# test_corr = '/home/eyesis/x3d_data/data_sets/test_mlr32_18a/1527256816_150165/v02/mlr32_18a/1527256816_150165-ML_DATA-32B-O-FZ0.05-MAIN.tiff' # State Street
# test_corr = '/home/eyesis/x3d_data/models/dsi_combo_and_ml_all/state_street/1527256858_150165/v01/mlr32_18a/1527256858_150165-ML_DATA-32B-O-FZ0.05-MAIN.tiff' # State Street
#Parameters to generate neighbors data. Set radius to 0 to generate single-tile
test_corrs=['/home/eyesis/x3d_data/data_sets/test_mlr32_18a/1527182802_096892/v02/mlr32_18a/1527182802_096892-ML_DATA-32B-O-FZ0.05-MAIN.tiff',# near plane"
'/home/eyesis/x3d_data/data_sets/test_mlr32_18a/1527182805_096892/v02/mlr32_18a/1527182805_096892-ML_DATA-32B-O-FZ0.05-MAIN.tiff',# medium plane"
'/home/eyesis/x3d_data/data_sets/test_mlr32_18a/1527182810_096892/v02/mlr32_18a/1527182810_096892-ML_DATA-32B-O-FZ0.05-MAIN.tiff',# far plane
]
#Parameters to generate neighbors data. Set radius to 0 to generate single-tile
TEST_SAME_LENGTH_AS_TRAIN=True# make test to have same number of entries as train ones
RADIUS=2# 5x5
RADIUS=2# 5x5
MIN_NEIBS=(2*RADIUS+1)*(2*RADIUS+1)# All tiles valid == 9
MIN_NEIBS=(2*RADIUS+1)*(2*RADIUS+1)# All tiles valid == 9
print_time("Shuffling how datasets datasets_train_lvar and datasets_train_hvar are zipped together",end="")
print_time("Shuffling how datasets datasets_train_lvar and datasets_train_hvar are zipped together",end="")
foriinrange(num_sets):
foriinrange(num_sets):
shuffle_in_place(datasets_train,i,num_sets)
shuffle_in_place(datasets_train,i,num_sets)
...
@@ -1160,7 +1321,7 @@ with tf.Session() as sess:
...
@@ -1160,7 +1321,7 @@ with tf.Session() as sess:
tf_ph_sq_diff:train2_avg,
tf_ph_sq_diff:train2_avg,
tf_gtvar_diff:gtvar_train_avg,
tf_gtvar_diff:gtvar_train_avg,
tf_img_test0:img_gain_test0,
tf_img_test0:img_gain_test0,
tf_img_test9:img_gain_test9})# previous value of *_avg
tf_img_test9:img_gain_test9})# previous value of *_avg #Fetch argument 0.0 has invalid type <class 'float'>, must be a string or Tensor. (Can not convert a float into a Tensor or Operation.)