# Description Class imagej_tiff to read multilayer tiff files and parse tags * layers are stacked along depth (think RGB) * parse imagej generated tags (50838 and 50839) # More info * Presentation for CVPR2018: [Elphel_TP-CNN_slides.pdf](https://community.elphel.com/files/presentations/Elphel_TP-CNN_slides.pdf) * [TIFF Image stacks for Machine Learning](https://wiki.elphel.com/wiki/Tiff_file_format_for_pre-processed_quad-stereo_sets#TIFF_image_stacks_for_ML) # Samples * [models/all/state_street/1527256815_150165/v01/ml/](https://community.elphel.com/3d+biquad/models/all/state_street/1527256815_150165/v01/ml/) or * go to [3d+biquad](https://community.elphel.com/3d+biquad/), open individual models and hit the light green button to ‘Download source files for ml’ # Dependencies * Python 3.5.2 (not strict) * Pillow 5.1.0+ (strict) * Numpy 1.14.2 (not strict) * Matplotlib 2.2.2 (not strict) # Examples ``` #!/usr/bin/env python3 from PIL import Image import xml.etree.ElementTree as ET import numpy as np import matplotlib.pyplot as plt import imagej_tiff as ijt tiff = ijt.imagej_tiff('test.tiff') print(tiff.nimages) print(tiff.labels) print(tiff.infos) tiff.show_images(['X-corr','Y-corr',0,2]) plt.show() ```