print_time("dataset_train.output_types "+str(dataset_train.output_types)+", dataset_train.output_shapes "+str(dataset_train.output_shapes)+", number of elements="+str(dataset_train_size))
dataset_train=dataset_train.batch(BATCH_SIZE)
dataset_train_size/=BATCH_SIZE
print("dataset_train.output_types "+str(dataset_train.output_types)+", dataset_train.output_shapes "+str(dataset_train.output_shapes)+", number of elements="+str(dataset_train_size))
print_time("dataset_test.output_types "+str(dataset_test.output_types)+", dataset_test.output_shapes "+str(dataset_test.output_shapes)+", number of elements="+str(dataset_test_size))
dataset_test = dataset_test.batch(BATCH_SIZE)
dataset_test_size /= BATCH_SIZE
print("dataset_test.output_types "+str(dataset_test.output_types)+", dataset_test.output_shapes "+str(dataset_test.output_shapes)+", number of elements="+str(dataset_test_size))
#reports error: Exception ignored in: <bound method BaseSession.__del__ of <tensorflow.python.client.session.Session object at 0x7efc5f720ef0>> if there is no print before exit()
print("all done")
exit(0)
filename_queue=tf.train.string_input_producer(
[train_filenameTFR],num_epochs=EPOCHS_TO_RUN)#0)
# Even when reading in multiple threads, share the filename