Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
P
python3-imagej-tiff
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Elphel
python3-imagej-tiff
Commits
fc63a9dd
Commit
fc63a9dd
authored
Jul 11, 2018
by
Oleg Dzhimiev
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
still testing
parent
937842a1
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
69 additions
and
37 deletions
+69
-37
test_nn_feed.py
test_nn_feed.py
+33
-8
test_nn_infer.py
test_nn_infer.py
+36
-29
No files found.
test_nn_feed.py
View file @
fc63a9dd
...
...
@@ -47,7 +47,7 @@ VALUES_LAYER_NAME = 'other'
LAYERS_OF_INTEREST
=
[
'diagm-pair'
,
'diago-pair'
,
'hor-pairs'
,
'vert-pairs'
]
RADIUS
=
1
DEBUG_PLT_LOSS
=
Fals
e
DEBUG_PLT_LOSS
=
Tru
e
# If false - will not pack or rescal
DEBUG_PACK_TILES
=
True
...
...
@@ -75,6 +75,9 @@ if not IS_TEST:
print
(
"
\n
"
.
join
(
tlist
))
print
(
"Found "
+
str
(
len
(
tlist
))
+
" preprocessed tiff files:"
)
print_time
()
pass
''' WARNING, assuming:
- timestamps and part of names match
- layer order and names are identical
...
...
@@ -148,7 +151,6 @@ if not IS_TEST:
# might not need it because going to loop through anyway
packed_tiles
=
np
.
array
([[
pile
.
pack_tile
(
tiles
[
i
,
j
],
ptab
)
for
j
in
range
(
tiles
.
shape
[
1
])]
for
i
in
range
(
tiles
.
shape
[
0
])])
packed_tiles
=
np
.
dstack
((
packed_tiles
,
values
[:,:,
0
]))
print
(
"Packed (81x4 -> 1x(25*4+1)) tiled input shape: "
+
str
(
packed_tiles
.
shape
))
...
...
@@ -260,8 +262,9 @@ cf_w_norm = tf.nn.softmax(cf_w)
#out_cf = out[:,1]
#G_loss = tf.reduce_mean(tf.abs(tf.nn.softmax(out[:,1])*out[:,0]-cf_w_norm*gt[:,0]))
G_loss
=
tf
.
reduce_mean
(
tf
.
squared_difference
(
out
[:,
0
],
gt
[:,
0
]))
#
G_loss = tf.reduce_mean(tf.squared_difference(out[:,0], gt[:,0]))
#G_loss = tf.reduce_mean(tf.abs(out[:,0]-gt[:,0]))
G_loss
=
tf
.
losses
.
mean_squared_error
(
gt
[:,
0
],
out
[:,
0
],
cf_w
)
tf
.
summary
.
scalar
(
'loss'
,
G_loss
)
tf
.
summary
.
scalar
(
'prediction'
,
out
[
0
,
0
])
...
...
@@ -303,7 +306,7 @@ recorded_gt_c = []
recorded_pr_d
=
[]
recorded_pr_c
=
[]
LR
=
1e-
4
LR
=
1e-
5
print
(
bcolors
.
HEADER
+
"Last Epoch = "
+
str
(
lastepoch
)
+
bcolors
.
ENDC
)
...
...
@@ -316,14 +319,37 @@ if DEBUG_PLT_LOSS:
# RUN
# epoch is one image
for
epoch
in
range
(
lastepoch
,
lastepoch
+
len
(
tlist
)):
print
(
bcolors
.
HEADER
+
"Epoch #"
+
str
(
epoch
)
+
bcolors
.
ENDC
)
for
epoch
in
range
(
lastepoch
,
1
):
#for epoch in range(lastepoch,4001):
if
os
.
path
.
isdir
(
"result/
%04
d"
%
epoch
):
continue
cnt
=
0
tlist_index
=
epoch
-
lastepoch
print
(
bcolors
.
OKGREEN
+
"Processing "
+
tlist
[
tlist_index
]
+
bcolors
.
ENDC
)
tmp_tiff
=
ijt
.
imagej_tiff
(
tlist
[
tlist_index
])
tmp_tiles
=
tmp_tiff
.
getstack
(
labels
,
shape_as_tiles
=
True
)
tmp_vals
=
tmp_tiff
.
getvalues
(
label
=
VALUES_LAYER_NAME
)
# Parse packing table
# packing table name
ptab_name
=
"tile_packing_table.xml"
ptab
=
pile
.
PackingTable
(
ptab_name
,
LAYERS_OF_INTEREST
)
.
lut
# might not need it because going to loop through anyway
packed_tiles
=
np
.
array
([[
pile
.
pack_tile
(
tmp_tiles
[
i
,
j
],
ptab
)
for
j
in
range
(
tmp_tiles
.
shape
[
1
])]
for
i
in
range
(
tmp_tiles
.
shape
[
0
])])
packed_tiles
=
np
.
dstack
((
packed_tiles
,
tmp_vals
[:,:,
0
]))
#if epoch > 2000:
# LR = 1e-5
...
...
@@ -429,10 +455,9 @@ for epoch in range(lastepoch,1):
else
:
print
(
"
%
d
%
d Loss=
%.3
f CurrentLoss=
%.3
f Time=
%.3
f"
%
(
epoch
,
cnt
,
mean_loss
,
G_current
,
time
.
time
()
-
st
))
train_writer
.
add_run_metadata
(
run_metadata
,
'step
%
d'
%
cnt
)
#train_writer.add_run_metadata(run_metadata, 'step%d' % cnt)
#test_writer.add_summary(summary,cnt)
train_writer
.
add_summary
(
summary
,
cnt
)
#
train_writer.add_summary(summary, cnt)
if
epoch
%
save_freq
==
0
:
if
not
os
.
path
.
isdir
(
result_dir
+
'
%04
d'
%
epoch
):
...
...
test_nn_infer.py
View file @
fc63a9dd
...
...
@@ -151,24 +151,49 @@ for item in tlist:
print
(
packed_tiles
.
shape
)
print
(
"ENDDD!"
)
# NO
# flatten
packed_tiles_flat
=
packed_tiles
.
reshape
(
-
1
,
packed_tiles
.
shape
[
-
1
])
values_flat
=
values
.
reshape
(
-
1
,
values
.
shape
[
-
1
])
#
packed_tiles_flat = packed_tiles.reshape(-1, packed_tiles.shape[-1])
#
values_flat = values.reshape(-1, values.shape[-1])
print
(
"Packed (81x4 -> 1x(25*4+1)) tiled input shape: "
+
str
(
packed_tiles_flat
.
shape
))
print
(
"Values shape "
+
str
(
values_flat
.
shape
))
print_time
()
#
print("Packed (81x4 -> 1x(25*4+1)) tiled input shape: "+str(packed_tiles_flat.shape))
#
print("Values shape "+str(values_flat.shape))
#
print_time()
# do line by line?!
output_image
=
np
.
empty
((
packed_tiles
.
shape
[
0
],
packed_tiles
.
shape
[
1
],
2
))
print
(
"Output shape = "
+
str
(
output_image
.
shape
))
for
i
in
range
(
packed_tiles
.
shape
[
0
]):
# now run prediction
packed_tiles_flat
=
packed_tiles
[
i
]
values_flat
=
values
[
i
]
output
=
sess
.
run
(
out
,
feed_dict
=
{
in_tile
:
packed_tiles_flat
})
output_image
[
i
]
=
output
print
(
"Output shape: "
+
str
(
output
.
shape
))
# so, let's print
for
j
in
range
(
output
.
shape
[
0
]):
p
=
output
[
j
,
0
]
pc
=
output
[
j
,
1
]
fv
=
values_flat
[
j
,
0
]
gt
=
values_flat
[
j
,
1
]
cf
=
values_flat
[
j
,
2
]
vstring
=
"["
+
"{0:.2f}"
.
format
(
fv
)
+
", "
+
"{0:.2f}"
.
format
(
gt
)
+
", "
+
"{0:.2f}"
.
format
(
cf
)
+
"]"
pstring
=
"["
+
"{0:.2f}"
.
format
(
p
)
+
", "
+
"{0:.2f}"
.
format
(
pc
)
+
"]"
if
not
np
.
isnan
(
p
):
outstring
=
"i,j: "
+
str
(
i
)
+
" "
+
str
(
j
)
+
" Values: "
+
vstring
+
" Prediction: "
+
pstring
if
abs
(
cf
)
<
0.5
:
print
(
outstring
)
#pass
else
:
print
(
bcolors
.
WARNING
+
outstring
+
bcolors
.
ENDC
)
output_image
=
np
.
reshape
(
output
,(
tiles
.
shape
[
0
],
tiles
.
shape
[
1
],
-
1
))
print
(
output_image
.
shape
)
sess
.
close
()
import
imagej_tiffwriter
# 1 prediction
...
...
@@ -183,25 +208,7 @@ for item in tlist:
imagej_tiffwriter
.
save
(
'prediction_results.tiff'
,
tif
)
sys
.
exit
(
0
)
# so, let's print
for
i
in
range
(
output
.
shape
[
0
]):
p
=
output
[
i
,
0
]
pc
=
output
[
i
,
1
]
fv
=
values_flat
[
i
,
0
]
gt
=
values_flat
[
i
,
1
]
cf
=
values_flat
[
i
,
2
]
vstring
=
"["
+
"{0:.2f}"
.
format
(
fv
)
+
", "
+
"{0:.2f}"
.
format
(
gt
)
+
", "
+
"{0:.2f}"
.
format
(
cf
)
+
"]"
pstring
=
"["
+
"{0:.2f}"
.
format
(
p
)
+
", "
+
"{0:.2f}"
.
format
(
pc
)
+
"]"
if
not
np
.
isnan
(
p
):
outstring
=
"i: "
+
str
(
i
)
+
" Values: "
+
vstring
+
" Prediction: "
+
pstring
if
cf
<
0.5
:
print
(
outstring
)
else
:
print
(
bcolors
.
WARNING
+
outstring
+
bcolors
.
ENDC
)
#sys.exit(0)
#else:
# print("i: "+str(i)+" NaNs")
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment