Commit f964c4f2 authored by Oleg Dzhimiev's avatar Oleg Dzhimiev

subbed 325 with corr2d_Nx325.shape[-1]

parent 9a1886bd
......@@ -777,9 +777,9 @@ def network_summary_w_b(scope, in_shape, out_shape, layout, index, network_scope
# the scope is known
with tf.variable_scope(scope,reuse=tf.AUTO_REUSE):
# histograms
print("Specified shape: "+str(in_shape)+","+str(out_shape))
print("Index: "+str(index))
print("Layout: "+str(layout))
#print("Specified shape: "+str(in_shape)+","+str(out_shape))
#print("Index: "+str(index))
#print("Layout: "+str(layout))
w = tf.get_variable('weights',shape=[in_shape,out_shape])
b = tf.get_variable('biases',shape=[out_shape])
......@@ -1583,9 +1583,11 @@ with tf.Session() as sess:
#l1_sym8 = NN_LAYOUT1[l1] // 8
#l1_non_sum = NN_LAYOUT1[l1] % 8
#print("corr2d_Nx325 shape = "+str(corr2d_Nx325.shape))
if l1_non_sum==0:
with tf.variable_scope('g_fc_sub'+str(l1),reuse=tf.AUTO_REUSE):
w = tf.get_variable('weights',shape=[325,l1_sym8])
w = tf.get_variable('weights',shape=[corr2d_Nx325.shape[-1],l1_sym8])
w = tf.transpose(w,(1,0))
img1 = npw.tiles(npw.coldmap(w.eval(),zero_span=ZERO_SPAN1),(1,TILE_LAYERS,tile_side1,tile_side1),tiles_per_line=TILES_PER_LINE1,borders=True)
img1 = img1[np.newaxis,...]
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment