sigma,
const int dct_size)
{
int dct_len = dct_size * dct_size;
if (sigma == 0.0f) {
lpf[0] = 1.0f;
for (int i = 1; i < dct_len; i++){
lpf[i] = 0.0;
}
} else {
for (int i = 0; i < dct_size; i++){
for (int j = 0; j < dct_size; j++){
lpf[i*dct_size+j] = exp(-(i*i+j*j)/(2*sigma));
}
}
// normalize
double sum = 0;
for (int i = 0; i < dct_size; i++){
for (int j = 0; j < dct_size; j++){
double d = lpf[i*dct_size+j];
d*=cos(M_PI*i/(2*dct_size))*cos(M_PI*j/(2*dct_size));
if (i > 0) d*= 2.0;
if (j > 0) d*= 2.0;
sum +=d;
}
}
for (int i = 0; i< dct_len; i++){
lpf[i] /= sum;
}
}
}
/**
**************************************************************************
* Program entry point
*
* \param argc [IN] - Number of command-line arguments
* \param argv [IN] - Array of command-line arguments
*
* \return Status code
*/
int main(int argc, char **argv)
{
//
// Sample initialization
//
printf("%s Starting...\n\n", argv[0]);
printf("sizeof(float*)=%d\n",(int)sizeof(float*));
//initialize CUDA
findCudaDevice(argc, (const char **)argv);
// CLT testing
const char* kernel_file[] = {
"/data_ssd/git/tile_processor_gpu/clt/main_chn0_transposed.kernel",
"/data_ssd/git/tile_processor_gpu/clt/main_chn1_transposed.kernel",
"/data_ssd/git/tile_processor_gpu/clt/main_chn2_transposed.kernel",
"/data_ssd/git/tile_processor_gpu/clt/main_chn3_transposed.kernel"};
const char* kernel_offs_file[] = {
"/data_ssd/git/tile_processor_gpu/clt/main_chn0_transposed.kernel_offsets",
"/data_ssd/git/tile_processor_gpu/clt/main_chn1_transposed.kernel_offsets",
"/data_ssd/git/tile_processor_gpu/clt/main_chn2_transposed.kernel_offsets",
"/data_ssd/git/tile_processor_gpu/clt/main_chn3_transposed.kernel_offsets"};
const char* image_files[] = {
"/data_ssd/git/tile_processor_gpu/clt/main_chn0.bayer",
"/data_ssd/git/tile_processor_gpu/clt/main_chn1.bayer",
"/data_ssd/git/tile_processor_gpu/clt/main_chn2.bayer",
"/data_ssd/git/tile_processor_gpu/clt/main_chn3.bayer"};
const char* ports_offs_xy_file[] = {
"/data_ssd/git/tile_processor_gpu/clt/main_chn0.portsxy",
"/data_ssd/git/tile_processor_gpu/clt/main_chn1.portsxy",
"/data_ssd/git/tile_processor_gpu/clt/main_chn2.portsxy",
"/data_ssd/git/tile_processor_gpu/clt/main_chn3.portsxy"};
const char* ports_clt_file[] = { // never referenced
"/data_ssd/git/tile_processor_gpu/clt/main_chn0.clt",
"/data_ssd/git/tile_processor_gpu/clt/main_chn1.clt",
"/data_ssd/git/tile_processor_gpu/clt/main_chn2.clt",
"/data_ssd/git/tile_processor_gpu/clt/main_chn3.clt"};
const char* result_rbg_file[] = {
"/data_ssd/git/tile_processor_gpu/clt/main_chn0.rbg",
"/data_ssd/git/tile_processor_gpu/clt/main_chn1.rbg",
"/data_ssd/git/tile_processor_gpu/clt/main_chn2.rbg",
"/data_ssd/git/tile_processor_gpu/clt/main_chn3.rbg"};
const char* result_corr_file = "/data_ssd/git/tile_processor_gpu/clt/main_corr.corr";
const char* result_textures_file = "/data_ssd/git/tile_processor_gpu/clt/texture.rgba";
const char* result_textures_rgba_file = "/data_ssd/git/tile_processor_gpu/clt/texture_rgba.rgba";
// not yet used
float lpf_sigmas[3] = {0.9f, 0.9f, 0.9f}; // G, B, G
float port_offsets[NUM_CAMS][2] = {// used only in textures to scale differences
{-0.5, -0.5},
{ 0.5, -0.5},
{-0.5, 0.5},
{ 0.5, 0.5}};
int keep_texture_weights = 1; // try with 0 also
int texture_colors = 3; // result will be 3+1 RGBA (for mono - 2)
/*
#define IMG_WIDTH 2592
#define IMG_HEIGHT 1936
#define NUM_CAMS 4
#define NUM_COLORS 3
#define KERNELS_STEP 16
#define KERNELS_HOR 164
#define KERNELS_VERT 123
#define KERNEL_OFFSETS 8
#define TILESX 324
#define TILESY 242
*/
/*
struct tp_task {
long task;
short ty;
short tx;
float xy[NUM_CAMS][2];
} ;
*/
int KERN_TILES = KERNELS_HOR * KERNELS_VERT * NUM_COLORS;
int KERN_SIZE = KERN_TILES * 4 * 64;
// int CORR_SIZE = (2 * DTT_SIZE -1) * (2 * DTT_SIZE -1);
int CORR_SIZE = (2 * CORR_OUT_RAD + 1) * (2 * CORR_OUT_RAD + 1);
float * host_kern_buf = (float *)malloc(KERN_SIZE * sizeof(float));
struct tp_task task_data [TILESX*TILESY]; // maximal length - each tile
int corr_indices [NUM_PAIRS*TILESX*TILESY];
// int texture_indices [TILESX*TILESY];
int texture_indices [TILESX*TILESYA];
int cpu_woi [4];
// host array of pointers to GPU memory
float * gpu_kernels_h [NUM_CAMS];
struct CltExtra * gpu_kernel_offsets_h [NUM_CAMS];
float * gpu_images_h [NUM_CAMS];
float tile_coords_h [NUM_CAMS][TILESX * TILESY][2];
float * gpu_clt_h [NUM_CAMS];
float * gpu_lpf_h [NUM_COLORS]; // never used
#ifndef NOICLT
float * gpu_corr_images_h [NUM_CAMS];
#endif
float * gpu_corrs;
int * gpu_corr_indices;
float * gpu_textures;
float * gpu_textures_rbga;
int * gpu_texture_indices;
int * gpu_woi;
int * gpu_num_texture_tiles;
float * gpu_port_offsets;
int num_corrs;
int num_textures;
int num_ports = NUM_CAMS;
// GPU pointers to GPU pointers to memory
float ** gpu_kernels; // [NUM_CAMS];
struct CltExtra ** gpu_kernel_offsets; // [NUM_CAMS];
float ** gpu_images; // [NUM_CAMS];
float ** gpu_clt; // [NUM_CAMS];
float ** gpu_lpf; // [NUM_CAMS]; // never referenced
// GPU pointers to GPU memory
// float * gpu_tasks;
struct tp_task * gpu_tasks;
size_t dstride; // in bytes !
size_t dstride_rslt; // in bytes !
size_t dstride_corr; // in bytes ! for one 2d phase correlation (padded 15x15x4 bytes)
size_t dstride_textures; // in bytes ! for one rgba/ya 16x16 tile
size_t dstride_textures_rbga; // in bytes ! for one rgba/ya 16x16 tile
float lpf_rbg[3][64]; // not used
for (int ncol = 0; ncol < 3; ncol++) {
if (lpf_sigmas[ncol] > 0.0) {
set_clt_lpf (
lpf_rbg[ncol], // float * lpf, // size*size array to be filled out
lpf_sigmas[ncol], // float sigma,
8); // int dct_size)
gpu_lpf_h[ncol] = copyalloc_kernel_gpu(lpf_rbg[ncol], 64);
} else {
gpu_lpf_h[ncol] = NULL;
}
}
for (int ncam = 0; ncam < NUM_CAMS; ncam++) {
readFloatsFromFile(
host_kern_buf, // float * data, // allocated array
kernel_file[ncam]); // char * path) // file path
gpu_kernels_h[ncam] = copyalloc_kernel_gpu(host_kern_buf, KERN_SIZE);
readFloatsFromFile(
host_kern_buf, // float * data, // allocated array
kernel_offs_file[ncam]); // char * path) // file path
gpu_kernel_offsets_h[ncam] = (struct CltExtra *) copyalloc_kernel_gpu(
host_kern_buf,
KERN_TILES * (sizeof( struct CltExtra)/sizeof(float)));
// will get results back
gpu_clt_h[ncam] = alloc_kernel_gpu(TILESY * TILESX * NUM_COLORS * 4 * DTT_SIZE * DTT_SIZE);
printf("Allocating GPU memory, 0x%x floats\n", (TILESY * TILESX * NUM_COLORS * 4 * DTT_SIZE * DTT_SIZE)) ;
// allocate result images (3x height to accommodate 3 colors
// Image is extended by 4 pixels each side to avoid checking (mclt tiles extend by 4)
//host array of pointers to GPU arrays
#ifndef NOICLT
gpu_corr_images_h[ncam] = alloc_image_gpu(
&dstride_rslt, // size_t* dstride, // in bytes!!
IMG_WIDTH + DTT_SIZE, // int width,
3*(IMG_HEIGHT + DTT_SIZE)); // int height);
#endif
}
// allocates one correlation kernel per line (15x15 floats), number of rows - number of tiles * number of pairs
gpu_corrs = alloc_image_gpu(
&dstride_corr, // in bytes ! for one 2d phase correlation (padded 15x15x4 bytes)
CORR_SIZE, // int width,
NUM_PAIRS * TILESX * TILESY); // int height);
// read channel images (assuming host_kern_buf size > image size, reusing it)
for (int ncam = 0; ncam < NUM_CAMS; ncam++) {
readFloatsFromFile(
host_kern_buf, // float * data, // allocated array
image_files[ncam]); // char * path) // file path
gpu_images_h[ncam] = copyalloc_image_gpu(
host_kern_buf, // float * image_host,
&dstride, // size_t* dstride,
IMG_WIDTH, // int width,
IMG_HEIGHT); // int height);
}
//#define DBG_TILE (174*324 +118)
for (int ncam = 0; ncam < NUM_CAMS; ncam++) {
readFloatsFromFile(
(float *) &tile_coords_h[ncam],
ports_offs_xy_file[ncam]); // char * path) // file path
}
// build TP task that processes all tiles in linescan order
for (int ty = 0; ty < TILESY; ty++){
for (int tx = 0; tx < TILESX; tx++){
int nt = ty * TILESX + tx;
task_data[nt].task = 0xf | (((1 << NUM_PAIRS)-1) << TASK_CORR_BITS);
task_data[nt].txy = tx + (ty << 16);
for (int ncam = 0; ncam < NUM_CAMS; ncam++) {
task_data[nt].xy[ncam][0] = tile_coords_h[ncam][nt][0];
task_data[nt].xy[ncam][1] = tile_coords_h[ncam][nt][1];
}
}
}
int tp_task_size = sizeof(task_data)/sizeof(struct tp_task);
#ifdef DBG0
//#define NUM_TEST_TILES 128
#define NUM_TEST_TILES 1
for (int t = 0; t < NUM_TEST_TILES; t++) {
task_data[t].task = 1;
task_data[t].txy = ((DBG_TILE + t) - 324* ((DBG_TILE + t) / 324)) + (((DBG_TILE + t) / 324)) << 16;
int nt = task_data[t].ty * TILESX + task_data[t].tx;
for (int ncam = 0; ncam < NUM_CAMS; ncam++) {
task_data[t].xy[ncam][0] = tile_coords_h[ncam][nt][0];
task_data[t].xy[ncam][1] = tile_coords_h[ncam][nt][1];
}
}
tp_task_size = NUM_TEST_TILES; // sizeof(task_data)/sizeof(float);
#endif
// segfault in the next
gpu_tasks = (struct tp_task *) copyalloc_kernel_gpu((float * ) &task_data, tp_task_size * (sizeof(struct tp_task)/sizeof(float)));
// build corr_indices
num_corrs = 0;
for (int ty = 0; ty < TILESY; ty++){
for (int tx = 0; tx < TILESX; tx++){
int nt = ty * TILESX + tx;
int cm = (task_data[nt].task >> TASK_CORR_BITS) & ((1 << NUM_PAIRS)-1);
if (cm){
for (int b = 0; b < NUM_PAIRS; b++) if ((cm & (1 << b)) != 0) {
corr_indices[num_corrs++] = (nt << CORR_NTILE_SHIFT) | b;
}
}
}
}
// num_corrs now has the total number of correlations
// copy corr_indices to gpu
// gpu_corr_indices = (int *) copyalloc_kernel_gpu((float * ) corr_indices, num_corrs);
gpu_corr_indices = (int *) copyalloc_kernel_gpu(
(float * ) corr_indices,
num_corrs,
NUM_PAIRS * TILESX * TILESY);
// build texture_indices
num_textures = 0;
for (int ty = 0; ty < TILESY; ty++){
for (int tx = 0; tx < TILESX; tx++){
int nt = ty * TILESX + tx;
// int cm = (task_data[nt].task >> TASK_TEXTURE_BIT) & 1;
int cm = task_data[nt].task & TASK_TEXTURE_BITS;
if (cm){
texture_indices[num_textures++] = (nt << CORR_NTILE_SHIFT) | (1 << LIST_TEXTURE_BIT);
}
}
}
// num_textures now has the total number of textures
// copy corr_indices to gpu
// gpu_texture_indices = (int *) copyalloc_kernel_gpu((float * ) texture_indices, num_textures);
gpu_texture_indices = (int *) copyalloc_kernel_gpu(
(float * ) texture_indices,
num_textures,
TILESX * TILESYA); // number of rows - multiple of 4
// just allocate
checkCudaErrors(cudaMalloc((void **)&gpu_woi, 4 * sizeof(float)));
checkCudaErrors(cudaMalloc((void **)&gpu_num_texture_tiles, 8 * sizeof(float))); // for each subsequence - number of non-border,
// number of border tiles
// copy port indices to gpu
gpu_port_offsets = (float *) copyalloc_kernel_gpu((float * ) port_offsets, num_ports * 2);
// int keep_texture_weights = 1; // try with 0 also
// int texture_colors = 3; // result will be 3+1 RGBA (for mono - 2)
// double [][] rgba = new double[numcol + 1 + (keep_weights?(ports + numcol + 1):0)][];
int tile_texture_size = (texture_colors + 1 + (keep_texture_weights? (NUM_CAMS + texture_colors + 1): 0)) *256;
gpu_textures = alloc_image_gpu(
&dstride_textures, // in bytes ! for one rgba/ya 16x16 tile
tile_texture_size, // int width (floats),
TILESX * TILESY); // int height);
int rgba_width = (TILESX+1) * DTT_SIZE;
int rgba_height = (TILESY+1) * DTT_SIZE;
int rbga_slices = texture_colors + 1; // 4/1
gpu_textures_rbga = alloc_image_gpu(
&dstride_textures_rbga, // in bytes ! for one rgba/ya 16x16 tile
rgba_width, // int width (floats),
rgba_height * rbga_slices); // int height);
// Now copy arrays of per-camera pointers to GPU memory to GPU itself
gpu_kernels = copyalloc_pointers_gpu (gpu_kernels_h, NUM_CAMS);
gpu_kernel_offsets = (struct CltExtra **) copyalloc_pointers_gpu ((float **) gpu_kernel_offsets_h, NUM_CAMS);
gpu_images = copyalloc_pointers_gpu (gpu_images_h, NUM_CAMS);
gpu_clt = copyalloc_pointers_gpu (gpu_clt_h, NUM_CAMS);
// gpu_corr_images = copyalloc_pointers_gpu (gpu_corr_images_h, NUM_CAMS);
//create and start CUDA timer
StopWatchInterface *timerTP = 0;
sdkCreateTimer(&timerTP);
dim3 threads_tp(THREADSX, TILES_PER_BLOCK, 1);
dim3 grid_tp((tp_task_size + TILES_PER_BLOCK -1 )/TILES_PER_BLOCK, 1);
printf("threads_tp=(%d, %d, %d)\n",threads_tp.x,threads_tp.y,threads_tp.z);
printf("grid_tp= (%d, %d, %d)\n",grid_tp.x, grid_tp.y, grid_tp.z);
#ifdef DBG_TILE
const int numIterations = 1; //0;
const int i0 = 0; // -1;
#else
const int numIterations = 10; // 0; //0;
const int i0 = -1; // 0; // -1;
#endif
cudaFuncSetCacheConfig(convert_correct_tiles, cudaFuncCachePreferShared);
/// cudaProfilerStart();
float ** fgpu_kernel_offsets = (float **) gpu_kernel_offsets; // [NUM_CAMS];
for (int i = i0; i < numIterations; i++)
{
if (i == 0)
{
checkCudaErrors(cudaDeviceSynchronize());
sdkResetTimer(&timerTP);
sdkStartTimer(&timerTP);
}
convert_correct_tiles<<<grid_tp,threads_tp>>>(
fgpu_kernel_offsets, // struct CltExtra ** gpu_kernel_offsets,
gpu_kernels, // float ** gpu_kernels,
gpu_images, // float ** gpu_images,
gpu_tasks, // struct tp_task * gpu_tasks,
gpu_clt, // float ** gpu_clt, // [NUM_CAMS][TILESY][TILESX][NUM_COLORS][DTT_SIZE*DTT_SIZE]
dstride/sizeof(float), // size_t dstride, // for gpu_images
tp_task_size, // int num_tiles) // number of tiles in task
0); // 7); // 0); // 7); // int lpf_mask) // apply lpf to colors : bit 0 - red, bit 1 - blue, bit2 - green
getLastCudaError("Kernel execution failed");
checkCudaErrors(cudaDeviceSynchronize());
printf("%d\n",i);
}
// checkCudaErrors(cudaDeviceSynchronize());
sdkStopTimer(&timerTP);
float avgTime = (float)sdkGetTimerValue(&timerTP) / (float)numIterations;
sdkDeleteTimer(&timerTP);
printf("Run time =%f ms\n", avgTime);
#ifdef SAVE_CLT
int rslt_size = (TILESY * TILESX * NUM_COLORS * 4 * DTT_SIZE * DTT_SIZE);
float * cpu_clt = (float *)malloc(rslt_size*sizeof(float));
for (int ncam = 0; ncam < NUM_CAMS; ncam++) {
checkCudaErrors(cudaMemcpy( // segfault
cpu_clt,
gpu_clt_h[ncam],
rslt_size * sizeof(float),
cudaMemcpyDeviceToHost));
#ifndef DBG_TILE
printf("Writing CLT data to %s\n", ports_clt_file[ncam]);
writeFloatsToFile(cpu_clt, // float * data, // allocated array
rslt_size, // int size, // length in elements
ports_clt_file[ncam]); // const char * path) // file path
#endif
}
#endif
#ifdef TEST_IMCLT
{
// testing imclt
dim3 threads_imclt(IMCLT_THREADS_PER_TILE, IMCLT_TILES_PER_BLOCK, 1);
dim3 grid_imclt(1,1,1);
printf("threads_imclt=(%d, %d, %d)\n",threads_imclt.x,threads_imclt.y,threads_imclt.z);
printf("grid_imclt= (%d, %d, %d)\n",grid_imclt.x, grid_imclt.y, grid_imclt.z);
for (int ncam = 0; ncam < NUM_CAMS; ncam++) {
test_imclt<<<grid_imclt,threads_imclt>>>(
gpu_clt_h[ncam], // ncam]); // // float ** gpu_clt, // [NUM_CAMS][TILESY][TILESX][NUM_COLORS][DTT_SIZE*DTT_SIZE]
ncam); // int ncam); // just for debug print
}
getLastCudaError("Kernel execution failed");
checkCudaErrors(cudaDeviceSynchronize());
printf("test_imclt() DONE\n");
}
#endif
#ifndef NOICLT
// testing imclt
dim3 threads_imclt(IMCLT_THREADS_PER_TILE, IMCLT_TILES_PER_BLOCK, 1);
printf("threads_imclt=(%d, %d, %d)\n",threads_imclt.x,threads_imclt.y,threads_imclt.z);
StopWatchInterface *timerIMCLT = 0;
sdkCreateTimer(&timerIMCLT);
for (int i = i0; i < numIterations; i++)
{
if (i == 0)
{
checkCudaErrors(cudaDeviceSynchronize());
sdkResetTimer(&timerIMCLT);
sdkStartTimer(&timerIMCLT);
}
for (int ncam = 0; ncam < NUM_CAMS; ncam++) {
for (int color = 0; color < NUM_COLORS; color++) {
#ifdef IMCLT14
for (int v_offs = 0; v_offs < 1; v_offs++){ // temporarily for debugging
for (int h_offs = 0; h_offs < 1; h_offs++){ // temporarily for debugging
#else
for (int v_offs = 0; v_offs < 2; v_offs++){
for (int h_offs = 0; h_offs < 2; h_offs++){
#endif
int tilesy_half = (TILESY + (v_offs ^ 1)) >> 1;
int tilesx_half = (TILESX + (h_offs ^ 1)) >> 1;
int tiles_in_pass = tilesy_half * tilesx_half;
dim3 grid_imclt((tiles_in_pass + IMCLT_TILES_PER_BLOCK-1) / IMCLT_TILES_PER_BLOCK,1,1);
// printf("grid_imclt= (%d, %d, %d)\n",grid_imclt.x, grid_imclt.y, grid_imclt.z);
imclt_rbg<<<grid_imclt,threads_imclt>>>(
gpu_clt_h[ncam], // float * gpu_clt, // [TILESY][TILESX][NUM_COLORS][DTT_SIZE*DTT_SIZE]
gpu_corr_images_h[ncam], // float * gpu_rbg, // WIDTH, 3 * HEIGHT
color, // int color,
v_offs, // int v_offset,
h_offs, // int h_offset,
dstride_rslt/sizeof(float)); //const size_t dstride); // in floats (pixels)
}
}
}
}
getLastCudaError("Kernel failure");
checkCudaErrors(cudaDeviceSynchronize());
printf("test pass: %d\n",i);
}
sdkStopTimer(&timerIMCLT);
float avgTimeIMCLT = (float)sdkGetTimerValue(&timerIMCLT) / (float)numIterations;
sdkDeleteTimer(&timerIMCLT);
printf("Average IMCLT run time =%f ms\n", avgTimeIMCLT);
int rslt_img_size = NUM_COLORS * (IMG_HEIGHT + DTT_SIZE) * (IMG_WIDTH + DTT_SIZE);
float * cpu_corr_image = (float *)malloc(rslt_img_size * sizeof(float));
for (int ncam = 0; ncam < NUM_CAMS; ncam++) {
checkCudaErrors(cudaMemcpy2D( // segfault
cpu_corr_image,
(IMG_WIDTH + DTT_SIZE) * sizeof(float),
gpu_corr_images_h[ncam],
dstride_rslt,
(IMG_WIDTH + DTT_SIZE) * sizeof(float),
3* (IMG_HEIGHT + DTT_SIZE),
cudaMemcpyDeviceToHost));
#ifndef DBG_TILE
printf("Writing RBG data to %s\n", result_rbg_file[ncam]);
writeFloatsToFile( // will have margins
cpu_corr_image, // float * data, // allocated array
rslt_img_size, // int size, // length in elements
result_rbg_file[ncam]); // const char * path) // file path
#endif
}
free(cpu_corr_image);
#endif
#ifndef NOCORR
// cudaProfilerStart();
// testing corr
dim3 threads_corr(CORR_THREADS_PER_TILE, CORR_TILES_PER_BLOCK, 1);
printf("threads_corr=(%d, %d, %d)\n",threads_corr.x,threads_corr.y,threads_corr.z);
StopWatchInterface *timerCORR = 0;
sdkCreateTimer(&timerCORR);
for (int i = i0; i < numIterations; i++)
{
if (i == 0)
{
checkCudaErrors(cudaDeviceSynchronize());
sdkResetTimer(&timerCORR);
sdkStartTimer(&timerCORR);
}
dim3 grid_corr((num_corrs + CORR_TILES_PER_BLOCK-1) / CORR_TILES_PER_BLOCK,1,1);
correlate2D<<<grid_corr,threads_corr>>>(
gpu_clt, // float ** gpu_clt, // [NUM_CAMS] ->[TILESY][TILESX][NUM_COLORS][DTT_SIZE*DTT_SIZE]
3, // int colors, // number of colors (3/1)
0.25, // float scale0, // scale for R
0.25, // float scale1, // scale for B
0.5, // float scale2, // scale for G
30.0, // float fat_zero, // here - absolute
num_corrs, // size_t num_corr_tiles, // number of correlation tiles to process
gpu_corr_indices, // int * gpu_corr_indices, // packed tile+pair
dstride_corr/sizeof(float), // const size_t corr_stride, // in floats
CORR_OUT_RAD, // int corr_radius, // radius of the output correlation (7 for 15x15)
gpu_corrs); // float * gpu_corrs); // correlation output data
getLastCudaError("Kernel failure");
checkCudaErrors(cudaDeviceSynchronize());
printf("test pass: %d\n",i);
}
sdkStopTimer(&timerCORR);
float avgTimeCORR = (float)sdkGetTimerValue(&timerCORR) / (float)numIterations;
sdkDeleteTimer(&timerCORR);
printf("Average CORR run time =%f ms\n", avgTimeCORR);
int corr_size = 2 * CORR_OUT_RAD + 1;
int rslt_corr_size = num_corrs * corr_size * corr_size;
float * cpu_corr = (float *)malloc(rslt_corr_size * sizeof(float));
checkCudaErrors(cudaMemcpy2D(
cpu_corr,
(corr_size * corr_size) * sizeof(float),
gpu_corrs,
dstride_corr,
(corr_size * corr_size) * sizeof(float),
num_corrs,
cudaMemcpyDeviceToHost));
#ifndef NSAVE_CORR
printf("Writing phase correlation data to %s\n", result_corr_file);
writeFloatsToFile(
cpu_corr, // float * data, // allocated array
rslt_corr_size, // int size, // length in elements
result_corr_file); // const char * path) // file path
#endif
free(cpu_corr);
#endif // ifndef NOCORR
// -----------------
#ifndef NOTEXTURES
// cudaProfilerStart();
// testing textures
dim3 threads_texture(TEXTURE_THREADS_PER_TILE, NUM_CAMS, 1); // TEXTURE_TILES_PER_BLOCK, 1);
dim3 grid_texture((num_textures + TEXTURE_TILES_PER_BLOCK-1) / TEXTURE_TILES_PER_BLOCK,1,1);
printf("threads_texture=(%d, %d, %d)\n",threads_texture.x,threads_texture.y,threads_texture.z);
printf("grid_texture=(%d, %d, %d)\n",grid_texture.x,grid_texture.y,grid_texture.z);
StopWatchInterface *timerTEXTURE = 0;
sdkCreateTimer(&timerTEXTURE);
for (int i = i0; i < numIterations; i++)
{
if (i == 0)
{
checkCudaErrors(cudaDeviceSynchronize());
sdkResetTimer(&timerTEXTURE);
sdkStartTimer(&timerTEXTURE);
}
// Channel0 weight = 0.294118
// Channel1 weight = 0.117647
// Channel2 weight = 0.588235
textures_accumulate<<<grid_texture,threads_texture>>> (
// 0, // int border_tile, // if 1 - watch for border
(int *) 0, // int * woi, // x, y, width,height
gpu_clt , // float ** gpu_clt, // [NUM_CAMS] ->[TILESY][TILESX][NUM_COLORS][DTT_SIZE*DTT_SIZE]
num_textures, // size_t num_texture_tiles, // number of texture tiles to process
gpu_texture_indices, // int * gpu_texture_indices,// packed tile + bits (now only (1 << 7)
gpu_port_offsets, // float * port_offsets, // relative ports x,y offsets - just to scale differences, may be approximate
texture_colors, // int colors, // number of colors (3/1)
(texture_colors == 1), // int is_lwir, // do not perform shot correction
10.0, // float min_shot, // 10.0
3.0, // float scale_shot, // 3.0
1.5f, // float diff_sigma, // pixel value/pixel change
10.0f, // float diff_threshold, // pixel value/pixel change
3.0, // float min_agree, // minimal number of channels to agree on a point (real number to work with fuzzy averages)
0.294118, // float weight0, // scale for R
0.117647, // float weight1, // scale for B
0.588235, // float weight2, // scale for G
1, // int dust_remove, // Do not reduce average weight when only one image differes much from the average
keep_texture_weights, // int keep_weights, // return channel weights after A in RGBA
// combining both non-overlap and overlap (each calculated if pointer is not null )
0, // const size_t texture_rbg_stride, // in floats
(float *) 0, // float * gpu_texture_rbg, // (number of colors +1 + ?)*16*16 rgba texture tiles
dstride_textures/sizeof(float), // const size_t texture_stride, // in floats (now 256*4 = 1024)
gpu_textures); // float * gpu_texture_tiles); // 4*16*16 rgba texture tiles
getLastCudaError("Kernel failure");
checkCudaErrors(cudaDeviceSynchronize());
printf("test pass: %d\n",i);
}
/// cudaProfilerStop();
sdkStopTimer(&timerTEXTURE);
float avgTimeTEXTURES = (float)sdkGetTimerValue(&timerTEXTURE) / (float)numIterations;
sdkDeleteTimer(&timerTEXTURE);
printf("Average Texture run time =%f ms\n", avgTimeTEXTURES);
int rslt_texture_size = num_textures * tile_texture_size;
float * cpu_textures = (float *)malloc(rslt_texture_size * sizeof(float));
checkCudaErrors(cudaMemcpy2D(
cpu_textures,
tile_texture_size * sizeof(float),
gpu_textures,
dstride_textures,
tile_texture_size * sizeof(float),
num_textures,
cudaMemcpyDeviceToHost));
#ifndef NSAVE_TEXTURES
printf("Writing phase texture data to %s\n", result_textures_file);
writeFloatsToFile(
cpu_textures, // float * data, // allocated array
rslt_texture_size, // int size, // length in elements
result_textures_file); // const char * path) // file path
//DBG_TILE
#ifdef DEBUG10
int texture_offset = DBG_TILE * tile_texture_size;
int chn = 0;
for (int i = 0; i < tile_texture_size; i++){
if ((i % 256) == 0){
printf("\nchn = %d\n", chn++);
}
printf("%10.4f", *(cpu_textures + texture_offset + i));
if (((i + 1) % 16) == 0){
printf("\n");
} else {
printf(" ");
}
}
// int tile_texture_size = (texture_colors + 1 + (keep_texture_weights? (NUM_CAMS + texture_colors + 1): 0)) *256;
#endif // DEBUG9
#endif
free(cpu_textures);
#endif // ifndef NOTEXTURES
#define GEN_TEXTURE_LIST
#ifdef GEN_TEXTURE_LIST
dim3 threads_list(1,1, 1); // TEXTURE_TILES_PER_BLOCK, 1);
dim3 grid_list (1,1,1);
printf("threads_list=(%d, %d, %d)\n",threads_list.x,threads_list.y,threads_list.z);
printf("grid_list=(%d, %d, %d)\n",grid_list.x,grid_list.y,grid_list.z);
StopWatchInterface *timerTEXTURELIST = 0;
sdkCreateTimer(&timerTEXTURELIST);
for (int i = i0; i < numIterations; i++)
{
if (i == 0)
{
checkCudaErrors(cudaDeviceSynchronize());
sdkResetTimer(&timerTEXTURELIST);
sdkStartTimer(&timerTEXTURELIST);
}
prepare_texture_list<<<grid_list,threads_list>>> (
gpu_tasks, // struct tp_task * gpu_tasks,
tp_task_size, // int num_tiles, // number of tiles in task list
gpu_texture_indices, // int * gpu_texture_indices,// packed tile + bits (now only (1 << 7)
gpu_num_texture_tiles, // int * num_texture_tiles, // number of texture tiles to process (8 elements)
gpu_woi, // int * woi, // x,y,width,height of the woi
TILESX, // int width, // <= TILESX, use for faster processing of LWIR images (should be actual + 1)
TILESY); // int height); // <= TILESY, use for faster processing of LWIR images
getLastCudaError("Kernel failure");
checkCudaErrors(cudaDeviceSynchronize());
printf("test pass: %d\n",i);
}
/// cudaProfilerStop();
sdkStopTimer(&timerTEXTURELIST);
float avgTimeTEXTURESLIST = (float)sdkGetTimerValue(&timerTEXTURELIST) / (float)numIterations;
sdkDeleteTimer(&timerTEXTURELIST);
printf("Average TextureList run time =%f ms\n", avgTimeTEXTURESLIST);
int cpu_num_texture_tiles[8];
checkCudaErrors(cudaMemcpy(
cpu_woi,
gpu_woi,
4 * sizeof(float),
cudaMemcpyDeviceToHost));
printf("WOI x=%d, y=%d, width=%d, height=%d\n", cpu_woi[0], cpu_woi[1], cpu_woi[2], cpu_woi[3]);
checkCudaErrors(cudaMemcpy(
cpu_num_texture_tiles,
gpu_num_texture_tiles,
8 * sizeof(float), // 8 sequences (0,2,4,6 - non-border, growing up;
//1,3,5,7 - border, growing down from the end of the corresponding non-border buffers
cudaMemcpyDeviceToHost));
printf("cpu_num_texture_tiles=(%d(%d), %d(%d), %d(%d), %d(%d) -> %d tp_task_size=%d)\n",
cpu_num_texture_tiles[0], cpu_num_texture_tiles[1],
cpu_num_texture_tiles[2], cpu_num_texture_tiles[3],
cpu_num_texture_tiles[4], cpu_num_texture_tiles[5],
cpu_num_texture_tiles[6], cpu_num_texture_tiles[7],
cpu_num_texture_tiles[0] + cpu_num_texture_tiles[1] +
cpu_num_texture_tiles[2] + cpu_num_texture_tiles[3] +
cpu_num_texture_tiles[4] + cpu_num_texture_tiles[5] +
cpu_num_texture_tiles[6] + cpu_num_texture_tiles[7],
tp_task_size
);
for (int q = 0; q < 4; q++) {
checkCudaErrors(cudaMemcpy(
texture_indices + q * TILESX * (TILESYA >> 2),
gpu_texture_indices + q * TILESX * (TILESYA >> 2),
cpu_num_texture_tiles[q] * sizeof(float), // change to cpu_num_texture_tiles when ready
cudaMemcpyDeviceToHost));
}
for (int q = 0; q < 4; q++) {
printf("%d: %3x:%3x %3x:%3x %3x:%3x %3x:%3x %3x:%3x %3x:%3x %3x:%3x %3x:%3x \n",q,
(texture_indices[q * TILESX * (TILESYA >> 2) + 0] >> 8) / TILESX, (texture_indices[q * TILESX * (TILESYA >> 2) + 0] >> 8) % TILESX,
(texture_indices[q * TILESX * (TILESYA >> 2) + 1] >> 8) / TILESX, (texture_indices[q * TILESX * (TILESYA >> 2) + 1] >> 8) % TILESX,
(texture_indices[q * TILESX * (TILESYA >> 2) + 2] >> 8) / TILESX, (texture_indices[q * TILESX * (TILESYA >> 2) + 2] >> 8) % TILESX,
(texture_indices[q * TILESX * (TILESYA >> 2) + 3] >> 8) / TILESX, (texture_indices[q * TILESX * (TILESYA >> 2) + 3] >> 8) % TILESX,
(texture_indices[q * TILESX * (TILESYA >> 2) + 4] >> 8) / TILESX, (texture_indices[q * TILESX * (TILESYA >> 2) + 4] >> 8) % TILESX,
(texture_indices[q * TILESX * (TILESYA >> 2) + 5] >> 8) / TILESX, (texture_indices[q * TILESX * (TILESYA >> 2) + 5] >> 8) % TILESX,
(texture_indices[q * TILESX * (TILESYA >> 2) + 6] >> 8) / TILESX, (texture_indices[q * TILESX * (TILESYA >> 2) + 6] >> 8) % TILESX,
(texture_indices[q * TILESX * (TILESYA >> 2) + 7] >> 8) / TILESX, (texture_indices[q * TILESX * (TILESYA >> 2) + 7] >> 8) % TILESX);
}
#endif //GEN_TEXTURE_LIST
#ifndef NOTEXTURE_RGBA
dim3 threads_rgba(1, 1, 1);
dim3 grid_rgba(1,1,1);
printf("threads_rgba=(%d, %d, %d)\n", threads_rgba.x,threads_rgba.y,threads_rgba.z);
printf("grid_rgba=(%d, %d, %d)\n", grid_rgba.x,grid_rgba.y,grid_rgba.z);
StopWatchInterface *timerRGBA = 0;
sdkCreateTimer(&timerRGBA);
for (int i = i0; i < numIterations; i++)
{
if (i == 0)
{
checkCudaErrors(cudaDeviceSynchronize());
sdkResetTimer(&timerRGBA);
sdkStartTimer(&timerRGBA);
}
generate_RBGA<<<grid_rgba,threads_rgba>>> (
// Parameters to generate texture tasks
gpu_tasks, // struct tp_task * gpu_tasks,
tp_task_size, // int num_tiles, // number of tiles in task list
// declare arrays in device code?
gpu_texture_indices, // int * gpu_texture_indices,// packed tile + bits (now only (1 << 7)
gpu_num_texture_tiles, // int * num_texture_tiles, // number of texture tiles to process (8 elements)
gpu_woi, // int * woi, // x,y,width,height of the woi
TILESX, // int width, // <= TILESX, use for faster processing of LWIR images (should be actual + 1)
TILESY, // int height); // <= TILESY, use for faster processing of LWIR images
// Parameters for the texture generation
gpu_clt , // float ** gpu_clt, // [NUM_CAMS] ->[TILESY][TILESX][NUM_COLORS][DTT_SIZE*DTT_SIZE]
gpu_port_offsets, // float * port_offsets, // relative ports x,y offsets - just to scale differences, may be approximate
texture_colors, // int colors, // number of colors (3/1)
(texture_colors == 1), // int is_lwir, // do not perform shot correction
10.0, // float min_shot, // 10.0
3.0, // float scale_shot, // 3.0
1.5f, // float diff_sigma, // pixel value/pixel change
10.0f, // float diff_threshold, // pixel value/pixel change
3.0, // float min_agree, // minimal number of channels to agree on a point (real number to work with fuzzy averages)
0.294118, // float weight0, // scale for R
0.117647, // float weight1, // scale for B
0.588235, // float weight2, // scale for G
1, // int dust_remove, // Do not reduce average weight when only one image differes much from the average
0, // int keep_weights, // return channel weights after A in RGBA
dstride_textures_rbga/sizeof(float), // const size_t texture_rbga_stride, // in floats
gpu_textures_rbga); // float * gpu_texture_tiles) // (number of colors +1 + ?)*16*16 rgba texture tiles
getLastCudaError("Kernel failure");
checkCudaErrors(cudaDeviceSynchronize());
printf("test pass: %d\n",i);
}
sdkStopTimer(&timerRGBA);
float avgTimeRGBA = (float)sdkGetTimerValue(&timerRGBA) / (float)numIterations;
sdkDeleteTimer(&timerRGBA);
printf("Average Texture run time =%f ms\n", avgTimeRGBA);
checkCudaErrors(cudaMemcpy(
cpu_woi,
gpu_woi,
4 * sizeof(float),
cudaMemcpyDeviceToHost));
printf("WOI x=%d, y=%d, width=%d, height=%d\n", cpu_woi[0], cpu_woi[1], cpu_woi[2], cpu_woi[3]);
// temporarily use larger array (4 pixels each size, switch to cudaMemcpy2DFromArray()
int rgba_woi_width = (cpu_woi[2] + 1) * DTT_SIZE;
int rgba_woi_height = (cpu_woi[3] + 1)* DTT_SIZE;
int rslt_rgba_size = rgba_woi_width * rgba_woi_height * rbga_slices;
float * cpu_textures_rgba = (float *)malloc(rslt_rgba_size * sizeof(float));
checkCudaErrors(cudaMemcpy2D(
cpu_textures_rgba,
rgba_width * sizeof(float),
gpu_textures_rbga,
dstride_textures_rbga,
rgba_width * sizeof(float),
rgba_height * rbga_slices,
cudaMemcpyDeviceToHost));
#ifndef NSAVE_TEXTURES
printf("Writing RBGA texture slices to %s\n", result_textures_rgba_file);
writeFloatsToFile(
cpu_textures_rgba, // float * data, // allocated array
rslt_rgba_size, // int size, // length in elements
result_textures_rgba_file); // const char * path) // file path
#endif
#ifdef DEBUG11
int rgba_offset = (DBG_TILE_Y - cpu_woi[1]) * DTT_SIZE * rgba_woi_width + (DBG_TILE_X - cpu_woi[0]);
for (int chn = 0; chn < rbga_slices; chn++){
printf("\nchn = %d\n", chn);
int rgba_offset_chn = rgba_offset + chn * rgba_woi_width * rgba_woi_height;
for (int i = 0; i < 8; i++){
for (int j = 0; j < 8; j++){
printf("%10.4f ", *(cpu_textures_rgba + rgba_offset_chn + i * rgba_woi_width + j));
}
printf("\n");
}
}
#endif // DEBUG11
free(cpu_textures_rgba);
#endif // ifndef NOTEXTURES
#ifdef SAVE_CLT
free(cpu_clt);
#endif
free (host_kern_buf);
// TODO: move somewhere when all is done
for (int ncam = 0; ncam < NUM_CAMS; ncam++) {
checkCudaErrors(cudaFree(gpu_kernels_h[ncam]));
checkCudaErrors(cudaFree(gpu_kernel_offsets_h[ncam]));
checkCudaErrors(cudaFree(gpu_images_h[ncam]));
checkCudaErrors(cudaFree(gpu_clt_h[ncam]));
#ifndef NOICLT
checkCudaErrors(cudaFree(gpu_corr_images_h[ncam]));
#endif
}
checkCudaErrors(cudaFree(gpu_tasks));
checkCudaErrors(cudaFree(gpu_kernels));
checkCudaErrors(cudaFree(gpu_kernel_offsets));
checkCudaErrors(cudaFree(gpu_images));
checkCudaErrors(cudaFree(gpu_clt));
// checkCudaErrors(cudaFree(gpu_corr_images));
checkCudaErrors(cudaFree(gpu_corrs));
checkCudaErrors(cudaFree(gpu_corr_indices));
checkCudaErrors(cudaFree(gpu_texture_indices));
checkCudaErrors(cudaFree(gpu_port_offsets));
checkCudaErrors(cudaFree(gpu_textures));
checkCudaErrors(cudaFree(gpu_textures_rbga));
checkCudaErrors(cudaFree(gpu_woi));
checkCudaErrors(cudaFree(gpu_num_texture_tiles));
exit(0);
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment