Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
P
python3-imagej-tiff
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Elphel
python3-imagej-tiff
Commits
c1f82436
Commit
c1f82436
authored
Aug 07, 2018
by
Andrey Filippov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Generating TFRecord files for multiple epochs and for multi-tile NN
parent
d7fc8ac4
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
159 additions
and
42 deletions
+159
-42
explore_data.py
explore_data.py
+159
-42
No files found.
explore_data.py
View file @
c1f82436
...
...
@@ -268,7 +268,7 @@ class ExploreData:
#disp_thesh
disp_avar
=
disp_max
-
disp_min
disp_rvar
=
disp_avar
*
disp_thesh
/
disp_max
disp_rvar
=
disp_avar
*
disp_thesh
/
np
.
maximum
(
disp_max
,
0.001
)
# removing division by 0 error - those tiles will be anyway discarded
disp_var
=
np
.
select
([
disp_max
>=
disp_thesh
,
disp_max
<
disp_thesh
],[
disp_rvar
,
disp_avar
])
return
disp_var
,
tile_neibs
...
...
@@ -355,7 +355,7 @@ class ExploreData:
bb
=
np
.
empty_like
(
data_ds
[
...
,
0
],
dtype
=
int
)
for
findx
in
range
(
data_ds
.
shape
[
0
]):
ds
=
data_ds
[
findx
]
gt
=
ds
[
...
,
1
]
>
0.0
#
all true - check
gt
=
ds
[
...
,
1
]
>
0.0
#
OK
db
=
(((
ds
[
...
,
0
]
-
self
.
disparity_min_clip
)
/
disp_step
)
.
astype
(
int
))
*
gt
sb
=
(((
ds
[
...
,
1
]
-
self
.
strength_min_clip
)
/
str_step
)
.
astype
(
int
))
*
gt
np
.
clip
(
db
,
0
,
self
.
disparity_bins
-
1
,
out
=
db
)
...
...
@@ -395,16 +395,18 @@ class ExploreData:
for
i
in
range
(
self
.
hist_to_batch
.
max
()
+
1
):
lst
.
append
([])
# bb1d = bb[findx].reshape(self.num_tiles)
disp_var_tiles
=
disp_var
[
findx
]
.
reshape
(
self
.
num_tiles
)
disp_neibs_tiles
=
disp_neibs
[
findx
]
.
reshape
(
self
.
num_tiles
)
for
n
,
indx
in
enumerate
(
bb
[
findx
]
.
reshape
(
self
.
num_tiles
)):
if
indx
>=
0
:
if
use_neibs
:
disp_var_tiles
=
disp_var
[
findx
]
.
reshape
(
self
.
num_tiles
)
disp_neibs_tiles
=
disp_neibs
[
findx
]
.
reshape
(
self
.
num_tiles
)
if
disp_neibs_tiles
[
indx
]
<
min_neibs
:
#
disp_var_tiles = disp_var[findx].reshape(self.num_tiles)
#
disp_neibs_tiles = disp_neibs[findx].reshape(self.num_tiles)
if
disp_neibs_tiles
[
n
]
<
min_neibs
:
continue
# too few neighbors
if
not
disp_var_tiles
[
indx
]
>=
min_var
:
if
not
disp_var_tiles
[
n
]
>=
min_var
:
continue
#too small variance
if
not
disp_var_tiles
[
indx
]
<
max_var
:
if
not
disp_var_tiles
[
n
]
<
max_var
:
continue
#too large variance
lst
[
indx
]
.
append
(
foffs
+
n
)
lst_arr
=
[]
...
...
@@ -473,7 +475,7 @@ class ExploreData:
for
fn
in
flist
:
ml_patt
=
os
.
path
.
join
(
os
.
path
.
dirname
(
fn
),
ExploreData
.
ML_DIR
,
ExploreData
.
ML_PATTERN
)
ml_list
.
append
(
glob
.
glob
(
ml_patt
))
self
.
ml_list
=
ml_list
##
self.ml_list = ml_list
return
ml_list
def
getBatchData
(
...
...
@@ -501,18 +503,26 @@ class ExploreData:
return
ml_all_files
def
prepareBatchData
(
self
,
seed_index
,
min_choices
=
None
,
max_files
=
None
,
ml_num
=
None
,
test_set
=
False
):
def
prepareBatchData
(
self
,
ml_list
,
seed_index
,
min_choices
=
None
,
max_files
=
None
,
ml_num
=
None
,
set_ds
=
None
,
radius
=
0
):
if
min_choices
is
None
:
min_choices
=
self
.
min_batch_choices
if
max_files
is
None
:
max_files
=
self
.
max_batch_files
if
ml_num
is
None
:
ml_num
=
self
.
files_per_scene
set_ds
=
[
self
.
train_ds
,
self
.
test_ds
][
test_set
]
if
set_ds
is
None
:
set_ds
=
self
.
train_ds
tiles_in_sample
=
(
2
*
radius
+
1
)
*
(
2
*
radius
+
1
)
height
=
set_ds
.
shape
[
1
]
width
=
set_ds
.
shape
[
2
]
width_m1
=
width
-
1
height_m1
=
height
-
1
# set_ds = [self.train_ds, self.test_ds][test_set]
corr_layers
=
[
'hor-pairs'
,
'vert-pairs'
,
'diagm-pair'
,
'diago-pair'
]
flist
,
tiles
=
self
.
augmentBatchFileIndices
(
seed_index
,
min_choices
,
max_files
,
set_ds
)
ml_all_files
=
self
.
getBatchData
(
flist
,
tiles
,
self
.
ml_list
,
ml_num
)
# 0 - use all ml files for the scene, >0 select random number
# ml_all_files = self.getBatchData(flist, tiles, self.ml_list, ml_num) # 0 - use all ml files for the scene, >0 select random number
ml_all_files
=
self
.
getBatchData
(
flist
,
tiles
,
ml_list
,
ml_num
)
# 0 - use all ml files for the scene, >0 select random number
if
self
.
debug_level
>
1
:
print
(
"=============="
,
seed_index
,
flist
)
for
i
,
findx
in
enumerate
(
flist
):
...
...
@@ -524,19 +534,35 @@ class ExploreData:
if
self
.
debug_level
>
1
:
print
(
"Tiles in the batch="
,
total_tiles
)
corr2d_batch
=
None
# np.empty((total_tiles, len(corr_layers),81))
gt_ds_batch
=
np
.
empty
((
total_tiles
,
2
),
dtype
=
float
)
target_disparity_batch
=
np
.
empty
((
total_tiles
,
),
dtype
=
float
)
gt_ds_batch
=
np
.
empty
((
total_tiles
*
tiles_in_sample
,
2
),
dtype
=
float
)
target_disparity_batch
=
np
.
empty
((
total_tiles
*
tiles_in_sample
,
),
dtype
=
float
)
start_tile
=
0
for
nscene
,
scene_files
in
enumerate
(
ml_all_files
):
for
path
in
scene_files
:
img
=
ijt
.
imagej_tiff
(
path
,
corr_layers
,
tile_list
=
tiles
[
nscene
])
'''
Create tiles list including neighbors
'''
full_tiles
=
np
.
empty
([
len
(
tiles
[
nscene
])
*
tiles_in_sample
],
dtype
=
int
)
indx
=
0
;
for
i
,
nt
in
enumerate
(
tiles
[
nscene
]):
ty
=
nt
//
width
tx
=
nt
%
width
for
dy
in
range
(
-
radius
,
radius
+
1
):
y
=
np
.
clip
(
ty
+
dy
,
0
,
height_m1
)
for
dx
in
range
(
-
radius
,
radius
+
1
):
x
=
np
.
clip
(
tx
+
dx
,
0
,
width_m1
)
full_tiles
[
indx
]
=
y
*
width
+
x
indx
+=
1
#now tile_list is np.array instead of the list, but it seems to be OK
img
=
ijt
.
imagej_tiff
(
path
,
corr_layers
,
tile_list
=
full_tiles
)
# tiles[nscene])
corr2d
=
img
.
corr2d
target_disparity
=
img
.
target_disparity
gt_ds
=
img
.
gt_ds
end_tile
=
start_tile
+
corr2d
.
shape
[
0
]
if
corr2d_batch
is
None
:
corr2d_batch
=
np
.
empty
((
total_tiles
,
len
(
corr_layers
),
corr2d
.
shape
[
-
1
]))
# corr2d_batch = np.empty((total_tiles, tiles_in_sample * len(corr_layers), corr2d.shape[-1]))
corr2d_batch
=
np
.
empty
((
total_tiles
*
tiles_in_sample
,
len
(
corr_layers
),
corr2d
.
shape
[
-
1
]))
gt_ds_batch
[
start_tile
:
end_tile
]
=
gt_ds
target_disparity_batch
[
start_tile
:
end_tile
]
=
target_disparity
corr2d_batch
[
start_tile
:
end_tile
]
=
corr2d
...
...
@@ -564,17 +590,24 @@ class ExploreData:
self
.
gt_ds_batch
=
gt_ds_batch
return
corr2d_batch
,
target_disparity_batch
,
gt_ds_batch
def
writeTFRewcordsEpoch
(
self
,
tfr_filename
,
test_set
=
False
):
def
writeTFRewcordsEpoch
(
self
,
tfr_filename
,
ml_list
,
files_list
=
None
,
set_ds
=
None
,
radius
=
0
):
#
test_set=False):
# train_filename = 'train.tfrecords' # address to save the TFRecords file
# open the TFRecords file
if
not
'.tfrecords'
in
tfr_filename
:
tfr_filename
+=
'.tfrecords'
if
files_list
is
None
:
files_list
=
self
.
files_train
if
set_ds
is
None
:
set_ds
=
self
.
train_ds
writer
=
tf
.
python_io
.
TFRecordWriter
(
tfr_filename
)
files_list
=
[
self
.
files_train
,
self
.
files_test
][
test_set
]
#$
files_list = [self.files_train, self.files_test][test_set]
seed_list
=
np
.
arange
(
len
(
files_list
))
np
.
random
.
shuffle
(
seed_list
)
for
nscene
,
seed_index
in
enumerate
(
seed_list
):
corr2d_batch
,
target_disparity_batch
,
gt_ds_batch
=
ex_data
.
prepareBatchData
(
seed_index
,
min_choices
=
None
,
max_files
=
None
,
ml_num
=
None
,
test_set
=
test_set
)
corr2d_batch
,
target_disparity_batch
,
gt_ds_batch
=
ex_data
.
prepareBatchData
(
ml_list
,
seed_index
,
min_choices
=
None
,
max_files
=
None
,
ml_num
=
None
,
set_ds
=
set_ds
,
radius
=
radius
)
#shuffles tiles in a batch
tiles_in_batch
=
len
(
target_disparity_batch
)
permut
=
np
.
random
.
permutation
(
tiles_in_batch
)
...
...
@@ -586,6 +619,7 @@ class ExploreData:
dtype_target_disparity
=
_dtype_feature
(
target_disparity_batch_shuffled
)
dtype_feature_gt_ds
=
_dtype_feature
(
gt_ds_batch_shuffled
)
for
i
in
range
(
tiles_in_batch
):
x
=
corr2d_batch_shuffled
[
i
]
.
astype
(
np
.
float32
)
y
=
target_disparity_batch_shuffled
[
i
]
.
astype
(
np
.
float32
)
z
=
gt_ds_batch_shuffled
[
i
]
.
astype
(
np
.
float32
)
...
...
@@ -638,8 +672,8 @@ class ExploreData:
good_tiles
[
ids
]
&=
variance
<
variance_max
disparity
=
np
.
nan_to_num
(
disparity
,
copy
=
False
)
# to be able to multiply by 0.0 in mask | copy=False, then out=disparity all done in-place
strength
=
np
.
nan_to_num
(
strength
,
copy
=
False
)
# likely should never happen
np
.
clip
(
disparity
,
self
.
disparity_min_clip
,
self
.
disparity_max_clip
,
out
=
disparity
)
np
.
clip
(
strength
,
self
.
strength_min_clip
,
self
.
strength_max_clip
,
out
=
strength
)
#
np.clip(disparity, self.disparity_min_clip, self.disparity_max_clip, out = disparity)
#
np.clip(strength, self.strength_min_clip, self.strength_max_clip, out = strength)
good_tiles_list
.
append
(
good_tiles
)
combo_rds
=
np
.
concatenate
(
rds_list
)
hist
,
xedges
,
yedges
=
np
.
histogram2d
(
# xedges, yedges - just for debugging
...
...
@@ -675,18 +709,27 @@ if __name__ == "__main__":
topdir_test
=
"/mnt/dde6f983-d149-435e-b4a2-88749245cc6c/home/eyesis/x3d_data/data_sets/test"
#test" #all/"
try
:
train_filename
TFR
=
sys
.
argv
[
3
]
path
TFR
=
sys
.
argv
[
3
]
except
IndexError
:
train_filenameTFR
=
"/mnt/dde6f983-d149-435e-b4a2-88749245cc6c/home/eyesis/x3d_data/data_sets/tf_data/train_01.tfrecords"
try
:
test_filenameTFR
=
sys
.
argv
[
4
]
except
IndexError
:
test_filenameTFR
=
"/mnt/dde6f983-d149-435e-b4a2-88749245cc6c/home/eyesis/x3d_data/data_sets/tf_data/test_01.tfrecords"
pathTFR
=
"/mnt/dde6f983-d149-435e-b4a2-88749245cc6c/home/eyesis/x3d_data/data_sets/tf_data/tf"
#Parameters to generate neighbors data. Set radius to 0 to generate single-tile
RADIUS
=
1
MIN_NEIBS
=
(
2
*
RADIUS
+
1
)
*
(
2
*
RADIUS
+
1
)
# All tiles valid
MIN_NEIBS
=
(
2
*
RADIUS
+
1
)
*
(
2
*
RADIUS
+
1
)
# All tiles valid
== 9
VARIANCE_THRESHOLD
=
1.5
NUM_TRAIN_SETS
=
2
if
RADIUS
==
0
:
BATCH_DISP_BINS
=
20
BATCH_STR_BINS
=
10
else
:
BATCH_DISP_BINS
=
8
BATCH_STR_BINS
=
3
train_filenameTFR
=
pathTFR
+
"-train"
test_filenameTFR
=
pathTFR
+
"-test"
# disp_bins = 20,
# str_bins=10)
# corr2d, target_disparity, gt_ds = readTFRewcordsEpoch(train_filenameTFR)
# print_time("Read %d tiles"%(corr2d.shape[0]))
# exit (0)
...
...
@@ -715,8 +758,8 @@ if __name__ == "__main__":
plt
.
imshow
(
ex_data
.
blurred_hist
,
vmin
=
0
,
vmax
=
.1
*
ex_data
.
blurred_hist
.
max
())
#,vmin=-6,vmax=-2) # , vmin=0, vmax=.01)
plt
.
colorbar
(
orientation
=
'horizontal'
)
# location='bottom')
hist_to_batch
=
ex_data
.
assignBatchBins
(
disp_bins
=
20
,
str_bins
=
10
)
disp_bins
=
BATCH_DISP_BINS
,
str_bins
=
BATCH_STR_BINS
)
bb_display
=
hist_to_batch
.
copy
()
bb_display
=
(
1
+
(
bb_display
%
2
)
+
2
*
((
bb_display
%
20
)
//
10
))
*
(
hist_to_batch
>
0
)
#).astype(float)
fig2
=
plt
.
figure
()
...
...
@@ -732,7 +775,10 @@ if __name__ == "__main__":
if
(
RADIUS
>
0
):
disp_var_test
,
num_neibs_test
=
ex_data
.
exploreNeibs
(
ex_data
.
test_ds
,
RADIUS
)
disp_var_train
,
num_neibs_train
=
ex_data
.
exploreNeibs
(
ex_data
.
train_ds
,
RADIUS
)
for
var_thresh
in
[
0.1
,
1.0
,
1.5
,
2.0
,
5.0
]:
# show varinace histogram
# for var_thresh in [0.1, 1.0, 1.5, 2.0, 5.0]:
for
var_thresh
in
[
1.5
]:
ex_data
.
showVariance
(
rds_list
=
[
ex_data
.
train_ds
,
ex_data
.
test_ds
],
# list of disparity/strength files, suchas training, testing
disp_var_list
=
[
disp_var_train
,
disp_var_test
],
# list of disparity variance files. Same shape(but last dim) as rds_list
...
...
@@ -749,22 +795,93 @@ if __name__ == "__main__":
neibs_min
=
9
)
pass
pass
# show varinace histogram
else
:
disp_var_test
,
num_neibs_test
=
None
,
None
disp_var_train
,
num_neibs_train
=
None
,
None
ml_list
=
ex_data
.
getMLList
(
ex_data
.
files_test
)
ex_data
.
makeBatchLists
(
data_ds
=
ex_data
.
test_ds
)
ex_data
.
writeTFRewcordsEpoch
(
test_filenameTFR
,
test_set
=
True
)
""" prepare train dataset """
ml_list
=
ex_data
.
getMLList
(
ex_data
.
files_train
)
# train_list)
ex_data
.
makeBatchLists
(
data_ds
=
ex_data
.
train_ds
)
ex_data
.
writeTFRewcordsEpoch
(
train_filenameTFR
,
test_set
=
False
)
ml_list_train
=
ex_data
.
getMLList
(
ex_data
.
files_train
)
ml_list_test
=
ex_data
.
getMLList
(
ex_data
.
files_test
)
if
RADIUS
==
0
:
list_of_file_lists_train
,
num_batch_tiles_train
=
ex_data
.
makeBatchLists
(
# results are also saved to self.*
data_ds
=
ex_data
.
train_ds
,
disp_var
=
disp_var_train
,
# difference between maximal and minimal disparity for each scene, each tile
disp_neibs
=
num_neibs_train
,
# number of valid tiles around each center tile (for 3x3 (radius = 1) - macximal is 9
min_var
=
0.0
,
# Minimal tile variance to include
max_var
=
VARIANCE_THRESHOLD
,
# Maximal tile variance to include
min_neibs
=
MIN_NEIBS
)
# Minimal number of valid tiles to include
pass
# ex_data.makeBatchLists(data_ds = ex_data.train_ds)
for
train_var
in
range
(
NUM_TRAIN_SETS
):
fpath
=
train_filenameTFR
+
(
"-
%03
d"
%
(
train_var
,))
ex_data
.
writeTFRewcordsEpoch
(
fpath
,
ml_list
=
ml_list_train
,
files_list
=
ex_data
.
files_train
,
set_ds
=
ex_data
.
train_ds
)
list_of_file_lists_test
,
num_batch_tiles_test
=
ex_data
.
makeBatchLists
(
# results are also saved to self.*
data_ds
=
ex_data
.
test_ds
,
disp_var
=
disp_var_test
,
# difference between maximal and minimal disparity for each scene, each tile
disp_neibs
=
num_neibs_test
,
# number of valid tiles around each center tile (for 3x3 (radius = 1) - macximal is 9
min_var
=
0.0
,
# Minimal tile variance to include
max_var
=
VARIANCE_THRESHOLD
,
# Maximal tile variance to include
min_neibs
=
MIN_NEIBS
)
# Minimal number of valid tiles to include
fpath
=
test_filenameTFR
# +("-%03d"%(train_var,))
ex_data
.
writeTFRewcordsEpoch
(
fpath
,
ml_list
=
ml_list_train
,
files_list
=
ex_data
.
files_test
,
set_ds
=
ex_data
.
test_ds
)
pass
else
:
# RADIUS > 0
# train
list_of_file_lists_train
,
num_batch_tiles_train
=
ex_data
.
makeBatchLists
(
# results are also saved to self.*
data_ds
=
ex_data
.
train_ds
,
disp_var
=
disp_var_train
,
# difference between maximal and minimal disparity for each scene, each tile
disp_neibs
=
num_neibs_train
,
# number of valid tiles around each center tile (for 3x3 (radius = 1) - macximal is 9
min_var
=
0.0
,
# Minimal tile variance to include
max_var
=
VARIANCE_THRESHOLD
,
# Maximal tile variance to include
min_neibs
=
MIN_NEIBS
)
# Minimal number of valid tiles to include
num_le_train
=
num_batch_tiles_train
.
sum
()
print
(
"Number of <=
%
f disparity variance tiles:
%
d (train)"
%
(
VARIANCE_THRESHOLD
,
num_le_train
))
for
train_var
in
range
(
NUM_TRAIN_SETS
):
fpath
=
train_filenameTFR
+
(
"-
%03
d_R
%
d_LE
%4.1
f"
%
(
train_var
,
RADIUS
,
VARIANCE_THRESHOLD
))
ex_data
.
writeTFRewcordsEpoch
(
fpath
,
ml_list
=
ml_list_train
,
files_list
=
ex_data
.
files_train
,
set_ds
=
ex_data
.
train_ds
,
radius
=
RADIUS
)
list_of_file_lists_train
,
num_batch_tiles_train
=
ex_data
.
makeBatchLists
(
# results are also saved to self.*
data_ds
=
ex_data
.
train_ds
,
disp_var
=
disp_var_train
,
# difference between maximal and minimal disparity for each scene, each tile
disp_neibs
=
num_neibs_train
,
# number of valid tiles around each center tile (for 3x3 (radius = 1) - macximal is 9
min_var
=
VARIANCE_THRESHOLD
,
# Minimal tile variance to include
max_var
=
1000.0
,
# Maximal tile variance to include
min_neibs
=
MIN_NEIBS
)
# Minimal number of valid tiles to include
num_gt_train
=
num_batch_tiles_train
.
sum
()
high_fract_train
=
1.0
*
num_gt_train
/
(
num_le_train
+
num_gt_train
)
print
(
"Number of >
%
f disparity variance tiles:
%
d, fraction =
%
f (train)"
%
(
VARIANCE_THRESHOLD
,
num_gt_train
,
high_fract_train
))
for
train_var
in
range
(
NUM_TRAIN_SETS
):
fpath
=
train_filenameTFR
+
(
"-
%03
d_R
%
d_GT
%4.1
f"
%
(
train_var
,
RADIUS
,
VARIANCE_THRESHOLD
))
ex_data
.
writeTFRewcordsEpoch
(
fpath
,
ml_list
=
ml_list_train
,
files_list
=
ex_data
.
files_train
,
set_ds
=
ex_data
.
train_ds
,
radius
=
RADIUS
)
# test
list_of_file_lists_test
,
num_batch_tiles_test
=
ex_data
.
makeBatchLists
(
# results are also saved to self.*
data_ds
=
ex_data
.
test_ds
,
disp_var
=
disp_var_test
,
# difference between maximal and minimal disparity for each scene, each tile
disp_neibs
=
num_neibs_test
,
# number of valid tiles around each center tile (for 3x3 (radius = 1) - macximal is 9
min_var
=
0.0
,
# Minimal tile variance to include
max_var
=
VARIANCE_THRESHOLD
,
# Maximal tile variance to include
min_neibs
=
MIN_NEIBS
)
# Minimal number of valid tiles to include
num_le_test
=
num_batch_tiles_test
.
sum
()
print
(
"Number of <=
%
f disparity variance tiles:
%
d (est)"
%
(
VARIANCE_THRESHOLD
,
num_le_test
))
fpath
=
test_filenameTFR
+
(
"-TEST_R
%
d_LE
%4.1
f"
%
(
RADIUS
,
VARIANCE_THRESHOLD
))
ex_data
.
writeTFRewcordsEpoch
(
fpath
,
ml_list
=
ml_list_test
,
files_list
=
ex_data
.
files_test
,
set_ds
=
ex_data
.
test_ds
,
radius
=
RADIUS
)
list_of_file_lists_test
,
num_batch_tiles_test
=
ex_data
.
makeBatchLists
(
# results are also saved to self.*
data_ds
=
ex_data
.
test_ds
,
disp_var
=
disp_var_test
,
# difference between maximal and minimal disparity for each scene, each tile
disp_neibs
=
num_neibs_test
,
# number of valid tiles around each center tile (for 3x3 (radius = 1) - macximal is 9
min_var
=
VARIANCE_THRESHOLD
,
# Minimal tile variance to include
max_var
=
1000.0
,
# Maximal tile variance to include
min_neibs
=
MIN_NEIBS
)
# Minimal number of valid tiles to include
num_gt_test
=
num_batch_tiles_test
.
sum
()
high_fract_test
=
1.0
*
num_gt_test
/
(
num_le_test
+
num_gt_test
)
print
(
"Number of >
%
f disparity variance tiles:
%
d, fraction =
%
f (test)"
%
(
VARIANCE_THRESHOLD
,
num_gt_test
,
high_fract_test
))
fpath
=
test_filenameTFR
+
(
"-TEST_R
%
d_GT
%4.1
f"
%
(
RADIUS
,
VARIANCE_THRESHOLD
))
ex_data
.
writeTFRewcordsEpoch
(
fpath
,
ml_list
=
ml_list_test
,
files_list
=
ex_data
.
files_test
,
set_ds
=
ex_data
.
test_ds
,
radius
=
RADIUS
)
plt
.
show
()
pass
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment