Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
P
python3-imagej-tiff
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Elphel
python3-imagej-tiff
Commits
6363bf5b
Commit
6363bf5b
authored
Aug 09, 2018
by
Andrey Filippov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
just changing dataset file lists
parent
4a86586e
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
80 additions
and
91 deletions
+80
-91
nn_ds_neibs.py
nn_ds_neibs.py
+80
-91
No files found.
nn_ds_neibs.py
View file @
6363bf5b
...
@@ -168,24 +168,28 @@ except IndexError:
...
@@ -168,24 +168,28 @@ except IndexError:
#FILES_PER_SCENE
#FILES_PER_SCENE
train_filenameTFR1
=
"/mnt/dde6f983-d149-435e-b4a2-88749245cc6c/home/eyesis/x3d_data/data_sets/tf_data/train_01.tfrecords"
train_filenameTFR1
=
"/mnt/dde6f983-d149-435e-b4a2-88749245cc6c/home/eyesis/x3d_data/data_sets/tf_data/train_01.tfrecords"
files_train_lvar
=
[
"/home/eyesis/x3d_data/data_sets/tf_data_3x3a/train000_R1_LE_1.5.tfrecords"
]
files_train_lvar
=
[
"/home/eyesis/x3d_data/data_sets/tf_data_3x3b/train000_R1_LE_1.5.tfrecords"
,
"""
"/home/eyesis/x3d_data/data_sets/tf_data_3x3b/train001_R1_LE_1.5.tfrecords"
,
"/home/eyesis/x3d_data/data_sets/tf_data_3x3/train-000_R1_LE_1.5.tfrecords",
"/home/eyesis/x3d_data/data_sets/tf_data_3x3b/train002_R1_LE_1.5.tfrecords"
,
"/home/eyesis/x3d_data/data_sets/tf_data_3x3/train-001_R1_LE_1.5.tfrecords",
"/home/eyesis/x3d_data/data_sets/tf_data_3x3b/train003_R1_LE_1.5.tfrecords"
,
"/home/eyesis/x3d_data/data_sets/tf_data_3x3/train-002_R1_LE_1.5.tfrecords",
"/home/eyesis/x3d_data/data_sets/tf_data_3x3b/train004_R1_LE_1.5.tfrecords"
,
"/home/eyesis/x3d_data/data_sets/tf_data_3x3/train-003_R1_LE_1.5.tfrecords",
"/home/eyesis/x3d_data/data_sets/tf_data_3x3b/train005_R1_LE_1.5.tfrecords"
,
"/home/eyesis/x3d_data/data_sets/tf_data_3x3/train-004_R1_LE_1.5.tfrecords",
"/home/eyesis/x3d_data/data_sets/tf_data_3x3b/train006_R1_LE_1.5.tfrecords"
,
"/home/eyesis/x3d_data/data_sets/tf_data_3x3/train-005_R1_LE_1.5.tfrecords",
"/home/eyesis/x3d_data/data_sets/tf_data_3x3b/train007_R1_LE_1.5.tfrecords"
,
"/home/eyesis/x3d_data/data_sets/tf_data_3x3/train-006_R1_LE_1.5.tfrecords",
]
"/home/eyesis/x3d_data/data_sets/tf_data_3x3/train-007_R1_LE_1.5.tfrecords"]
files_train_hvar
=
[
"/home/eyesis/x3d_data/data_sets/tf_data_3x3b/train000_R1_GT_1.5.tfrecords"
,
"""
"/home/eyesis/x3d_data/data_sets/tf_data_3x3b/train001_R1_GT_1.5.tfrecords"
,
#files_train_hvar = ["/home/eyesis/x3d_data/data_sets/tf_data_3x3/train-000_R1_LE_1.5.tfrecords",
"/home/eyesis/x3d_data/data_sets/tf_data_3x3b/train002_R1_GT_1.5.tfrecords"
,
# "/home/eyesis/x3d_data/data_sets/tf_data_3x3/train-001_R1_LE_1.5.tfrecords"]
"/home/eyesis/x3d_data/data_sets/tf_data_3x3b/train003_R1_GT_1.5.tfrecords"
,
files_train_hvar
=
[]
"/home/eyesis/x3d_data/data_sets/tf_data_3x3b/train004_R1_GT_1.5.tfrecords"
,
"/home/eyesis/x3d_data/data_sets/tf_data_3x3b/train005_R1_GT_1.5.tfrecords"
,
#file_test_lvar= "/home/eyesis/x3d_data/data_sets/tf_data_3x3/test-TEST_R1_LE_1.5.tfrecords" # "/home/eyesis/x3d_data/data_sets/train-000_R1_LE_1.5.tfrecords"
"/home/eyesis/x3d_data/data_sets/tf_data_3x3b/train006_R1_GT_1.5.tfrecords"
,
file_test_lvar
=
"/home/eyesis/x3d_data/data_sets/tf_data_3x3a/train000_R1_LE_1.5.tfrecords"
# "/home/eyesis/x3d_data/data_sets/train-000_R1_LE_1.5.tfrecords"
"/home/eyesis/x3d_data/data_sets/tf_data_3x3b/train007_R1_GT_1.5.tfrecords"
,
file_test_hvar
=
None
# "/home/eyesis/x3d_data/data_sets/tf_data_3x3/train-002_R1_LE_1.5.tfrecords" # "/home/eyesis/x3d_data/data_sets/train-000_R1_LE_1.5.tfrecords"
]
#file_test_lvar= "/home/eyesis/x3d_data/data_sets/tf_data_3x3a/train000_R1_LE_1.5.tfrecords" # "/home/eyesis/x3d_data/data_sets/train-000_R1_LE_1.5.tfrecords"
file_test_lvar
=
"/home/eyesis/x3d_data/data_sets/tf_data_3x3b/testTEST_R1_LE_1.5.tfrecords"
file_test_hvar
=
"/home/eyesis/x3d_data/data_sets/tf_data_3x3b/testTEST_R1_GT_1.5.tfrecords"
# None # "/home/eyesis/x3d_data/data_sets/tf_data_3x3/train-002_R1_LE_1.5.tfrecords" # "/home/eyesis/x3d_data/data_sets/train-000_R1_LE_1.5.tfrecords"
weight_hvar
=
0.13
weight_hvar
=
0.13
weight_lvar
=
1.0
-
weight_hvar
weight_lvar
=
1.0
-
weight_hvar
...
@@ -254,16 +258,27 @@ if (file_test_hvar):
...
@@ -254,16 +258,27 @@ if (file_test_hvar):
print_time
(
" Done"
)
print_time
(
" Done"
)
pass
pass
#Alternate lvar/hvar
datasets_train
=
[]
datasets_weights_train
=
[]
for
indx
in
range
(
max
(
len
(
datasets_train_lvar
),
len
(
datasets_train_hvar
))):
if
(
indx
<
len
(
datasets_train_lvar
)):
datasets_train
.
append
(
datasets_train_lvar
[
indx
])
datasets_weights_train
.
append
(
weight_lvar
)
if
(
indx
<
len
(
datasets_train_hvar
)):
datasets_train
.
append
(
datasets_train_hvar
[
indx
])
datasets_weights_train
.
append
(
weight_hvar
)
datasets_test
=
[]
datasets_weights_test
=
[]
if
(
file_test_lvar
):
datasets_test
.
append
(
dataset_test_lvar
)
datasets_weights_test
.
append
(
weight_lvar
)
if
(
file_test_hvar
):
datasets_test
.
append
(
dataset_test_hvar
)
datasets_weights_test
.
append
(
weight_hvar
)
"""
corr2d_trains = [corr2d_train, corr2d_train1]
target_disparity_trains = [target_disparity_train, target_disparity_train1]
gt_ds_trains = [gt_ds_train, gt_ds_train1]
corr2d_train_placeholder = tf.placeholder(corr2d_train.dtype, (None,FEATURES_PER_TILE)) # corr2d_train.shape)
target_disparity_train_placeholder = tf.placeholder(target_disparity_train.dtype, (None,1)) #target_disparity_train.shape)
gt_ds_train_placeholder = tf.placeholder(gt_ds_train.dtype, (None,2)) #gt_ds_train.shape)
"""
corr2d_train_placeholder
=
tf
.
placeholder
(
datasets_train_lvar
[
0
][
'corr2d'
]
.
dtype
,
(
None
,
FEATURES_PER_TILE
*
cluster_size
))
# corr2d_train.shape)
corr2d_train_placeholder
=
tf
.
placeholder
(
datasets_train_lvar
[
0
][
'corr2d'
]
.
dtype
,
(
None
,
FEATURES_PER_TILE
*
cluster_size
))
# corr2d_train.shape)
target_disparity_train_placeholder
=
tf
.
placeholder
(
datasets_train_lvar
[
0
][
'target_disparity'
]
.
dtype
,
(
None
,
1
*
cluster_size
))
#target_disparity_train.shape)
target_disparity_train_placeholder
=
tf
.
placeholder
(
datasets_train_lvar
[
0
][
'target_disparity'
]
.
dtype
,
(
None
,
1
*
cluster_size
))
#target_disparity_train.shape)
gt_ds_train_placeholder
=
tf
.
placeholder
(
datasets_train_lvar
[
0
][
'gt_ds'
]
.
dtype
,
(
None
,
2
*
cluster_size
))
#gt_ds_train.shape)
gt_ds_train_placeholder
=
tf
.
placeholder
(
datasets_train_lvar
[
0
][
'gt_ds'
]
.
dtype
,
(
None
,
2
*
cluster_size
))
#gt_ds_train.shape)
...
@@ -461,24 +476,13 @@ def batchLoss(out_batch, # [batch_size,(1..2)] tf_result
...
@@ -461,24 +476,13 @@ def batchLoss(out_batch, # [batch_size,(1..2)] tf_result
iw_sum
=
tf
.
divide
(
tf_1f
,
w_sum
,
name
=
"iw_sum"
)
iw_sum
=
tf
.
divide
(
tf_1f
,
w_sum
,
name
=
"iw_sum"
)
w_norm
=
tf
.
multiply
(
w_all
,
iw_sum
,
name
=
"w_norm"
)
w_norm
=
tf
.
multiply
(
w_all
,
iw_sum
,
name
=
"w_norm"
)
# disp_slice = tf.slice(out_batch,[0,0],[-1,1], name = "disp_slice")
# d_gt_slice = tf.slice(gt_ds_batch,[0,0],[-1,1], name = "d_gt_slice")
disp_slice
=
tf
.
reshape
(
out_batch
[:,
0
],[
-
1
],
name
=
"disp_slice"
)
disp_slice
=
tf
.
reshape
(
out_batch
[:,
0
],[
-
1
],
name
=
"disp_slice"
)
d_gt_slice
=
tf
.
reshape
(
gt_ds_batch
[:,
0
],[
-
1
],
name
=
"d_gt_slice"
)
d_gt_slice
=
tf
.
reshape
(
gt_ds_batch
[:,
0
],[
-
1
],
name
=
"d_gt_slice"
)
"""
if absolute_disparity:
out_diff = tf.subtract(disp_slice, d_gt_slice, name = "out_diff")
else:
td_flat = tf.reshape(target_disparity_batch,[-1], name = "td_flat")
residual_disp = tf.subtract(d_gt_slice, td_flat, name = "residual_disp")
out_diff = tf.subtract(disp_slice, residual_disp, name = "out_diff")
"""
td_flat
=
tf
.
reshape
(
target_disparity_batch
,[
-
1
],
name
=
"td_flat"
)
td_flat
=
tf
.
reshape
(
target_disparity_batch
,[
-
1
],
name
=
"td_flat"
)
if
absolute_disparity
:
if
absolute_disparity
:
adisp
=
disp_slice
adisp
=
disp_slice
else
:
else
:
# td_flat = tf.reshape(target_disparity_batch,[-1], name = "td_flat")
adisp
=
tf
.
add
(
disp_slice
,
td_flat
,
name
=
"adisp"
)
adisp
=
tf
.
add
(
disp_slice
,
td_flat
,
name
=
"adisp"
)
out_diff
=
tf
.
subtract
(
adisp
,
d_gt_slice
,
name
=
"out_diff"
)
out_diff
=
tf
.
subtract
(
adisp
,
d_gt_slice
,
name
=
"out_diff"
)
...
@@ -610,21 +614,16 @@ with tf.Session() as sess:
...
@@ -610,21 +614,16 @@ with tf.Session() as sess:
gtvar_train_avg
=
0.0
gtvar_train_avg
=
0.0
gtvar_test_avg
=
0.0
gtvar_test_avg
=
0.0
num_train_variants
=
len
(
files_train_lvar
)
# num_train_variants = len(files_train_lvar)
num_train_variants
=
len
(
datasets_train
)
for
epoch
in
range
(
EPOCHS_TO_RUN
):
for
epoch
in
range
(
EPOCHS_TO_RUN
):
# file_index = (epoch // 20) % 2
# file_index = (epoch // 20) % 2
file_index
=
epoch
%
num_train_variants
file_index
=
epoch
%
num_train_variants
learning_rate
=
[
LR
,
LR100
][
epoch
>=
100
]
learning_rate
=
[
LR
,
LR100
][
epoch
>=
100
]
# if SHUFFLE_EPOCH:
# dataset_tt = dataset_tt.shuffle(buffer_size=10000)
sess
.
run
(
iterator_tt
.
initializer
,
feed_dict
=
{
corr2d_train_placeholder
:
datasets_train
[
file_index
][
'corr2d'
],
"""
target_disparity_train_placeholder
:
datasets_train
[
file_index
][
'target_disparity'
],
sess.run(iterator_tt.initializer, feed_dict={corr2d_train_placeholder: corr2d_trains[file_index],
gt_ds_train_placeholder
:
datasets_train
[
file_index
][
'gt_ds'
]})
target_disparity_train_placeholder: target_disparity_trains[file_index],
gt_ds_train_placeholder: gt_ds_trains[file_index]})
"""
sess
.
run
(
iterator_tt
.
initializer
,
feed_dict
=
{
corr2d_train_placeholder
:
datasets_train_lvar
[
file_index
][
'corr2d'
],
target_disparity_train_placeholder
:
datasets_train_lvar
[
file_index
][
'target_disparity'
],
gt_ds_train_placeholder
:
datasets_train_lvar
[
file_index
][
'gt_ds'
]})
for
i
in
range
(
dataset_train_size
):
for
i
in
range
(
dataset_train_size
):
try
:
try
:
# train_summary,_, G_loss_trained, output, disp_slice, d_gt_slice, out_diff, out_diff2, w_norm, out_wdiff2, out_cost1, corr2d325_out = sess.run(
# train_summary,_, G_loss_trained, output, disp_slice, d_gt_slice, out_diff, out_diff2, w_norm, out_wdiff2, out_cost1, corr2d325_out = sess.run(
...
@@ -658,21 +657,13 @@ with tf.Session() as sess:
...
@@ -658,21 +657,13 @@ with tf.Session() as sess:
train2_avg
=
np
.
average
(
loss2_train_hist
)
.
astype
(
np
.
float32
)
train2_avg
=
np
.
average
(
loss2_train_hist
)
.
astype
(
np
.
float32
)
gtvar_train_avg
=
np
.
average
(
gtvar_train_hist
)
.
astype
(
np
.
float32
)
gtvar_train_avg
=
np
.
average
(
gtvar_train_hist
)
.
astype
(
np
.
float32
)
# _,_=sess.run([tf_ph_G_loss,tf_ph_sq_diff],feed_dict={tf_ph_G_loss:train_avg, tf_ph_sq_diff:train2_avg})
for
dataset_test
in
datasets_test
:
#tf_ph_G_loss = tf.placeholder(tf.float32,shape=None,name='G_loss_avg')
sess
.
run
(
iterator_tt
.
initializer
,
feed_dict
=
{
corr2d_train_placeholder
:
dataset_test
[
'corr2d'
],
#tf_ph_sq_diff = tf.placeholder(tf.float32,shape=None,name='sq_diff_avg')
target_disparity_train_placeholder
:
dataset_test
[
'target_disparity'
],
"""
gt_ds_train_placeholder
:
dataset_test
[
'gt_ds'
]})
sess.run(iterator_tt.initializer, feed_dict={corr2d_train_placeholder: corr2d_test,
target_disparity_train_placeholder: target_disparity_test,
gt_ds_train_placeholder: gt_ds_test})
"""
sess
.
run
(
iterator_tt
.
initializer
,
feed_dict
=
{
corr2d_train_placeholder
:
dataset_test_lvar
[
'corr2d'
],
target_disparity_train_placeholder
:
dataset_test_lvar
[
'target_disparity'
],
gt_ds_train_placeholder
:
dataset_test_lvar
[
'gt_ds'
]})
for
i
in
range
(
dataset_test_size
):
for
i
in
range
(
dataset_test_size
):
try
:
try
:
# test_summary, G_loss_tested, output, disp_slice, d_gt_slice, out_diff, out_diff2, w_norm, out_wdiff2, out_cost1, corr2d325_out = sess.run(
test_summary
,
G_loss_tested
,
output
,
disp_slice
,
d_gt_slice
,
out_diff
,
out_diff2
,
w_norm
,
out_wdiff2
,
out_cost1
,
gt_variance
=
sess
.
run
(
test_summary
,
G_loss_tested
,
output
,
disp_slice
,
d_gt_slice
,
out_diff
,
out_diff2
,
w_norm
,
out_wdiff2
,
out_cost1
,
gt_variance
=
sess
.
run
(
[
merged
,
[
merged
,
G_loss
,
G_loss
,
...
@@ -685,7 +676,6 @@ with tf.Session() as sess:
...
@@ -685,7 +676,6 @@ with tf.Session() as sess:
_out_wdiff2
,
_out_wdiff2
,
_cost1
,
_cost1
,
GT_variance
GT_variance
# corr2d325,
],
],
feed_dict
=
{
lr
:
learning_rate
,
tf_ph_G_loss
:
test_avg
,
tf_ph_sq_diff
:
test2_avg
,
tf_gtvar_diff
:
gtvar_test_avg
})
# previous value of *_avg
feed_dict
=
{
lr
:
learning_rate
,
tf_ph_G_loss
:
test_avg
,
tf_ph_sq_diff
:
test2_avg
,
tf_gtvar_diff
:
gtvar_test_avg
})
# previous value of *_avg
loss_test_hist
[
i
]
=
G_loss_tested
loss_test_hist
[
i
]
=
G_loss_tested
...
@@ -695,7 +685,6 @@ with tf.Session() as sess:
...
@@ -695,7 +685,6 @@ with tf.Session() as sess:
print
(
"test done at step
%
d"
%
(
i
))
print
(
"test done at step
%
d"
%
(
i
))
break
break
# print_time("%d:%d -> %f"%(epoch,i,G_current))
test_avg
=
np
.
average
(
loss_test_hist
)
.
astype
(
np
.
float32
)
test_avg
=
np
.
average
(
loss_test_hist
)
.
astype
(
np
.
float32
)
test2_avg
=
np
.
average
(
loss2_test_hist
)
.
astype
(
np
.
float32
)
test2_avg
=
np
.
average
(
loss2_test_hist
)
.
astype
(
np
.
float32
)
gtvar_test_avg
=
np
.
average
(
gtvar_test_hist
)
.
astype
(
np
.
float32
)
gtvar_test_avg
=
np
.
average
(
gtvar_test_hist
)
.
astype
(
np
.
float32
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment