Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
P
python3-imagej-tiff
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Elphel
python3-imagej-tiff
Commits
befe9e85
Commit
befe9e85
authored
Aug 17, 2018
by
Oleg Dzhimiev
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
1. grouping for inter layer 0
2. fixed borders 3. trying to add color to summary.image
parent
03a86da7
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
115 additions
and
34 deletions
+115
-34
nn_ds_neibs1_tmp.py
nn_ds_neibs1_tmp.py
+115
-34
No files found.
nn_ds_neibs1_tmp.py
View file @
befe9e85
...
...
@@ -48,8 +48,8 @@ RUN_TOT_AVG = 100 # last batches to average. Epoch is 307 training batche
#BATCH_SIZE = 1080//9 # == 120 Each batch of tiles has balanced D/S tiles, shuffled batches but not inside batches
BATCH_SIZE
=
2
*
1080
//
9
# == 120 Each batch of tiles has balanced D/S tiles, shuffled batches but not inside batches
SHUFFLE_EPOCH
=
True
NET_ARCH1
=
6
#0 # 4 # 3 # overwrite with argv?
NET_ARCH2
=
6
# 0 # 3 # overwrite with argv?
NET_ARCH1
=
0
#0 # 4 # 3 # overwrite with argv?
NET_ARCH2
=
0
# 0 # 3 # overwrite with argv?
ONLY_TILE
=
None
# 4 # None # 0 # 4# None # (remove all but center tile data), put None here for normal operation)
ZIP_LHVAR
=
True
# combine _lvar and _hvar as odd/even elements
...
...
@@ -249,6 +249,11 @@ files_train_hvar = ["/home/oleg/GIT/python3-imagej-tiff/data_sets/tf_data_rand2/
"/home/oleg/GIT/python3-imagej-tiff/data_sets/tf_data_rand2/train006_R1_GT_1.5.tfrecords"
,
"/home/oleg/GIT/python3-imagej-tiff/data_sets/tf_data_rand2/train007_R1_GT_1.5.tfrecords"
,
]
files_train_lvar
=
[
"/home/oleg/GIT/python3-imagej-tiff/data_sets/tf_data_rand2/train000_R1_LE_1.5.tfrecords"
,
]
files_train_hvar
=
[
"/home/oleg/GIT/python3-imagej-tiff/data_sets/tf_data_rand2/train000_R1_GT_1.5.tfrecords"
,
]
#files_train_hvar = []
#file_test_lvar= "/home/eyesis/x3d_data/data_sets/tf_data_3x3a/train000_R1_LE_1.5.tfrecords" # "/home/eyesis/x3d_data/data_sets/train-000_R1_LE_1.5.tfrecords"
file_test_lvar
=
"/home/oleg/GIT/python3-imagej-tiff/data_sets/tf_data_rand2/testTEST_R1_LE_1.5.tfrecords"
...
...
@@ -438,6 +443,7 @@ def network_summary_w_b(scope, in_shape, out_shape, layout, index, network_scope
# lowest index
l1
=
layout
.
index
(
next
(
filter
(
lambda
x
:
x
!=
0
,
layout
)))
global
test_op
with
tf
.
variable_scope
(
scope
,
reuse
=
tf
.
AUTO_REUSE
):
# histograms
...
...
@@ -446,6 +452,7 @@ def network_summary_w_b(scope, in_shape, out_shape, layout, index, network_scope
tf
.
summary
.
histogram
(
"weights"
,
w
)
tf
.
summary
.
histogram
(
"biases"
,
b
)
# weights 2D pics
tmpvar
=
tf
.
get_variable
(
'tmp_tile'
,
shape
=
(
TILE_SIDE
,
TILE_SIDE
))
if
network_scope
==
'sub'
:
# draw for the 1st layer
...
...
@@ -455,43 +462,67 @@ def network_summary_w_b(scope, in_shape, out_shape, layout, index, network_scope
# red - the values will be automapped to 0-255 range
# grid = tf.stack([tf.reduce_max(w),tf.reduce_min(w),tf.reduce_min(w)])
# yellow - the values will be automapped to 0-255 range
grid
=
tf
.
stack
([
tf
.
reduce_max
(
w
),
tf
.
reduce_max
(
w
),
tf
.
reduce_max
(
w
)
/
2
])
grid_y
=
tf
.
stack
([
tf
.
reduce_max
(
w
),
tf
.
reduce_max
(
w
),
tf
.
reduce_max
(
w
)
/
2
])
grid_r
=
tf
.
stack
([
tf
.
reduce_max
(
w
),
tf
.
reduce_min
(
w
),
tf
.
reduce_min
(
w
)])
wt
=
tf
.
transpose
(
w
,[
1
,
0
])
wt
=
wt
[:,:
-
1
]
tmp1
=
[]
for
i
in
range
(
layout
[
index
]):
tmp2
=
[]
# reset when even
if
i
%
2
==
0
:
tmp2
=
[]
for
j
in
range
(
TILE_LAYERS
):
si
=
(
j
+
0
)
*
TILE_SIZE
ei
=
(
j
+
1
)
*
TILE_SIZE
tile
=
tf
.
reshape
(
wt
[
i
,
si
:
ei
],
shape
=
(
TILE_SIDE
,
TILE_SIDE
))
# color here?
#tile = tf.cond()
# stack to RGB
tiles
=
tf
.
stack
([
tile
]
*
3
,
axis
=
2
)
tiles
=
tf
.
concat
([
tiles
,
tf
.
expand_dims
((
TILE_SIDE
+
0
)
*
[
grid
],
0
)],
axis
=
0
)
tiles
=
tf
.
concat
([
tiles
,
tf
.
expand_dims
((
TILE_SIDE
+
1
)
*
[
grid
],
1
)],
axis
=
1
)
zers
=
tf
.
zeros
(
shape
=
(
TILE_SIDE
,
TILE_SIDE
))
test_op
=
tmpvar
.
assign
(
tile
)
#tile = tmpvar
tiles
=
tf
.
stack
([
tile
]
*
3
,
axis
=
2
)
# vertical border
if
(
j
==
TILE_LAYERS
-
1
):
tiles
=
tf
.
concat
([
tiles
,
tf
.
expand_dims
((
TILE_SIDE
+
0
)
*
[
grid_r
],
1
)],
axis
=
1
)
else
:
tiles
=
tf
.
concat
([
tiles
,
tf
.
expand_dims
((
TILE_SIDE
+
0
)
*
[
grid_y
],
1
)],
axis
=
1
)
# horizontal border
tiles
=
tf
.
concat
([
tiles
,
tf
.
expand_dims
((
TILE_SIDE
+
1
)
*
[
grid_r
],
0
)],
axis
=
0
)
tmp2
.
append
(
tiles
)
ts
=
tf
.
concat
(
tmp2
,
axis
=
1
)
tmp1
.
append
(
ts
)
# concat when odd
if
i
%
2
==
1
:
ts
=
tf
.
concat
(
tmp2
,
axis
=
1
)
tmp1
.
append
(
ts
)
imsum1
=
tf
.
concat
(
tmp1
,
axis
=
0
)
tf
.
summary
.
image
(
"sub_w8s"
,
tf
.
reshape
(
imsum1
,[
1
,
layout
[
index
]
*
(
TILE_SIDE
+
1
),
TILE_LAYERS
*
(
TILE_SIDE
+
1
),
3
]))
imsum1_1
=
tf
.
reshape
(
imsum1
,[
1
,
layout
[
index
]
*
(
TILE_SIDE
+
1
)
//
2
,
2
*
TILE_LAYERS
*
(
TILE_SIDE
+
1
),
3
])
tf
.
summary
.
image
(
"sub_w8s"
,
imsum1_1
)
# tests
#tf.summary.image("s_weights_test",tf.reshape(w,[1,w.shape[0],w.shape[1],1]))
#tf.summary.image("s_weights_test_transposed",tf.reshape(wt,[1,wt.shape[0],wt.shape[1],1]))
if
network_scope
==
'inter'
:
blocks_number
=
int
(
math
.
pow
(
2
*
CLUSTER_RADIUS
+
1
,
2
))
cluster_side
=
2
*
CLUSTER_RADIUS
+
1
blocks_number
=
int
(
math
.
pow
(
cluster_side
,
2
))
if
index
==
l1
:
# red - the values will be automapped to 0-255 range
# grid = tf.stack([tf.reduce_max(w),tf.reduce_min(w),tf.reduce_min(w)])
# yellow - the values will be automapped to 0-255 range
grid
=
tf
.
stack
([
tf
.
reduce_max
(
w
),
tf
.
reduce_max
(
w
),
tf
.
reduce_max
(
w
)
/
2
])
grid_y
=
tf
.
stack
([
tf
.
reduce_max
(
w
),
tf
.
reduce_max
(
w
),
tf
.
reduce_max
(
w
)
/
2
])
grid_r
=
tf
.
stack
([
tf
.
reduce_max
(
w
),
tf
.
reduce_min
(
w
),
tf
.
reduce_min
(
w
)])
wt
=
tf
.
transpose
(
w
,[
1
,
0
])
...
...
@@ -505,28 +536,61 @@ def network_summary_w_b(scope, in_shape, out_shape, layout, index, network_scope
tmp1
=
[]
for
i
in
range
(
layout
[
index
]):
tmp2
=
[]
for
j
in
range
(
blocks_number
):
si
=
(
j
+
0
)
*
block_size
ei
=
(
j
+
1
)
*
block_size
# reset when even
if
i
%
4
==
0
:
tmp2
=
[]
tmp4
=
[]
# need to group these
for
j1
in
range
(
cluster_side
):
# wtm is expanded... only tested for 0
if
missing_in_block
!=
0
:
wtm
=
tf
.
concat
(
wt
[
i
,
si
:
ei
],
missing_in_block
*
[
tf
.
reduce_min
(
w
)])
else
:
tmp3
=
[]
for
j2
in
range
(
cluster_side
):
si
=
(
cluster_side
*
j1
+
j2
+
0
)
*
block_size
ei
=
(
cluster_side
*
j1
+
j2
+
1
)
*
block_size
wtm
=
wt
[
i
,
si
:
ei
]
tile
=
tf
.
reshape
(
wtm
,
shape
=
(
block_side
,
block_side
))
# stack to RGB
tiles
=
tf
.
stack
([
tile
]
*
3
,
axis
=
2
)
tiles
=
tf
.
concat
([
tiles
,
tf
.
expand_dims
((
block_side
+
0
)
*
[
grid
],
0
)],
axis
=
0
)
tiles
=
tf
.
concat
([
tiles
,
tf
.
expand_dims
((
block_side
+
1
)
*
[
grid
],
1
)],
axis
=
1
)
tmp2
.
append
(
tiles
)
ts
=
tf
.
concat
(
tmp2
,
axis
=
1
)
tmp1
.
append
(
ts
)
tile
=
tf
.
reshape
(
wtm
,
shape
=
(
block_side
,
block_side
))
# stack to RGB
tiles
=
tf
.
stack
([
tile
]
*
3
,
axis
=
2
)
# yellow first
if
j2
==
cluster_side
-
1
:
if
j1
==
cluster_side
-
1
:
tiles
=
tf
.
concat
([
tiles
,
tf
.
expand_dims
((
block_side
+
0
)
*
[
grid_r
],
0
)],
axis
=
0
)
else
:
tiles
=
tf
.
concat
([
tiles
,
tf
.
expand_dims
((
block_side
+
0
)
*
[
grid_y
],
0
)],
axis
=
0
)
tiles
=
tf
.
concat
([
tiles
,
tf
.
expand_dims
((
block_side
+
1
)
*
[
grid_r
],
1
)],
axis
=
1
)
else
:
tiles
=
tf
.
concat
([
tiles
,
tf
.
expand_dims
((
block_side
+
0
)
*
[
grid_y
],
1
)],
axis
=
1
)
if
j1
==
cluster_side
-
1
:
tiles
=
tf
.
concat
([
tiles
,
tf
.
expand_dims
((
block_side
+
1
)
*
[
grid_r
],
0
)],
axis
=
0
)
else
:
tiles
=
tf
.
concat
([
tiles
,
tf
.
expand_dims
((
block_side
+
1
)
*
[
grid_y
],
0
)],
axis
=
0
)
tmp3
.
append
(
tiles
)
# hor
tmp4
.
append
(
tf
.
concat
(
tmp3
,
axis
=
1
))
tmp2
.
append
(
tf
.
concat
(
tmp4
,
axis
=
0
))
if
i
%
4
==
3
:
ts
=
tf
.
concat
(
tmp2
,
axis
=
1
)
tmp1
.
append
(
ts
)
imsum2
=
tf
.
concat
(
tmp1
,
axis
=
0
)
tf
.
summary
.
image
(
"inter_w8s"
,
tf
.
reshape
(
imsum2
,[
1
,
layout
[
index
]
*
(
block_side
+
1
),
blocks_number
*
(
block_side
+
1
),
3
]))
print
(
"imsum2 shape: "
)
print
(
imsum2
.
shape
)
tf
.
summary
.
image
(
"inter_w8s"
,
tf
.
reshape
(
imsum2
,[
1
,
layout
[
index
]
*
cluster_side
*
(
block_side
+
1
)
//
4
,
4
*
cluster_side
*
(
block_side
+
1
),
3
]))
...
...
@@ -792,6 +856,17 @@ with tf.Session() as sess:
sess
.
run
(
tf
.
local_variables_initializer
())
merged
=
tf
.
summary
.
merge_all
()
l1
=
NN_LAYOUT1
.
index
(
next
(
filter
(
lambda
x
:
x
!=
0
,
NN_LAYOUT1
)))
l2
=
NN_LAYOUT2
.
index
(
next
(
filter
(
lambda
x
:
x
!=
0
,
NN_LAYOUT2
)))
with
tf
.
variable_scope
(
'g_fc_sub'
+
str
(
l1
),
reuse
=
tf
.
AUTO_REUSE
):
w
=
tf
.
get_variable
(
'weights'
,
shape
=
[
325
,
32
])
wd
=
w
[
...
,
tf
.
newaxis
]
wds
=
tf
.
stack
([
wd
]
*
3
,
axis
=
0
)
#print(wd.shape)
#some_image = tf.summary.image("tfsi_test",wds.eval(),max_outputs=1)
some_image
=
tf
.
summary
.
image
(
"tfsi_test"
,
wds
,
max_outputs
=
1
)
train_writer
=
tf
.
summary
.
FileWriter
(
TRAIN_PATH
,
sess
.
graph
)
test_writer
=
tf
.
summary
.
FileWriter
(
TEST_PATH
,
sess
.
graph
)
test_writer1
=
tf
.
summary
.
FileWriter
(
TEST_PATH1
,
sess
.
graph
)
...
...
@@ -823,8 +898,8 @@ with tf.Session() as sess:
for
i
in
range
(
dataset_train_size
):
try
:
# train_summary,_, G_loss_trained, output, disp_slice, d_gt_slice, out_diff, out_diff2, w_norm, out_wdiff2, out_cost1, corr2d325_out = sess.run(
train_summary
,
_
,
G_loss_trained
,
output
,
disp_slice
,
d_gt_slice
,
out_diff
,
out_diff2
,
w_norm
,
out_wdiff2
,
out_cost1
,
gt_variance
=
sess
.
run
(
[
merged
,
_
,
train_summary
,
_
,
G_loss_trained
,
output
,
disp_slice
,
d_gt_slice
,
out_diff
,
out_diff2
,
w_norm
,
out_wdiff2
,
out_cost1
,
gt_variance
=
sess
.
run
(
[
test_op
,
merged
,
G_opt
,
G_loss
,
out
,
...
...
@@ -846,6 +921,7 @@ with tf.Session() as sess:
loss_train_hist
[
i
]
=
G_loss_trained
loss2_train_hist
[
i
]
=
out_cost1
gtvar_train_hist
[
i
]
=
gt_variance
except
tf
.
errors
.
OutOfRangeError
:
print
(
"train done at step
%
d"
%
(
i
))
break
...
...
@@ -879,6 +955,9 @@ with tf.Session() as sess:
loss_test_hist
[
i
]
=
G_loss_tested
loss2_test_hist
[
i
]
=
out_cost1
gtvar_test_hist
[
i
]
=
gt_variance
# #print(str(wed.shape)+" "+str(wed[0,0]))
except
tf
.
errors
.
OutOfRangeError
:
print
(
"test done at step
%
d"
%
(
i
))
break
...
...
@@ -888,6 +967,8 @@ with tf.Session() as sess:
gtvar_test_avg
=
np
.
average
(
gtvar_test_hist
)
.
astype
(
np
.
float32
)
# _,_=sess.run([tf_ph_G_loss,tf_ph_sq_diff],feed_dict={tf_ph_G_loss:test_avg, tf_ph_sq_diff:test2_avg})
train_writer
.
add_summary
(
some_image
.
eval
(),
epoch
)
train_writer
.
add_summary
(
train_summary
,
epoch
)
test_writer
.
add_summary
(
test_summaries
[
0
],
epoch
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment