Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
P
python3-imagej-tiff
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Elphel
python3-imagej-tiff
Commits
4ecd26fe
Commit
4ecd26fe
authored
Sep 06, 2018
by
Oleg Dzhimiev
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' of git.elphel.com:Elphel/python3-imagej-tiff
parents
be49b8cc
3519f5ec
Changes
6
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
1470 additions
and
103 deletions
+1470
-103
explore_data5.py
explore_data5.py
+1147
-0
nn_ds_neibs16.py
nn_ds_neibs16.py
+12
-12
nn_eval_01.py
nn_eval_01.py
+200
-0
qcstereo_functions.py
qcstereo_functions.py
+42
-26
qcstereo_losses.py
qcstereo_losses.py
+6
-6
qcstereo_network.py
qcstereo_network.py
+63
-59
No files found.
explore_data5.py
0 → 100644
View file @
4ecd26fe
This diff is collapsed.
Click to expand it.
nn_ds_neibs16.py
View file @
4ecd26fe
#!/usr/bin/env python3
#!/usr/bin/env python3
from
numpy
import
float64
##
from numpy import float64
from
tensorflow.contrib.losses.python.metric_learning.metric_loss_ops
import
npairs_loss
##
from tensorflow.contrib.losses.python.metric_learning.metric_loss_ops import npairs_loss
from
debian.deb822
import
PdiffIndex
##
from debian.deb822 import PdiffIndex
__copyright__
=
"Copyright 2018, Elphel, Inc."
__copyright__
=
"Copyright 2018, Elphel, Inc."
__license__
=
"GPL-3.0+"
__license__
=
"GPL-3.0+"
__email__
=
"andrey@elphel.com"
__email__
=
"andrey@elphel.com"
from
PIL
import
Image
##
from PIL import Image
import
os
import
os
import
sys
import
sys
import
glob
##
import glob
import
numpy
as
np
import
numpy
as
np
import
itertools
##
import itertools
import
time
import
time
import
matplotlib.pyplot
as
plt
##
import matplotlib.pyplot as plt
import
shutil
import
shutil
from
threading
import
Thread
from
threading
import
Thread
...
@@ -49,7 +49,7 @@ except IndexError:
...
@@ -49,7 +49,7 @@ except IndexError:
root_dir
=
os
.
path
.
dirname
(
conf_file
)
root_dir
=
os
.
path
.
dirname
(
conf_file
)
print
(
"Configuration file: "
+
conf_file
)
print
(
"Configuration file: "
+
conf_file
)
parameters
,
dirs
,
files
=
qsf
.
parseXmlConfig
(
conf_file
,
root_dir
)
parameters
,
dirs
,
files
,
_
=
qsf
.
parseXmlConfig
(
conf_file
,
root_dir
)
"""
"""
Temporarily for backward compatibility
Temporarily for backward compatibility
"""
"""
...
@@ -221,7 +221,7 @@ if SPREAD_CONVERGENCE:
...
@@ -221,7 +221,7 @@ if SPREAD_CONVERGENCE:
else
:
else
:
outs
,
inp_weights
=
qcstereo_network
.
networks_siam
(
outs
,
inp_weights
=
qcstereo_network
.
networks_siam
(
input
=
corr2d_Nx325
,
input
_tensor
=
corr2d_Nx325
,
input_global
=
None
,
input_global
=
None
,
layout1
=
NN_LAYOUT1
,
layout1
=
NN_LAYOUT1
,
layout2
=
NN_LAYOUT2
,
layout2
=
NN_LAYOUT2
,
...
@@ -247,7 +247,7 @@ G_losses[0], _disp_slice, _d_gt_slice, _out_diff, _out_diff2, _w_norm, _out_wdif
...
@@ -247,7 +247,7 @@ G_losses[0], _disp_slice, _d_gt_slice, _out_diff, _out_diff2, _w_norm, _out_wdif
absolute_disparity
=
ABSOLUTE_DISPARITY
,
absolute_disparity
=
ABSOLUTE_DISPARITY
,
use_confidence
=
USE_CONFIDENCE
,
# True,
use_confidence
=
USE_CONFIDENCE
,
# True,
lambda_conf_avg
=
0.01
,
lambda_conf_avg
=
0.01
,
lambda_conf_pwr
=
0.1
,
##
lambda_conf_pwr = 0.1,
conf_pwr
=
2.0
,
conf_pwr
=
2.0
,
gt_conf_offset
=
0.08
,
gt_conf_offset
=
0.08
,
gt_conf_pwr
=
2.0
,
gt_conf_pwr
=
2.0
,
...
@@ -268,7 +268,7 @@ for n in range (1,len(partials)):
...
@@ -268,7 +268,7 @@ for n in range (1,len(partials)):
absolute_disparity
=
ABSOLUTE_DISPARITY
,
absolute_disparity
=
ABSOLUTE_DISPARITY
,
use_confidence
=
USE_CONFIDENCE
,
# True,
use_confidence
=
USE_CONFIDENCE
,
# True,
lambda_conf_avg
=
0.01
,
lambda_conf_avg
=
0.01
,
lambda_conf_pwr
=
0.1
,
#
lambda_conf_pwr = 0.1,
conf_pwr
=
2.0
,
conf_pwr
=
2.0
,
gt_conf_offset
=
0.08
,
gt_conf_offset
=
0.08
,
gt_conf_pwr
=
2.0
,
gt_conf_pwr
=
2.0
,
...
...
nn_eval_01.py
0 → 100644
View file @
4ecd26fe
#!/usr/bin/env python3
__copyright__
=
"Copyright 2018, Elphel, Inc."
__license__
=
"GPL-3.0+"
__email__
=
"andrey@elphel.com"
from
PIL
import
Image
import
os
import
sys
import
glob
import
numpy
as
np
import
time
import
matplotlib.pyplot
as
plt
import
qcstereo_functions
as
qsf
#import xml.etree.ElementTree as ET
qsf
.
TIME_START
=
time
.
time
()
qsf
.
TIME_LAST
=
qsf
.
TIME_START
IMG_WIDTH
=
324
# tiles per image row
DEBUG_LEVEL
=
1
try
:
conf_file
=
sys
.
argv
[
1
]
except
IndexError
:
print
(
"Configuration path is required as a first argument. Optional second argument specifies root directory for data files"
)
exit
(
1
)
try
:
root_dir
=
sys
.
argv
[
2
]
except
IndexError
:
root_dir
=
os
.
path
.
dirname
(
conf_file
)
print
(
"Configuration file: "
+
conf_file
)
parameters
,
dirs
,
files
,
dbg_parameters
=
qsf
.
parseXmlConfig
(
conf_file
,
root_dir
)
"""
Temporarily for backward compatibility
"""
if
not
"SLOSS_CLIP"
in
parameters
:
parameters
[
'SLOSS_CLIP'
]
=
0.5
print
(
"Old config, setting SLOSS_CLIP="
,
parameters
[
'SLOSS_CLIP'
])
"""
Defined in config file
"""
TILE_SIDE
,
TILE_LAYERS
,
TWO_TRAINS
,
NET_ARCH1
,
NET_ARCH2
=
[
None
]
*
5
ABSOLUTE_DISPARITY
,
SYM8_SUB
,
WLOSS_LAMBDA
,
SLOSS_LAMBDA
,
SLOSS_CLIP
=
[
None
]
*
5
SPREAD_CONVERGENCE
,
INTER_CONVERGENCE
,
HOR_FLIP
,
DISP_DIFF_CAP
,
DISP_DIFF_SLOPE
=
[
None
]
*
5
CLUSTER_RADIUS
,
ABSOLUTE_DISPARITY
=
[
None
]
*
2
globals
()
.
update
(
parameters
)
#exit(0)
TILE_SIZE
=
TILE_SIDE
*
TILE_SIDE
# == 81
FEATURES_PER_TILE
=
TILE_LAYERS
*
TILE_SIZE
# == 324
BATCH_SIZE
=
([
1
,
2
][
TWO_TRAINS
])
*
2
*
1000
//
25
# == 80 Each batch of tiles has balanced D/S tiles, shuffled batches but not inside batches
SUFFIX
=
(
str
(
NET_ARCH1
)
+
'-'
+
str
(
NET_ARCH2
)
+
([
"R"
,
"A"
][
ABSOLUTE_DISPARITY
])
+
([
"NS"
,
"S8"
][
SYM8_SUB
])
+
"WLAM"
+
str
(
WLOSS_LAMBDA
)
+
"SLAM"
+
str
(
SLOSS_LAMBDA
)
+
"SCLP"
+
str
(
SLOSS_CLIP
)
+
([
'_nG'
,
'_G'
][
SPREAD_CONVERGENCE
])
+
([
'_nI'
,
'_I'
][
INTER_CONVERGENCE
])
+
([
'_nHF'
,
"_HF"
][
HOR_FLIP
])
+
(
'_CP'
+
str
(
DISP_DIFF_CAP
))
+
(
'_S'
+
str
(
DISP_DIFF_SLOPE
))
)
##############################################################################
cluster_size
=
(
2
*
CLUSTER_RADIUS
+
1
)
*
(
2
*
CLUSTER_RADIUS
+
1
)
center_tile_index
=
2
*
CLUSTER_RADIUS
*
(
CLUSTER_RADIUS
+
1
)
qsf
.
prepareFiles
(
dirs
,
files
,
suffix
=
SUFFIX
)
#import tensorflow.contrib.slim as slim
NN_DISP
=
0
HEUR_DISP
=
1
GT_DISP
=
2
GT_CONF
=
3
NN_NAN
=
4
HEUR_NAN
=
5
NN_DIFF
=
6
HEUR_DIFF
=
7
CONF_MAX
=
0.7
ERR_AMPL
=
0.3
TIGHT_TOP
=
0.95
TIGHT_HPAD
=
1.0
TIGHT_WPAD
=
1.0
FIGSIZE
=
[
8.5
,
11.0
]
WOI_COLOR
=
"red"
#dbg_parameters
def
get_fig_params
(
disparity_ranges
):
fig_params
=
[]
for
dr
in
disparity_ranges
:
if
dr
[
-
1
][
0
]
==
'-'
:
fig_params
.
append
(
None
)
else
:
subs
=
[]
for
s
in
dr
[:
-
1
]:
mm
=
s
[:
2
]
try
:
lims
=
s
[
2
]
except
IndexError
:
lims
=
None
subs
.
append
({
'lim_val'
:
mm
,
'lim_xy'
:
lims
})
fig_params
.
append
({
'name'
:
dr
[
-
1
],
'ranges'
:
subs
})
return
fig_params
#try:
fig_params
=
get_fig_params
(
dbg_parameters
[
'disparity_ranges'
])
pass
figs
=
[]
def
setlimsxy
(
lim_xy
):
if
not
lim_xy
is
None
:
plt
.
xlim
(
min
(
lim_xy
[:
2
]),
max
(
lim_xy
[:
2
]))
plt
.
ylim
(
max
(
lim_xy
[
2
:]),
min
(
lim_xy
[
2
:]))
for
nfile
,
fpars
in
enumerate
(
fig_params
):
if
not
fpars
is
None
:
data
=
qsf
.
result_npy_prepare
(
files
[
'result'
][
nfile
],
ABSOLUTE_DISPARITY
,
fix_nan
=
True
,
insert_deltas
=
True
)
for
rng
in
fpars
[
'ranges'
]:
lim_val
=
rng
[
'lim_val'
]
lim_xy
=
rng
[
'lim_xy'
]
fig
=
plt
.
figure
(
figsize
=
FIGSIZE
)
fig
.
canvas
.
set_window_title
(
fpars
[
'name'
])
fig
.
suptitle
(
fpars
[
'name'
])
ax_conf
=
plt
.
subplot
(
322
)
ax_conf
.
set_title
(
"Ground truth confidence"
)
# fig.suptitle("Groud truth confidence")
plt
.
imshow
(
data
[
...
,
GT_CONF
],
vmin
=
0
,
vmax
=
CONF_MAX
,
cmap
=
'gray'
)
if
not
lim_xy
is
None
:
pass
# show frame
xdata
=
[
min
(
lim_xy
[:
2
]),
max
(
lim_xy
[:
2
]),
max
(
lim_xy
[:
2
]),
min
(
lim_xy
[:
2
]),
min
(
lim_xy
[:
2
])]
ydata
=
[
min
(
lim_xy
[
2
:]),
min
(
lim_xy
[
2
:]),
max
(
lim_xy
[
2
:]),
max
(
lim_xy
[
2
:]),
min
(
lim_xy
[
2
:])]
plt
.
plot
(
xdata
,
ydata
,
color
=
WOI_COLOR
)
# setlimsxy(lim_xy)
plt
.
colorbar
(
orientation
=
'vertical'
)
# location='bottom')
ax_gtd
=
plt
.
subplot
(
321
)
ax_gtd
.
set_title
(
"Ground truth disparity map"
)
plt
.
imshow
(
data
[
...
,
GT_DISP
],
vmin
=
lim_val
[
0
],
vmax
=
lim_val
[
1
])
setlimsxy
(
lim_xy
)
plt
.
colorbar
(
orientation
=
'vertical'
)
# location='bottom')
ax_hed
=
plt
.
subplot
(
323
)
ax_hed
.
set_title
(
"Heuristic disparity map"
)
plt
.
imshow
(
data
[
...
,
HEUR_NAN
],
vmin
=
lim_val
[
0
],
vmax
=
lim_val
[
1
])
setlimsxy
(
lim_xy
)
plt
.
colorbar
(
orientation
=
'vertical'
)
# location='bottom')
ax_nnd
=
plt
.
subplot
(
325
)
ax_nnd
.
set_title
(
"Network disparity output"
)
plt
.
imshow
(
data
[
...
,
NN_NAN
],
vmin
=
lim_val
[
0
],
vmax
=
lim_val
[
1
])
setlimsxy
(
lim_xy
)
plt
.
colorbar
(
orientation
=
'vertical'
)
# location='bottom')
ax_hee
=
plt
.
subplot
(
324
)
ax_hee
.
set_title
(
"Heuristic disparity error"
)
plt
.
imshow
(
data
[
...
,
HEUR_DIFF
],
vmin
=-
ERR_AMPL
,
vmax
=
ERR_AMPL
)
setlimsxy
(
lim_xy
)
plt
.
colorbar
(
orientation
=
'vertical'
)
# location='bottom')
ax_nne
=
plt
.
subplot
(
326
)
ax_nne
.
set_title
(
"Network disparity error"
)
plt
.
imshow
(
data
[
...
,
NN_DIFF
],
vmin
=-
ERR_AMPL
,
vmax
=
ERR_AMPL
)
setlimsxy
(
lim_xy
)
plt
.
colorbar
(
orientation
=
'vertical'
)
# location='bottom')
plt
.
tight_layout
(
rect
=
[
0
,
0
,
1
,
TIGHT_TOP
],
h_pad
=
TIGHT_HPAD
,
w_pad
=
TIGHT_WPAD
)
figs
.
append
(
fig
)
pass
#whow to allow adjustment before applying tight_layout?
pass
for
fig
in
figs
:
fig
.
tight_layout
(
rect
=
[
0
,
0
,
1
,
TIGHT_TOP
],
h_pad
=
TIGHT_HPAD
,
w_pad
=
TIGHT_WPAD
)
plt
.
show
()
#qsf.evaluateAllResults(result_files = files['result'],
# absolute_disparity = ABSOLUTE_DISPARITY,
# cluster_radius = CLUSTER_RADIUS)
print
(
"All done"
)
exit
(
0
)
qcstereo_functions.py
View file @
4ecd26fe
...
@@ -30,13 +30,14 @@ def print_time(txt="",end="\n"):
...
@@ -30,13 +30,14 @@ def print_time(txt="",end="\n"):
txt
+=
" "
txt
+=
" "
print
((
"
%
s"
+
bcolors
.
BOLDWHITE
+
"at
%.4
fs (+
%.4
fs)"
+
bcolors
.
ENDC
)
%
(
txt
,
t
-
TIME_START
,
t
-
TIME_LAST
),
end
=
end
,
flush
=
True
)
print
((
"
%
s"
+
bcolors
.
BOLDWHITE
+
"at
%.4
fs (+
%.4
fs)"
+
bcolors
.
ENDC
)
%
(
txt
,
t
-
TIME_START
,
t
-
TIME_LAST
),
end
=
end
,
flush
=
True
)
TIME_LAST
=
t
TIME_LAST
=
t
def
parseXmlConfig
(
conf_file
,
root_dir
):
def
parseXmlConfig
(
conf_file
,
root_dir
):
tree
=
ET
.
parse
(
conf_file
)
tree
=
ET
.
parse
(
conf_file
)
root
=
tree
.
getroot
()
root
=
tree
.
getroot
()
parameters
=
{}
parameters
=
{}
for
p
in
root
.
find
(
'parameters'
):
for
p
in
root
.
find
(
'parameters'
):
parameters
[
p
.
tag
]
=
eval
(
p
.
text
.
strip
())
parameters
[
p
.
tag
]
=
eval
(
p
.
text
.
strip
())
globals
#
globals
dirs
=
{}
dirs
=
{}
for
p
in
root
.
find
(
'directories'
):
for
p
in
root
.
find
(
'directories'
):
dirs
[
p
.
tag
]
=
eval
(
p
.
text
.
strip
())
dirs
[
p
.
tag
]
=
eval
(
p
.
text
.
strip
())
...
@@ -46,7 +47,11 @@ def parseXmlConfig(conf_file, root_dir):
...
@@ -46,7 +47,11 @@ def parseXmlConfig(conf_file, root_dir):
for
p
in
root
.
find
(
'files'
):
for
p
in
root
.
find
(
'files'
):
files
[
p
.
tag
]
=
eval
(
p
.
text
.
strip
())
files
[
p
.
tag
]
=
eval
(
p
.
text
.
strip
())
# globals().update(parameters)
# globals().update(parameters)
return
parameters
,
dirs
,
files
dbg_parameters
=
{}
for
p
in
root
.
find
(
'dbg_parameters'
):
dbg_parameters
[
p
.
tag
]
=
eval
(
p
.
text
.
strip
())
return
parameters
,
dirs
,
files
,
dbg_parameters
...
@@ -84,7 +89,8 @@ def readTFRewcordsEpoch(train_filename):
...
@@ -84,7 +89,8 @@ def readTFRewcordsEpoch(train_filename):
npy_dir_name
=
"npy"
npy_dir_name
=
"npy"
dirname
=
os
.
path
.
dirname
(
train_filename
)
dirname
=
os
.
path
.
dirname
(
train_filename
)
npy_dir
=
os
.
path
.
join
(
dirname
,
npy_dir_name
)
npy_dir
=
os
.
path
.
join
(
dirname
,
npy_dir_name
)
filebasename
,
file_extension
=
os
.
path
.
splitext
(
train_filename
)
# filebasename, file_extension = os.path.splitext(train_filename)
filebasename
,
_
=
os
.
path
.
splitext
(
train_filename
)
filebasename
=
os
.
path
.
basename
(
filebasename
)
filebasename
=
os
.
path
.
basename
(
filebasename
)
file_corr2d
=
os
.
path
.
join
(
npy_dir
,
filebasename
+
'_corr2d.npy'
)
file_corr2d
=
os
.
path
.
join
(
npy_dir
,
filebasename
+
'_corr2d.npy'
)
file_target_disparity
=
os
.
path
.
join
(
npy_dir
,
filebasename
+
'_target_disparity.npy'
)
file_target_disparity
=
os
.
path
.
join
(
npy_dir
,
filebasename
+
'_target_disparity.npy'
)
...
@@ -179,7 +185,7 @@ def add_neibs(npa_ext,radius):
...
@@ -179,7 +185,7 @@ def add_neibs(npa_ext,radius):
height
=
npa_ext
.
shape
[
0
]
-
2
*
radius
height
=
npa_ext
.
shape
[
0
]
-
2
*
radius
width
=
npa_ext
.
shape
[
1
]
-
2
*
radius
width
=
npa_ext
.
shape
[
1
]
-
2
*
radius
side
=
2
*
radius
+
1
side
=
2
*
radius
+
1
size
=
side
*
side
#
size = side * side
npa_neib
=
np
.
empty
((
height
,
width
,
side
,
side
,
npa_ext
.
shape
[
2
]),
dtype
=
npa_ext
.
dtype
)
npa_neib
=
np
.
empty
((
height
,
width
,
side
,
side
,
npa_ext
.
shape
[
2
]),
dtype
=
npa_ext
.
dtype
)
for
dy
in
range
(
side
):
for
dy
in
range
(
side
):
for
dx
in
range
(
side
):
for
dx
in
range
(
side
):
...
@@ -187,8 +193,8 @@ def add_neibs(npa_ext,radius):
...
@@ -187,8 +193,8 @@ def add_neibs(npa_ext,radius):
return
npa_neib
.
reshape
(
height
,
width
,
-
1
)
return
npa_neib
.
reshape
(
height
,
width
,
-
1
)
def
extend_img_to_clusters
(
datasets_img
,
radius
,
width
):
# = 324):
def
extend_img_to_clusters
(
datasets_img
,
radius
,
width
):
# = 324):
side
=
2
*
radius
+
1
#
side = 2 * radius + 1
size
=
side
*
side
#
size = side * side
if
len
(
datasets_img
)
==
0
:
if
len
(
datasets_img
)
==
0
:
return
return
num_tiles
=
datasets_img
[
0
][
'corr2d'
]
.
shape
[
0
]
num_tiles
=
datasets_img
[
0
][
'corr2d'
]
.
shape
[
0
]
...
@@ -210,7 +216,7 @@ def reformat_to_clusters(datasets_data, cluster_radius):
...
@@ -210,7 +216,7 @@ def reformat_to_clusters(datasets_data, cluster_radius):
def
flip_horizontal
(
datasets_data
,
cluster_radius
,
tile_layers
,
tile_side
):
def
flip_horizontal
(
datasets_data
,
cluster_radius
,
tile_layers
,
tile_side
):
cluster_side
=
2
*
cluster_radius
+
1
cluster_side
=
2
*
cluster_radius
+
1
cluster_size
=
cluster_side
*
cluster_side
#
cluster_size = cluster_side * cluster_side
"""
"""
TILE_LAYERS = 4
TILE_LAYERS = 4
TILE_SIDE = 9 # 7
TILE_SIDE = 9 # 7
...
@@ -238,8 +244,8 @@ TILE_SIZE = TILE_SIDE* TILE_SIDE # == 81
...
@@ -238,8 +244,8 @@ TILE_SIZE = TILE_SIDE* TILE_SIDE # == 81
rec
[
'target_disparity'
]
=
target_disparity
.
reshape
((
target_disparity
.
shape
[
0
],
-
1
))
rec
[
'target_disparity'
]
=
target_disparity
.
reshape
((
target_disparity
.
shape
[
0
],
-
1
))
rec
[
'gt_ds'
]
=
gt_ds
.
reshape
((
gt_ds
.
shape
[
0
],
-
1
))
rec
[
'gt_ds'
]
=
gt_ds
.
reshape
((
gt_ds
.
shape
[
0
],
-
1
))
def
replace_nan
(
datasets_data
,
cluster_radius
):
def
replace_nan
(
datasets_data
):
#
, cluster_radius):
cluster_size
=
(
2
*
cluster_radius
+
1
)
*
(
2
*
cluster_radius
+
1
)
#
cluster_size = (2 * cluster_radius + 1) * (2 * cluster_radius + 1)
# Reformat input data
# Reformat input data
for
rec
in
datasets_data
:
for
rec
in
datasets_data
:
if
not
rec
is
None
:
if
not
rec
is
None
:
...
@@ -259,7 +265,7 @@ def permute_to_swaps(perm):
...
@@ -259,7 +265,7 @@ def permute_to_swaps(perm):
def
shuffle_in_place
(
datasets_data
,
indx
,
period
):
def
shuffle_in_place
(
datasets_data
,
indx
,
period
):
swaps
=
permute_to_swaps
(
np
.
random
.
permutation
(
len
(
datasets_data
)))
swaps
=
permute_to_swaps
(
np
.
random
.
permutation
(
len
(
datasets_data
)))
num_entries
=
datasets_data
[
0
][
'corr2d'
]
.
shape
[
0
]
//
period
#
num_entries = datasets_data[0]['corr2d'].shape[0] // period
for
swp
in
swaps
:
for
swp
in
swaps
:
ds0
=
datasets_data
[
swp
[
0
]]
ds0
=
datasets_data
[
swp
[
0
]]
ds1
=
datasets_data
[
swp
[
1
]]
ds1
=
datasets_data
[
swp
[
1
]]
...
@@ -279,9 +285,10 @@ def shuffle_chunks_in_place(datasets_data, tiles_groups_per_chunk):
...
@@ -279,9 +285,10 @@ def shuffle_chunks_in_place(datasets_data, tiles_groups_per_chunk):
"""
"""
Improve shuffling by preserving indices inside batches (0 <->0, ... 39 <->39 for 40 tile group batches)
Improve shuffling by preserving indices inside batches (0 <->0, ... 39 <->39 for 40 tile group batches)
"""
"""
num_files
=
len
(
datasets_data
)
#
num_files = len(datasets_data)
#chunks_per_file = datasets_data[0]['target_disparity']
#chunks_per_file = datasets_data[0]['target_disparity']
for
nf
,
ds
in
enumerate
(
datasets_data
):
# for nf, ds in enumerate(datasets_data):
for
ds
in
datasets_data
:
groups_per_file
=
ds
[
'corr2d'
]
.
shape
[
0
]
groups_per_file
=
ds
[
'corr2d'
]
.
shape
[
0
]
chunks_per_file
=
groups_per_file
//
tiles_groups_per_chunk
chunks_per_file
=
groups_per_file
//
tiles_groups_per_chunk
permut
=
np
.
random
.
permutation
(
chunks_per_file
)
permut
=
np
.
random
.
permutation
(
chunks_per_file
)
...
@@ -327,7 +334,8 @@ def zip_lvar_hvar(datasets_all_data, del_src = True):
...
@@ -327,7 +334,8 @@ def zip_lvar_hvar(datasets_all_data, del_src = True):
'target_disparity'
:
np
.
empty
((
recs
[
0
][
'target_disparity'
]
.
shape
[
0
]
*
num_sets_to_combine
,
recs
[
0
][
'target_disparity'
]
.
shape
[
1
]),
dtype
=
np
.
float32
),
'target_disparity'
:
np
.
empty
((
recs
[
0
][
'target_disparity'
]
.
shape
[
0
]
*
num_sets_to_combine
,
recs
[
0
][
'target_disparity'
]
.
shape
[
1
]),
dtype
=
np
.
float32
),
'gt_ds'
:
np
.
empty
((
recs
[
0
][
'gt_ds'
]
.
shape
[
0
]
*
num_sets_to_combine
,
recs
[
0
][
'gt_ds'
]
.
shape
[
1
]),
dtype
=
np
.
float32
)}
'gt_ds'
:
np
.
empty
((
recs
[
0
][
'gt_ds'
]
.
shape
[
0
]
*
num_sets_to_combine
,
recs
[
0
][
'gt_ds'
]
.
shape
[
1
]),
dtype
=
np
.
float32
)}
for
nset
,
reci
in
enumerate
(
recs
):
# for nset, reci in enumerate(recs):
for
nset
,
_
in
enumerate
(
recs
):
rec
[
'corr2d'
]
[
nset
::
num_sets_to_combine
]
=
recs
[
nset
][
'corr2d'
]
rec
[
'corr2d'
]
[
nset
::
num_sets_to_combine
]
=
recs
[
nset
][
'corr2d'
]
rec
[
'target_disparity'
][
nset
::
num_sets_to_combine
]
=
recs
[
nset
][
'target_disparity'
]
rec
[
'target_disparity'
][
nset
::
num_sets_to_combine
]
=
recs
[
nset
][
'target_disparity'
]
rec
[
'gt_ds'
]
[
nset
::
num_sets_to_combine
]
=
recs
[
nset
][
'gt_ds'
]
rec
[
'gt_ds'
]
[
nset
::
num_sets_to_combine
]
=
recs
[
nset
][
'gt_ds'
]
...
@@ -356,10 +364,10 @@ def initTrainTestData(
...
@@ -356,10 +364,10 @@ def initTrainTestData(
max_files_per_group
,
# shuffling buffer for files
max_files_per_group
,
# shuffling buffer for files
two_trains
,
two_trains
,
train_next
):
train_next
):
datasets_train_lvar
=
[]
#
datasets_train_lvar = []
datasets_train_hvar
=
[]
#
datasets_train_hvar = []
datasets_train_lvar1
=
[]
#
datasets_train_lvar1 = []
datasets_train_hvar1
=
[]
#
datasets_train_hvar1 = []
datasets_train_all
=
[[],[],[],[]]
datasets_train_all
=
[[],[],[],[]]
for
n_train
,
f_train
in
enumerate
(
files
[
'train'
]):
for
n_train
,
f_train
in
enumerate
(
files
[
'train'
]):
if
len
(
f_train
)
and
((
n_train
<
2
)
or
two_trains
):
if
len
(
f_train
)
and
((
n_train
<
2
)
or
two_trains
):
...
@@ -445,7 +453,8 @@ def readImageData(image_data,
...
@@ -445,7 +453,8 @@ def readImageData(image_data,
cluster_radius
,
cluster_radius
,
width
)
width
)
if
replace_nans
:
if
replace_nans
:
replace_nan
([
image_data
[
indx
]],
cluster_radius
)
# replace_nan([image_data[indx]], cluster_radius)
replace_nan
([
image_data
[
indx
]])
return
image_data
[
indx
]
return
image_data
[
indx
]
...
@@ -477,7 +486,7 @@ def evaluateAllResults(result_files, absolute_disparity, cluster_radius):
...
@@ -477,7 +486,7 @@ def evaluateAllResults(result_files, absolute_disparity, cluster_radius):
def
result_npy_
to_tiff
(
npy_path
,
absolute
,
fix_nan
,
insert_deltas
=
True
):
def
result_npy_
prepare
(
npy_path
,
absolute
,
fix_nan
,
insert_deltas
=
True
):
"""
"""
@param npy_path full path to the npy file with 4-layer data (242,324,4) - nn_disparity(offset), target_disparity, gt disparity, gt strength
@param npy_path full path to the npy file with 4-layer data (242,324,4) - nn_disparity(offset), target_disparity, gt disparity, gt strength
...
@@ -485,10 +494,9 @@ def result_npy_to_tiff(npy_path, absolute, fix_nan, insert_deltas=True):
...
@@ -485,10 +494,9 @@ def result_npy_to_tiff(npy_path, absolute, fix_nan, insert_deltas=True):
@param absolute - True - the first layer contains absolute disparity, False - difference from target_disparity
@param absolute - True - the first layer contains absolute disparity, False - difference from target_disparity
@param fix_nan - replace nan in target_disparity with 0 to apply offset, target_disparity will still contain nan
@param fix_nan - replace nan in target_disparity with 0 to apply offset, target_disparity will still contain nan
"""
"""
tiff_path
=
npy_path
.
replace
(
'.npy'
,
'.tiff'
)
data
=
np
.
load
(
npy_path
)
#(324,242,4) [nn_disp, target_disp,gt_disp, gt_conf]
data
=
np
.
load
(
npy_path
)
#(324,242,4) [nn_disp, target_disp,gt_disp, gt_conf]
nn_out
=
0
nn_out
=
0
target_disparity
=
1
#
target_disparity = 1
gt_disparity
=
2
gt_disparity
=
2
gt_strength
=
3
gt_strength
=
3
if
not
absolute
:
if
not
absolute
:
...
@@ -501,20 +509,28 @@ def result_npy_to_tiff(npy_path, absolute, fix_nan, insert_deltas=True):
...
@@ -501,20 +509,28 @@ def result_npy_to_tiff(npy_path, absolute, fix_nan, insert_deltas=True):
data
=
np
.
concatenate
([
data
[
...
,
0
:
4
],
data
[
...
,
0
:
2
],
data
[
...
,
0
:
2
],
data
[
...
,
4
:]],
axis
=
2
)
data
=
np
.
concatenate
([
data
[
...
,
0
:
4
],
data
[
...
,
0
:
2
],
data
[
...
,
0
:
2
],
data
[
...
,
4
:]],
axis
=
2
)
data
[
...
,
6
]
-=
data
[
...
,
gt_disparity
]
data
[
...
,
6
]
-=
data
[
...
,
gt_disparity
]
data
[
...
,
7
]
-=
data
[
...
,
gt_disparity
]
data
[
...
,
7
]
-=
data
[
...
,
gt_disparity
]
for
l
in
[
4
,
5
,
6
,
7
]:
for
l
in
[
2
,
4
,
5
,
6
,
7
]:
data
[
...
,
l
]
=
np
.
select
([
data
[
...
,
gt_strength
]
==
0.0
,
data
[
...
,
gt_strength
]
>
0.0
],
[
np
.
nan
,
data
[
...
,
l
]])
data
[
...
,
l
]
=
np
.
select
([
data
[
...
,
gt_strength
]
==
0.0
,
data
[
...
,
gt_strength
]
>
0.0
],
[
np
.
nan
,
data
[
...
,
l
]])
# All other layers - mast too
# All other layers - mast too
for
l
in
range
(
8
,
data
.
shape
[
2
]):
for
l
in
range
(
8
,
data
.
shape
[
2
]):
data
[
...
,
l
]
=
np
.
select
([
data
[
...
,
gt_strength
]
==
0.0
,
data
[
...
,
gt_strength
]
>
0.0
],
[
np
.
nan
,
data
[
...
,
l
]])
data
[
...
,
l
]
=
np
.
select
([
data
[
...
,
gt_strength
]
==
0.0
,
data
[
...
,
gt_strength
]
>
0.0
],
[
np
.
nan
,
data
[
...
,
l
]])
return
data
def
result_npy_to_tiff
(
npy_path
,
absolute
,
fix_nan
,
insert_deltas
=
True
):
# data[...,4] = np.select([data[...,3]==0.0, data[...,3]>0.0], [np.nan,data[...,4]])
"""
# data[...,5] = np.select([data[...,3]==0.0, data[...,3]>0.0], [np.nan,data[...,5]])
@param npy_path full path to the npy file with 4-layer data (242,324,4) - nn_disparity(offset), target_disparity, gt disparity, gt strength
data will be written as 4-layer tiff, extension '.npy' replaced with '.tiff'
@param absolute - True - the first layer contains absolute disparity, False - difference from target_disparity
@param fix_nan - replace nan in target_disparity with 0 to apply offset, target_disparity will still contain nan
"""
data
=
result_npy_prepare
(
npy_path
,
absolute
,
fix_nan
,
insert_deltas
)
tiff_path
=
npy_path
.
replace
(
'.npy'
,
'.tiff'
)
data
=
data
.
transpose
(
2
,
0
,
1
)
data
=
data
.
transpose
(
2
,
0
,
1
)
print
(
"Saving results to TIFF: "
+
tiff_path
)
print
(
"Saving results to TIFF: "
+
tiff_path
)
imagej_tiffwriter
.
save
(
tiff_path
,
data
[
...
,
np
.
newaxis
])
imagej_tiffwriter
.
save
(
tiff_path
,
data
[
...
,
np
.
newaxis
])
def
eval_results
(
rslt_path
,
absolute
,
def
eval_results
(
rslt_path
,
absolute
,
min_disp
=
-
0.1
,
#minimal GT disparity
min_disp
=
-
0.1
,
#minimal GT disparity
max_disp
=
20.0
,
# maximal GT disparity
max_disp
=
20.0
,
# maximal GT disparity
...
...
qcstereo_losses.py
View file @
4ecd26fe
...
@@ -4,7 +4,7 @@ __license__ = "GPL-3.0+"
...
@@ -4,7 +4,7 @@ __license__ = "GPL-3.0+"
__email__
=
"andrey@elphel.com"
__email__
=
"andrey@elphel.com"
#from numpy import float64
#from numpy import float64
import
numpy
as
np
#
import numpy as np
import
tensorflow
as
tf
import
tensorflow
as
tf
def
smoothLoss
(
out_batch
,
# [batch_size,(1..2)] tf_result
def
smoothLoss
(
out_batch
,
# [batch_size,(1..2)] tf_result
...
@@ -76,7 +76,7 @@ def batchLoss(out_batch, # [batch_size,(1..2)] tf_result
...
@@ -76,7 +76,7 @@ def batchLoss(out_batch, # [batch_size,(1..2)] tf_result
absolute_disparity
=
False
,
#when false there should be no activation on disparity output !
absolute_disparity
=
False
,
#when false there should be no activation on disparity output !
use_confidence
=
False
,
use_confidence
=
False
,
lambda_conf_avg
=
0.01
,
lambda_conf_avg
=
0.01
,
lambda_conf_pwr
=
0.1
,
##
lambda_conf_pwr = 0.1,
conf_pwr
=
2.0
,
conf_pwr
=
2.0
,
gt_conf_offset
=
0.08
,
gt_conf_offset
=
0.08
,
gt_conf_pwr
=
1.0
,
gt_conf_pwr
=
1.0
,
...
@@ -90,14 +90,14 @@ def batchLoss(out_batch, # [batch_size,(1..2)] tf_result
...
@@ -90,14 +90,14 @@ def batchLoss(out_batch, # [batch_size,(1..2)] tf_result
Here confidence should be after relU. Disparity - may be also if absolute, but no activation if output is residual disparity
Here confidence should be after relU. Disparity - may be also if absolute, but no activation if output is residual disparity
"""
"""
tf_lambda_conf_avg
=
tf
.
constant
(
lambda_conf_avg
,
dtype
=
tf
.
float32
,
name
=
"tf_lambda_conf_avg"
)
tf_lambda_conf_avg
=
tf
.
constant
(
lambda_conf_avg
,
dtype
=
tf
.
float32
,
name
=
"tf_lambda_conf_avg"
)
tf_lambda_conf_pwr
=
tf
.
constant
(
lambda_conf_pwr
,
dtype
=
tf
.
float32
,
name
=
"tf_lambda_conf_pwr"
)
##
tf_lambda_conf_pwr = tf.constant(lambda_conf_pwr, dtype=tf.float32, name="tf_lambda_conf_pwr")
tf_conf_pwr
=
tf
.
constant
(
conf_pwr
,
dtype
=
tf
.
float32
,
name
=
"tf_conf_pwr"
)
##
tf_conf_pwr = tf.constant(conf_pwr, dtype=tf.float32, name="tf_conf_pwr")
tf_gt_conf_offset
=
tf
.
constant
(
gt_conf_offset
,
dtype
=
tf
.
float32
,
name
=
"tf_gt_conf_offset"
)
tf_gt_conf_offset
=
tf
.
constant
(
gt_conf_offset
,
dtype
=
tf
.
float32
,
name
=
"tf_gt_conf_offset"
)
tf_gt_conf_pwr
=
tf
.
constant
(
gt_conf_pwr
,
dtype
=
tf
.
float32
,
name
=
"tf_gt_conf_pwr"
)
tf_gt_conf_pwr
=
tf
.
constant
(
gt_conf_pwr
,
dtype
=
tf
.
float32
,
name
=
"tf_gt_conf_pwr"
)
tf_num_tiles
=
tf
.
shape
(
gt_ds_batch
)[
0
]
tf_num_tiles
=
tf
.
shape
(
gt_ds_batch
)[
0
]
tf_0f
=
tf
.
constant
(
0.0
,
dtype
=
tf
.
float32
,
name
=
"tf_0f"
)
tf_0f
=
tf
.
constant
(
0.0
,
dtype
=
tf
.
float32
,
name
=
"tf_0f"
)
tf_1f
=
tf
.
constant
(
1.0
,
dtype
=
tf
.
float32
,
name
=
"tf_1f"
)
tf_1f
=
tf
.
constant
(
1.0
,
dtype
=
tf
.
float32
,
name
=
"tf_1f"
)
tf_maxw
=
tf
.
constant
(
1.0
,
dtype
=
tf
.
float32
,
name
=
"tf_maxw"
)
##
tf_maxw = tf.constant(1.0, dtype=tf.float32, name="tf_maxw")
tf_disp_diff_cap2
=
tf
.
constant
(
disp_diff_cap
*
disp_diff_cap
,
dtype
=
tf
.
float32
,
name
=
"disp_diff_cap2"
)
tf_disp_diff_cap2
=
tf
.
constant
(
disp_diff_cap
*
disp_diff_cap
,
dtype
=
tf
.
float32
,
name
=
"disp_diff_cap2"
)
tf_disp_diff_slope
=
tf
.
constant
(
disp_diff_slope
,
dtype
=
tf
.
float32
,
name
=
"disp_diff_slope"
)
tf_disp_diff_slope
=
tf
.
constant
(
disp_diff_slope
,
dtype
=
tf
.
float32
,
name
=
"disp_diff_slope"
)
...
...
qcstereo_network.py
View file @
4ecd26fe
...
@@ -4,7 +4,7 @@ __license__ = "GPL-3.0+"
...
@@ -4,7 +4,7 @@ __license__ = "GPL-3.0+"
__email__
=
"andrey@elphel.com"
__email__
=
"andrey@elphel.com"
#from numpy import float64
#from numpy import float64
import
numpy
as
np
#
import numpy as np
import
tensorflow
as
tf
import
tensorflow
as
tf
import
tensorflow.contrib.slim
as
slim
import
tensorflow.contrib.slim
as
slim
...
@@ -13,15 +13,16 @@ def lrelu(x):
...
@@ -13,15 +13,16 @@ def lrelu(x):
return
tf
.
maximum
(
x
*
0.2
,
x
)
return
tf
.
maximum
(
x
*
0.2
,
x
)
# return tf.nn.relu(x)
# return tf.nn.relu(x)
def
sym_inputs8
(
inp
):
def
sym_inputs8
(
inp
,
cluster_radius
=
2
):
"""
"""
get input vector [?:4*9*9+1] (last being target_disparity) and reorder for horizontal flip,
get input vector [?:4*9*9+1] (last being target_disparity) and reorder for horizontal flip,
vertical flip and transpose (8 variants, mode + 1 - hor, +2 - vert, +4 - transpose)
vertical flip and transpose (8 variants, mode + 1 - hor, +2 - vert, +4 - transpose)
return same lengh, reordered
return same lengh, reordered
"""
"""
tile_side
=
2
*
cluster_radius
+
1
with
tf
.
name_scope
(
"sym_inputs8"
):
with
tf
.
name_scope
(
"sym_inputs8"
):
td
=
inp
[:,
-
1
:]
# tf.reshape(inp,[-1], name = "td")[-1]
td
=
inp
[:,
-
1
:]
# tf.reshape(inp,[-1], name = "td")[-1]
inp_corr
=
tf
.
reshape
(
inp
[:,:
-
1
],[
-
1
,
4
,
TILE_SIDE
,
TILE_SIDE
],
name
=
"inp_corr"
)
inp_corr
=
tf
.
reshape
(
inp
[:,:
-
1
],[
-
1
,
4
,
tile_side
,
tile_side
],
name
=
"inp_corr"
)
inp_corr_h
=
tf
.
stack
([
-
inp_corr
[:,
0
,:,
-
1
::
-
1
],
inp_corr
[:,
1
,:,
-
1
::
-
1
],
-
inp_corr
[:,
3
,:,
-
1
::
-
1
],
-
inp_corr
[:,
2
,:,
-
1
::
-
1
]],
axis
=
1
,
name
=
"inp_corr_h"
)
inp_corr_h
=
tf
.
stack
([
-
inp_corr
[:,
0
,:,
-
1
::
-
1
],
inp_corr
[:,
1
,:,
-
1
::
-
1
],
-
inp_corr
[:,
3
,:,
-
1
::
-
1
],
-
inp_corr
[:,
2
,:,
-
1
::
-
1
]],
axis
=
1
,
name
=
"inp_corr_h"
)
inp_corr_v
=
tf
.
stack
([
inp_corr
[:,
0
,
-
1
::
-
1
,:],
-
inp_corr
[:,
1
,
-
1
::
-
1
,:],
inp_corr
[:,
3
,
-
1
::
-
1
,:],
inp_corr
[:,
2
,
-
1
::
-
1
,:]],
axis
=
1
,
name
=
"inp_corr_v"
)
inp_corr_v
=
tf
.
stack
([
inp_corr
[:,
0
,
-
1
::
-
1
,:],
-
inp_corr
[:,
1
,
-
1
::
-
1
,:],
inp_corr
[:,
3
,
-
1
::
-
1
,:],
inp_corr
[:,
2
,
-
1
::
-
1
,:]],
axis
=
1
,
name
=
"inp_corr_v"
)
inp_corr_hv
=
tf
.
stack
([
inp_corr_h
[:,
0
,
-
1
::
-
1
,:],
-
inp_corr_h
[:,
1
,
-
1
::
-
1
,:],
inp_corr_h
[:,
3
,
-
1
::
-
1
,:],
inp_corr_h
[:,
2
,
-
1
::
-
1
,:]],
axis
=
1
,
name
=
"inp_corr_hv"
)
inp_corr_hv
=
tf
.
stack
([
inp_corr_h
[:,
0
,
-
1
::
-
1
,:],
-
inp_corr_h
[:,
1
,
-
1
::
-
1
,:],
inp_corr_h
[:,
3
,
-
1
::
-
1
,:],
inp_corr_h
[:,
2
,
-
1
::
-
1
,:]],
axis
=
1
,
name
=
"inp_corr_hv"
)
...
@@ -52,7 +53,7 @@ def sym_inputs8(inp):
...
@@ -52,7 +53,7 @@ def sym_inputs8(inp):
tf.concat([tf.reshape(inp_corr_vt, [inp_corr.shape[0],-1]),td], axis=1,name = "out_corr_vt"),
tf.concat([tf.reshape(inp_corr_vt, [inp_corr.shape[0],-1]),td], axis=1,name = "out_corr_vt"),
tf.concat([tf.reshape(inp_corr_hvt,[inp_corr.shape[0],-1]),td], axis=1,name = "out_corr_hvt")]
tf.concat([tf.reshape(inp_corr_hvt,[inp_corr.shape[0],-1]),td], axis=1,name = "out_corr_hvt")]
"""
"""
cl
=
4
*
TILE_SIDE
*
TILE_SIDE
cl
=
4
*
tile_side
*
tile_side
return
[
tf
.
concat
([
tf
.
reshape
(
inp_corr
,
[
-
1
,
cl
]),
td
],
axis
=
1
,
name
=
"out_corr"
),
return
[
tf
.
concat
([
tf
.
reshape
(
inp_corr
,
[
-
1
,
cl
]),
td
],
axis
=
1
,
name
=
"out_corr"
),
tf
.
concat
([
tf
.
reshape
(
inp_corr_h
,
[
-
1
,
cl
]),
td
],
axis
=
1
,
name
=
"out_corr_h"
),
tf
.
concat
([
tf
.
reshape
(
inp_corr_h
,
[
-
1
,
cl
]),
td
],
axis
=
1
,
name
=
"out_corr_h"
),
tf
.
concat
([
tf
.
reshape
(
inp_corr_v
,
[
-
1
,
cl
]),
td
],
axis
=
1
,
name
=
"out_corr_v"
),
tf
.
concat
([
tf
.
reshape
(
inp_corr_v
,
[
-
1
,
cl
]),
td
],
axis
=
1
,
name
=
"out_corr_v"
),
...
@@ -64,12 +65,13 @@ def sym_inputs8(inp):
...
@@ -64,12 +65,13 @@ def sym_inputs8(inp):
# inp_corr_h, inp_corr_v, inp_corr_hv, inp_corr_t, inp_corr_ht, inp_corr_vt, inp_corr_hvt]
# inp_corr_h, inp_corr_v, inp_corr_hv, inp_corr_t, inp_corr_ht, inp_corr_vt, inp_corr_hvt]
def
network_sub
(
input
,
def
network_sub
(
input
_tensor
,
input_global
,
#add to all layers (but first) if not None
input_global
,
#add to all layers (but first) if not None
layout
,
layout
,
reuse
,
reuse
,
sym8
=
False
):
sym8
=
False
,
last_indx
=
None
;
cluster_radius
=
2
):
# last_indx = None;
fc
=
[]
fc
=
[]
inp_weights
=
[]
inp_weights
=
[]
for
i
,
num_outs
in
enumerate
(
layout
):
for
i
,
num_outs
in
enumerate
(
layout
):
...
@@ -81,9 +83,9 @@ def network_sub(input,
...
@@ -81,9 +83,9 @@ def network_sub(input,
inp
=
tf
.
concat
([
fc
[
-
1
],
input_global
],
axis
=
1
)
inp
=
tf
.
concat
([
fc
[
-
1
],
input_global
],
axis
=
1
)
fc
.
append
(
slim
.
fully_connected
(
inp
,
num_outs
,
activation_fn
=
lrelu
,
scope
=
'g_fc_sub'
+
str
(
i
),
reuse
=
reuse
))
fc
.
append
(
slim
.
fully_connected
(
inp
,
num_outs
,
activation_fn
=
lrelu
,
scope
=
'g_fc_sub'
+
str
(
i
),
reuse
=
reuse
))
else
:
else
:
inp
=
input
inp
=
input_tensor
if
sym8
:
if
sym8
:
inp8
=
sym_inputs8
(
inp
)
inp8
=
sym_inputs8
(
inp
,
cluster_radius
)
num_non_sum
=
num_outs
%
len
(
inp8
)
# if number of first layer outputs is not multiple of 8
num_non_sum
=
num_outs
%
len
(
inp8
)
# if number of first layer outputs is not multiple of 8
num_sym8
=
num_outs
//
len
(
inp8
)
# number of symmetrical groups
num_sym8
=
num_outs
//
len
(
inp8
)
# number of symmetrical groups
fc_sym
=
[]
fc_sym
=
[]
...
@@ -111,12 +113,12 @@ def network_sub(input,
...
@@ -111,12 +113,12 @@ def network_sub(input,
return
fc
[
-
1
],
inp_weights
return
fc
[
-
1
],
inp_weights
def
network_inter
(
input
,
def
network_inter
(
input
_tensor
,
input_global
,
#add to all layers (but first) if not None
input_global
,
#add to all layers (but first) if not None
layout
,
layout
,
reuse
=
False
,
reuse
=
False
,
use_confidence
=
False
):
use_confidence
=
False
):
last_indx
=
None
;
#
last_indx = None;
fc
=
[]
fc
=
[]
for
i
,
num_outs
in
enumerate
(
layout
):
for
i
,
num_outs
in
enumerate
(
layout
):
if
num_outs
:
if
num_outs
:
...
@@ -126,7 +128,7 @@ def network_inter(input,
...
@@ -126,7 +128,7 @@ def network_inter(input,
else
:
else
:
inp
=
tf
.
concat
([
fc
[
-
1
],
input_global
],
axis
=
1
)
inp
=
tf
.
concat
([
fc
[
-
1
],
input_global
],
axis
=
1
)
else
:
else
:
inp
=
input
inp
=
input_tensor
fc
.
append
(
slim
.
fully_connected
(
inp
,
num_outs
,
activation_fn
=
lrelu
,
scope
=
'g_fc_inter'
+
str
(
i
),
reuse
=
reuse
))
fc
.
append
(
slim
.
fully_connected
(
inp
,
num_outs
,
activation_fn
=
lrelu
,
scope
=
'g_fc_inter'
+
str
(
i
),
reuse
=
reuse
))
if
use_confidence
:
if
use_confidence
:
fc_out
=
slim
.
fully_connected
(
fc
[
-
1
],
2
,
activation_fn
=
lrelu
,
scope
=
'g_fc_inter_out'
,
reuse
=
reuse
)
fc_out
=
slim
.
fully_connected
(
fc
[
-
1
],
2
,
activation_fn
=
lrelu
,
scope
=
'g_fc_inter_out'
,
reuse
=
reuse
)
...
@@ -135,7 +137,7 @@ def network_inter(input,
...
@@ -135,7 +137,7 @@ def network_inter(input,
#If using residual disparity, split last layer into 2 or remove activation and add rectifier to confidence only
#If using residual disparity, split last layer into 2 or remove activation and add rectifier to confidence only
return
fc_out
return
fc_out
def
networks_siam
(
input
,
# now [?,9,325]-> [?,25,325]
def
networks_siam
(
input
_tensor
,
# now [?,9,325]-> [?,25,325]
input_global
,
# add to all layers (but first) if not None
input_global
,
# add to all layers (but first) if not None
layout1
,
layout1
,
layout2
,
layout2
,
...
@@ -143,12 +145,13 @@ def networks_siam(input, # now [?,9,325]-> [?,25,325]
...
@@ -143,12 +145,13 @@ def networks_siam(input, # now [?,9,325]-> [?,25,325]
sym8
=
False
,
sym8
=
False
,
only_tile
=
None
,
# just for debugging - feed only data from the center sub-network
only_tile
=
None
,
# just for debugging - feed only data from the center sub-network
partials
=
None
,
partials
=
None
,
use_confidence
=
False
):
use_confidence
=
False
,
cluster_radius
=
2
):
center_index
=
(
input
.
shape
[
1
]
-
1
)
//
2
center_index
=
(
input
_tensor
.
shape
[
1
]
-
1
)
//
2
with
tf
.
name_scope
(
"Siam_net"
):
with
tf
.
name_scope
(
"Siam_net"
):
inp_weights
=
[]
inp_weights
=
[]
num_legs
=
input
.
shape
[
1
]
# == 25
num_legs
=
input
_tensor
.
shape
[
1
]
# == 25
if
partials
is
None
:
if
partials
is
None
:
partials
=
[[
True
]
*
num_legs
]
partials
=
[[
True
]
*
num_legs
]
inter_lists
=
[[]
for
_
in
partials
]
inter_lists
=
[[]
for
_
in
partials
]
...
@@ -159,11 +162,12 @@ def networks_siam(input, # now [?,9,325]-> [?,25,325]
...
@@ -159,11 +162,12 @@ def networks_siam(input, # now [?,9,325]-> [?,25,325]
ig
=
None
ig
=
None
else
:
else
:
ig
=
input_global
[:,
i
,:]
ig
=
input_global
[:,
i
,:]
ns
,
ns_weights
=
network_sub
(
input
[:,
i
,:],
ns
,
ns_weights
=
network_sub
(
input
_tensor
[:,
i
,:],
ig
,
# input_global[:,i,:],
ig
,
# input_global[:,i,:],
layout
=
layout1
,
layout
=
layout1
,
reuse
=
reuse
,
reuse
=
reuse
,
sym8
=
sym8
)
sym8
=
sym8
,
cluster_radius
=
cluster_radius
)
for
n
,
partial
in
enumerate
(
partials
):
for
n
,
partial
in
enumerate
(
partials
):
if
partial
[
i
]:
if
partial
[
i
]:
inter_lists
[
n
]
.
append
(
ns
)
inter_lists
[
n
]
.
append
(
ns
)
...
@@ -178,7 +182,7 @@ def networks_siam(input, # now [?,9,325]-> [?,25,325]
...
@@ -178,7 +182,7 @@ def networks_siam(input, # now [?,9,325]-> [?,25,325]
else
:
else
:
ig
=
input_global
[:,
center_index
,:]
ig
=
input_global
[:,
center_index
,:]
outs
.
append
(
network_inter
(
input
=
tf
.
concat
(
inter_lists
[
n
],
outs
.
append
(
network_inter
(
input
_tensor
=
tf
.
concat
(
inter_lists
[
n
],
axis
=
1
,
axis
=
1
,
name
=
'inter_tensor'
+
str
(
n
)),
name
=
'inter_tensor'
+
str
(
n
)),
input_global
=
[
None
,
ig
][
inter_convergence
],
# optionally feed all convergence values (from each tile of a cluster)
input_global
=
[
None
,
ig
][
inter_convergence
],
# optionally feed all convergence values (from each tile of a cluster)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment