Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
P
python3-imagej-tiff
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Elphel
python3-imagej-tiff
Commits
17e64c60
Commit
17e64c60
authored
Aug 22, 2018
by
Andrey Filippov
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' of git@git.elphel.com:Elphel/python3-imagej-tiff.git
parents
94636179
6f404273
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
295 additions
and
53 deletions
+295
-53
nn_ds_neibs1_tmp.py
nn_ds_neibs1_tmp.py
+147
-53
numpy_visualize_weights.py
numpy_visualize_weights.py
+148
-0
No files found.
nn_ds_neibs1_tmp.py
View file @
17e64c60
...
@@ -50,10 +50,12 @@ BATCH_SIZE = 2*1080//9 # == 120 Each batch of tiles has balanced D/S tiles
...
@@ -50,10 +50,12 @@ BATCH_SIZE = 2*1080//9 # == 120 Each batch of tiles has balanced D/S tiles
SHUFFLE_EPOCH
=
True
SHUFFLE_EPOCH
=
True
NET_ARCH1
=
0
#0 # 4 # 3 # overwrite with argv?
NET_ARCH1
=
0
#0 # 4 # 3 # overwrite with argv?
NET_ARCH2
=
0
# 0 # 3 # overwrite with argv?
NET_ARCH2
=
0
# 0 # 3 # overwrite with argv?
SYM8_SUB
=
False
# True # False # True # False # True # False # enforce inputs from 2d correlation have symmetrical ones (groups of 8)
ONLY_TILE
=
None
# 4 # None # 0 # 4# None # (remove all but center tile data), put None here for normal operation)
ONLY_TILE
=
None
# 4 # None # 0 # 4# None # (remove all but center tile data), put None here for normal operation)
ZIP_LHVAR
=
True
# combine _lvar and _hvar as odd/even elements
ZIP_LHVAR
=
True
# combine _lvar and _hvar as odd/even elements
#DEBUG_PACK_TILES = True
#DEBUG_PACK_TILES = True
WLOSS_LAMBDA
=
0.001
# 5.0 # 1.0 # fraction of the W_loss (input layers weight non-uniformity) added to G_loss
SUFFIX
=
str
(
NET_ARCH1
)
+
'-'
+
str
(
NET_ARCH2
)
+
([
"R"
,
"A"
][
ABSOLUTE_DISPARITY
])
SUFFIX
=
str
(
NET_ARCH1
)
+
'-'
+
str
(
NET_ARCH2
)
+
([
"R"
,
"A"
][
ABSOLUTE_DISPARITY
])
# CLUSTER_RADIUS should match input data
# CLUSTER_RADIUS should match input data
CLUSTER_RADIUS
=
1
# 1 - 3x3, 2 - 5x5 tiles
CLUSTER_RADIUS
=
1
# 1 - 3x3, 2 - 5x5 tiles
...
@@ -250,10 +252,10 @@ files_train_hvar = ["/home/oleg/GIT/python3-imagej-tiff/data_sets/tf_data_rand2/
...
@@ -250,10 +252,10 @@ files_train_hvar = ["/home/oleg/GIT/python3-imagej-tiff/data_sets/tf_data_rand2/
"/home/oleg/GIT/python3-imagej-tiff/data_sets/tf_data_rand2/train007_R1_GT_1.5.tfrecords"
,
"/home/oleg/GIT/python3-imagej-tiff/data_sets/tf_data_rand2/train007_R1_GT_1.5.tfrecords"
,
]
]
files_train_lvar
=
[
"/home/oleg/GIT/python3-imagej-tiff/data_sets/tf_data_rand2/train000_R1_LE_1.5.tfrecords"
,
#
files_train_lvar = ["/home/oleg/GIT/python3-imagej-tiff/data_sets/tf_data_rand2/train000_R1_LE_1.5.tfrecords",
]
#
]
files_train_hvar
=
[
"/home/oleg/GIT/python3-imagej-tiff/data_sets/tf_data_rand2/train000_R1_GT_1.5.tfrecords"
,
#
files_train_hvar = ["/home/oleg/GIT/python3-imagej-tiff/data_sets/tf_data_rand2/train000_R1_GT_1.5.tfrecords",
]
#
]
#files_train_hvar = []
#files_train_hvar = []
#file_test_lvar= "/home/eyesis/x3d_data/data_sets/tf_data_3x3a/train000_R1_LE_1.5.tfrecords" # "/home/eyesis/x3d_data/data_sets/train-000_R1_LE_1.5.tfrecords"
#file_test_lvar= "/home/eyesis/x3d_data/data_sets/tf_data_3x3a/train000_R1_LE_1.5.tfrecords" # "/home/eyesis/x3d_data/data_sets/train-000_R1_LE_1.5.tfrecords"
file_test_lvar
=
"/home/oleg/GIT/python3-imagej-tiff/data_sets/tf_data_rand2/testTEST_R1_LE_1.5.tfrecords"
file_test_lvar
=
"/home/oleg/GIT/python3-imagej-tiff/data_sets/tf_data_rand2/testTEST_R1_LE_1.5.tfrecords"
...
@@ -445,6 +447,7 @@ def network_summary_w_b(scope, in_shape, out_shape, layout, index, network_scope
...
@@ -445,6 +447,7 @@ def network_summary_w_b(scope, in_shape, out_shape, layout, index, network_scope
global
test_op
global
test_op
# the scope is known
with
tf
.
variable_scope
(
scope
,
reuse
=
tf
.
AUTO_REUSE
):
with
tf
.
variable_scope
(
scope
,
reuse
=
tf
.
AUTO_REUSE
):
# histograms
# histograms
w
=
tf
.
get_variable
(
'weights'
,
shape
=
[
in_shape
,
out_shape
])
w
=
tf
.
get_variable
(
'weights'
,
shape
=
[
in_shape
,
out_shape
])
...
@@ -462,8 +465,13 @@ def network_summary_w_b(scope, in_shape, out_shape, layout, index, network_scope
...
@@ -462,8 +465,13 @@ def network_summary_w_b(scope, in_shape, out_shape, layout, index, network_scope
# red - the values will be automapped to 0-255 range
# red - the values will be automapped to 0-255 range
# grid = tf.stack([tf.reduce_max(w),tf.reduce_min(w),tf.reduce_min(w)])
# grid = tf.stack([tf.reduce_max(w),tf.reduce_min(w),tf.reduce_min(w)])
# yellow - the values will be automapped to 0-255 range
# yellow - the values will be automapped to 0-255 range
grid_y
=
tf
.
stack
([
tf
.
reduce_max
(
w
),
tf
.
reduce_max
(
w
),
tf
.
reduce_max
(
w
)
/
2
])
#grid_y = tf.stack([tf.reduce_max(w),tf.reduce_max(w),tf.reduce_max(w)/2])
grid_r
=
tf
.
stack
([
tf
.
reduce_max
(
w
),
tf
.
reduce_min
(
w
),
tf
.
reduce_min
(
w
)])
# black
grid_y
=
tf
.
stack
([
tf
.
reduce_min
(
w
),
tf
.
reduce_min
(
w
),
tf
.
reduce_min
(
w
)])
#grid_r = tf.stack([tf.reduce_max(w),tf.reduce_min(w),tf.reduce_min(w)])
# white
grid_r
=
tf
.
stack
([
tf
.
reduce_max
(
w
),
tf
.
reduce_max
(
w
),
tf
.
reduce_max
(
w
)])
wt
=
tf
.
transpose
(
w
,[
1
,
0
])
wt
=
tf
.
transpose
(
w
,[
1
,
0
])
wt
=
wt
[:,:
-
1
]
wt
=
wt
[:,:
-
1
]
...
@@ -521,8 +529,12 @@ def network_summary_w_b(scope, in_shape, out_shape, layout, index, network_scope
...
@@ -521,8 +529,12 @@ def network_summary_w_b(scope, in_shape, out_shape, layout, index, network_scope
# red - the values will be automapped to 0-255 range
# red - the values will be automapped to 0-255 range
# grid = tf.stack([tf.reduce_max(w),tf.reduce_min(w),tf.reduce_min(w)])
# grid = tf.stack([tf.reduce_max(w),tf.reduce_min(w),tf.reduce_min(w)])
# yellow - the values will be automapped to 0-255 range
# yellow - the values will be automapped to 0-255 range
grid_y
=
tf
.
stack
([
tf
.
reduce_max
(
w
),
tf
.
reduce_max
(
w
),
tf
.
reduce_max
(
w
)
/
2
])
# black
grid_r
=
tf
.
stack
([
tf
.
reduce_max
(
w
),
tf
.
reduce_min
(
w
),
tf
.
reduce_min
(
w
)])
grid_y
=
tf
.
stack
([
tf
.
reduce_min
(
w
),
tf
.
reduce_min
(
w
),
tf
.
reduce_min
(
w
)])
#grid_r = tf.stack([tf.reduce_max(w),tf.reduce_min(w),tf.reduce_min(w)])
# white
grid_r
=
tf
.
stack
([
tf
.
reduce_max
(
w
),
tf
.
reduce_max
(
w
),
tf
.
reduce_max
(
w
)])
wt
=
tf
.
transpose
(
w
,[
1
,
0
])
wt
=
tf
.
transpose
(
w
,[
1
,
0
])
...
@@ -592,22 +604,48 @@ def network_summary_w_b(scope, in_shape, out_shape, layout, index, network_scope
...
@@ -592,22 +604,48 @@ def network_summary_w_b(scope, in_shape, out_shape, layout, index, network_scope
def
network_sub
(
input
,
layout
,
reuse
):
def
network_sub
(
input
,
layout
,
reuse
,
sym8
=
False
):
last_indx
=
None
;
last_indx
=
None
;
fc
=
[]
fc
=
[]
inp_weights
=
[]
for
i
,
num_outs
in
enumerate
(
layout
):
for
i
,
num_outs
in
enumerate
(
layout
):
if
num_outs
:
if
num_outs
:
if
fc
:
if
fc
:
inp
=
fc
[
-
1
]
inp
=
fc
[
-
1
]
fc
.
append
(
slim
.
fully_connected
(
inp
,
num_outs
,
activation_fn
=
lrelu
,
scope
=
'g_fc_sub'
+
str
(
i
),
reuse
=
reuse
))
else
:
else
:
inp
=
input
inp
=
input
if
sym8
:
fc
.
append
(
slim
.
fully_connected
(
inp
,
num_outs
,
activation_fn
=
lrelu
,
scope
=
'g_fc_sub'
+
str
(
i
),
reuse
=
reuse
))
inp8
=
sym_inputs8
(
inp
)
num_non_sum
=
num_outs
%
len
(
inp8
)
# if number of first layer outputs is not multiple of 8
num_sym8
=
num_outs
//
len
(
inp8
)
# number of symmetrical groups
fc_sym
=
[]
for
j
in
range
(
len
(
inp8
)):
# ==8
reuse_this
=
reuse
|
(
j
>
0
)
scp
=
'g_fc_sub'
+
str
(
i
)
fc_sym
.
append
(
slim
.
fully_connected
(
inp8
[
j
],
num_sym8
,
activation_fn
=
lrelu
,
scope
=
scp
,
reuse
=
reuse_this
))
if
not
reuse_this
:
with
tf
.
variable_scope
(
scp
,
reuse
=
True
)
:
# tf.AUTO_REUSE):
inp_weights
.
append
(
tf
.
get_variable
(
'weights'
))
# ,shape=[inp.shape[1],num_outs]))
network_summary_w_b
(
scp
,
inp
.
shape
[
1
],
num_outs
,
layout
,
i
,
'sub'
)
if
num_non_sum
>
0
:
reuse_this
=
reuse
scp
=
'g_fc_sub'
+
str
(
i
)
+
"r"
fc_sym
.
append
(
slim
.
fully_connected
(
inp
,
num_non_sum
,
activation_fn
=
lrelu
,
scope
=
scp
,
reuse
=
reuse_this
))
if
not
reuse_this
:
with
tf
.
variable_scope
(
scp
,
reuse
=
True
)
:
# tf.AUTO_REUSE):
inp_weights
.
append
(
tf
.
get_variable
(
'weights'
))
# ,shape=[inp.shape[1],num_outs]))
network_summary_w_b
(
scp
,
inp
.
shape
[
1
],
num_outs
,
layout
,
i
,
'sub'
)
fc
.
append
(
tf
.
concat
(
fc_sym
,
1
,
name
=
'sym_input_layer'
))
else
:
scp
=
'g_fc_sub'
+
str
(
i
)
fc
.
append
(
slim
.
fully_connected
(
inp
,
num_outs
,
activation_fn
=
lrelu
,
scope
=
scp
,
reuse
=
reuse
))
if
not
reuse
:
if
not
reuse
:
network_summary_w_b
(
'g_fc_sub'
+
str
(
i
),
inp
.
shape
[
1
],
num_outs
,
layout
,
i
,
'sub'
)
with
tf
.
variable_scope
(
scp
,
reuse
=
True
)
:
# tf.AUTO_REUSE):
inp_weights
.
append
(
tf
.
get_variable
(
'weights'
))
# ,shape=[inp.shape[1],num_outs]))
network_summary_w_b
(
scp
,
inp
.
shape
[
1
],
num_outs
,
layout
,
i
,
'sub'
)
return
fc
[
-
1
]
return
fc
[
-
1
]
,
inp_weights
def
network_inter
(
input
,
layout
):
def
network_inter
(
input
,
layout
):
last_indx
=
None
;
last_indx
=
None
;
...
@@ -630,22 +668,31 @@ def network_inter(input, layout):
...
@@ -630,22 +668,31 @@ def network_inter(input, layout):
#If using residual disparity, split last layer into 2 or remove activation and add rectifier to confidence only
#If using residual disparity, split last layer into 2 or remove activation and add rectifier to confidence only
return
fc_out
return
fc_out
def
network_siam
(
input
,
# now [?
:9
,325]
def
network_siam
(
input
,
# now [?
,9,325]-> [?,25
,325]
layout1
,
layout1
,
layout2
,
layout2
,
only_tile
=
None
):
# just for debugging - feed only data from the center sub-network
sym8
=
False
,
only_tile
=
None
):
# just for debugging - feed only data from the center sub-network
with
tf
.
name_scope
(
"Siam_net"
):
with
tf
.
name_scope
(
"Siam_net"
):
inp_weights
=
[]
num_legs
=
input
.
shape
[
1
]
# == 9
num_legs
=
input
.
shape
[
1
]
# == 9
inter_list
=
[]
inter_list
=
[]
reuse
=
False
reuse
=
False
for
i
in
range
(
num_legs
):
for
i
in
range
(
num_legs
):
if
(
only_tile
is
None
)
or
(
i
==
only_tile
):
if
(
only_tile
is
None
)
or
(
i
==
only_tile
):
inter_list
.
append
(
network_sub
(
input
[:,
i
,:],
# inter_list.append(network_sub(input[:,i,:],
# layout= layout1,
# reuse= reuse,
# sym8 = sym8))
ns
,
ns_weights
=
network_sub
(
input
[:,
i
,:],
layout
=
layout1
,
layout
=
layout1
,
reuse
=
reuse
))
reuse
=
reuse
,
sym8
=
sym8
)
inter_list
.
append
(
ns
)
inp_weights
+=
ns_weights
reuse
=
True
reuse
=
True
inter_tensor
=
tf
.
concat
(
inter_list
,
1
,
name
=
'inter_tensor'
)
inter_tensor
=
tf
.
concat
(
inter_list
,
1
,
name
=
'inter_tensor'
)
return
network_inter
(
inter_tensor
,
layout2
)
return
network_inter
(
inter_tensor
,
layout2
)
,
inp_weights
#corr2d9x325 = tf.concat([tf.reshape(next_element_tt['corr2d'],[None,cluster_size,FEATURES_PER_TILE]) , tf.reshape(next_element_tt['target_disparity'], [None,cluster_size, 1])],2)
#corr2d9x325 = tf.concat([tf.reshape(next_element_tt['corr2d'],[None,cluster_size,FEATURES_PER_TILE]) , tf.reshape(next_element_tt['target_disparity'], [None,cluster_size, 1])],2)
def
debug_gt_variance
(
def
debug_gt_variance
(
...
@@ -774,6 +821,36 @@ def batchLoss(out_batch, # [batch_size,(1..2)] tf_result
...
@@ -774,6 +821,36 @@ def batchLoss(out_batch, # [batch_size,(1..2)] tf_result
else
:
else
:
return
cost1b
,
disp_slice
,
d_gt_slice
,
out_diff
,
out_diff2
,
w_norm
,
out_wdiff2
,
cost1
return
cost1b
,
disp_slice
,
d_gt_slice
,
out_diff
,
out_diff2
,
w_norm
,
out_wdiff2
,
cost1
def
weightsLoss
(
inp_weights
):
# [batch_size,(1..2)] tf_result
# weights_lambdas): # single lambda or same length as inp_weights.shape[1]
"""
Enforcing 'smooth' weights for the input 2d correlation tiles
@return mean squared difference for each weight and average of 8 neighbors divided by mean squared weights
"""
weight_ortho
=
1.0
weight_diag
=
0.7
sw
=
4.0
*
(
weight_ortho
+
weight_diag
)
weight_ortho
/=
sw
weight_diag
/=
sw
# w_neib = tf.const([[weight_diag, weight_ortho, weight_diag],
# [weight_ortho, -1.0, weight_ortho],
# [weight_diag, weight_ortho, weight_diag]])
with
tf
.
name_scope
(
"WeightsLoss"
):
# Adding 1 tile border
tf_inp
=
tf
.
reshape
(
inp_weights
[:
TILE_LAYERS
*
TILE_SIZE
,:],
[
TILE_LAYERS
,
FILE_TILE_SIDE
,
FILE_TILE_SIDE
,
inp_weights
.
shape
[
1
]],
name
=
"tf_inp"
)
tf_inp_ext_h
=
tf
.
concat
([
tf_inp
[:,
:,
:
1
,
:],
tf_inp
,
tf_inp
[:,
:,
-
1
:,
:]],
axis
=
2
,
name
=
"tf_inp_ext_h"
)
tf_inp_ext
=
tf
.
concat
([
tf_inp_ext_h
[:,
:
1
,
:,
:],
tf_inp_ext_h
,
tf_inp_ext_h
[:,
-
1
:,
:,
:]],
axis
=
1
,
name
=
"tf_inp_ext"
)
s_ortho
=
tf_inp_ext
[:,
1
:
-
1
,:
-
2
,:]
+
tf_inp_ext
[:,
1
:
-
1
,
2
:,:]
+
tf_inp_ext
[:,
1
:
-
1
,:
-
2
,:]
+
tf_inp_ext
[:,
1
:
-
1
,
2
:,
:]
s_corn
=
tf_inp_ext
[:,
:
-
2
,:
-
2
,:]
+
tf_inp_ext
[:,
:
-
2
,
2
:,:]
+
tf_inp_ext
[:,
2
:,
:
-
2
,:]
+
tf_inp_ext
[:,
2
:
,
2
:,
:]
w_diff
=
tf
.
subtract
(
tf_inp
,
s_ortho
*
weight_ortho
+
s_corn
*
weight_diag
,
name
=
"w_diff"
)
w_diff2
=
tf
.
multiply
(
w_diff
,
w_diff
,
name
=
"w_diff2"
)
w_var
=
tf
.
reduce_mean
(
w_diff2
,
name
=
"w_var"
)
w2_mean
=
tf
.
reduce_mean
(
inp_weights
*
inp_weights
,
name
=
"w2_mean"
)
w_rel
=
tf
.
divide
(
w_var
,
w2_mean
,
name
=
"w_rel"
)
return
w_rel
# scalar, cost for weights non-smoothness in 2d
#In GPU - reformat inputs
#In GPU - reformat inputs
##corr2d325 = tf.concat([next_element_tt['corr2d'], next_element_tt['target_disparity']],1)
##corr2d325 = tf.concat([next_element_tt['corr2d'], next_element_tt['target_disparity']],1)
...
@@ -781,6 +858,9 @@ def batchLoss(out_batch, # [batch_size,(1..2)] tf_result
...
@@ -781,6 +858,9 @@ def batchLoss(out_batch, # [batch_size,(1..2)] tf_result
#Should have shape (?,9,325)
#Should have shape (?,9,325)
corr2d9x325
=
tf
.
concat
([
tf
.
reshape
(
next_element_tt
[
'corr2d'
],[
-
1
,
cluster_size
,
FEATURES_PER_TILE
])
,
tf
.
reshape
(
next_element_tt
[
'target_disparity'
],
[
-
1
,
cluster_size
,
1
])],
2
)
corr2d9x325
=
tf
.
concat
([
tf
.
reshape
(
next_element_tt
[
'corr2d'
],[
-
1
,
cluster_size
,
FEATURES_PER_TILE
])
,
tf
.
reshape
(
next_element_tt
[
'target_disparity'
],
[
-
1
,
cluster_size
,
1
])],
2
)
corr2d_Nx325
=
tf
.
concat
([
tf
.
reshape
(
next_element_tt
[
'corr2d'
],[
-
1
,
cluster_size
,
FEATURES_PER_TILE
],
name
=
"coor2d_cluster"
),
tf
.
reshape
(
next_element_tt
[
'target_disparity'
],
[
-
1
,
cluster_size
,
1
],
name
=
"targdisp_cluster"
)],
axis
=
2
,
name
=
"corr2d_Nx325"
)
#corr2d9x324 = tf.reshape( next_element_tt['corr2d'], [-1, cluster_size, FEATURES_PER_TILE], name = 'corr2d9x324')
#corr2d9x324 = tf.reshape( next_element_tt['corr2d'], [-1, cluster_size, FEATURES_PER_TILE], name = 'corr2d9x324')
#td9x1 = tf.reshape(next_element_tt['target_disparity'], [-1, cluster_size, 1], name = 'td9x1')
#td9x1 = tf.reshape(next_element_tt['target_disparity'], [-1, cluster_size, 1], name = 'td9x1')
#corr2d9x325 = tf.concat([corr2d9x324 , td9x1],2, name = 'corr2d9x325')
#corr2d9x325 = tf.concat([corr2d9x324 , td9x1],2, name = 'corr2d9x325')
...
@@ -789,9 +869,10 @@ corr2d9x325 = tf.concat([tf.reshape(next_element_tt['corr2d'],[-1,cluster_size,F
...
@@ -789,9 +869,10 @@ corr2d9x325 = tf.concat([tf.reshape(next_element_tt['corr2d'],[-1,cluster_size,F
# in_features = tf.concat([corr2d,target_disparity],0)
# in_features = tf.concat([corr2d,target_disparity],0)
#out = network_fc_simple(input=corr2d325, arch = NET_ARCH1)
#out = network_fc_simple(input=corr2d325, arch = NET_ARCH1)
out
=
network_siam
(
input
=
corr2d9
x325
,
out
,
inp_weights
=
network_siam
(
input
=
corr2d_N
x325
,
layout1
=
NN_LAYOUT1
,
layout1
=
NN_LAYOUT1
,
layout2
=
NN_LAYOUT2
,
layout2
=
NN_LAYOUT2
,
sym8
=
SYM8_SUB
,
only_tile
=
ONLY_TILE
)
#Remove/put None for normal operation
only_tile
=
ONLY_TILE
)
#Remove/put None for normal operation
# w_slice = tf.reshape(gt_ds_batch[:,1],[-1], name = "w_gt_slice")
# w_slice = tf.reshape(gt_ds_batch[:,1],[-1], name = "w_gt_slice")
...
@@ -809,11 +890,18 @@ G_loss, _disp_slice, _d_gt_slice, _out_diff, _out_diff2, _w_norm, _out_wdiff2, _
...
@@ -809,11 +890,18 @@ G_loss, _disp_slice, _d_gt_slice, _out_diff, _out_diff2, _w_norm, _out_wdiff2, _
conf_pwr
=
2.0
,
conf_pwr
=
2.0
,
gt_conf_offset
=
0.08
,
gt_conf_offset
=
0.08
,
gt_conf_pwr
=
2.0
,
gt_conf_pwr
=
2.0
,
error2_offset
=
0.0025
,
# (0.05^2)
error2_offset
=
0
,
# 0
.0025, # (0.05^2)
disp_wmin
=
1.0
,
# minimal disparity to apply weight boosting for small disparities
disp_wmin
=
1.0
,
# minimal disparity to apply weight boosting for small disparities
disp_wmax
=
8.0
,
# maximal disparity to apply weight boosting for small disparities
disp_wmax
=
8.0
,
# maximal disparity to apply weight boosting for small disparities
use_out
=
False
)
# use calculated disparity for disparity weight boosting (False - use target disparity)
use_out
=
False
)
# use calculated disparity for disparity weight boosting (False - use target disparity)
if
WLOSS_LAMBDA
>
0.0
:
W_loss
=
weightsLoss
(
inp_weights
[
0
])
# inp_weights - list of tensors, currently - just [0]
GW_loss
=
tf
.
add
(
G_loss
,
WLOSS_LAMBDA
*
W_loss
,
name
=
"GW_loss"
)
else
:
GW_loss
=
G_loss
W_loss
=
tf
.
constant
(
0.0
)
#debug
#debug
GT_variance
=
debug_gt_variance
(
indx
=
0
,
# This tile index (0..8)
GT_variance
=
debug_gt_variance
(
indx
=
0
,
# This tile index (0..8)
center_indx
=
4
,
# center tile index
center_indx
=
4
,
# center tile index
...
@@ -834,7 +922,9 @@ with tf.name_scope('epoch_average'):
...
@@ -834,7 +922,9 @@ with tf.name_scope('epoch_average'):
t_vars
=
tf
.
trainable_variables
()
t_vars
=
tf
.
trainable_variables
()
lr
=
tf
.
placeholder
(
tf
.
float32
)
lr
=
tf
.
placeholder
(
tf
.
float32
)
G_opt
=
tf
.
train
.
AdamOptimizer
(
learning_rate
=
lr
)
.
minimize
(
G_loss
)
#G_opt=tf.train.AdamOptimizer(learning_rate=lr).minimize(G_loss)
G_opt
=
tf
.
train
.
AdamOptimizer
(
learning_rate
=
lr
)
.
minimize
(
GW_loss
)
saver
=
tf
.
train
.
Saver
()
saver
=
tf
.
train
.
Saver
()
...
@@ -855,18 +945,18 @@ with tf.Session() as sess:
...
@@ -855,18 +945,18 @@ with tf.Session() as sess:
merged
=
tf
.
summary
.
merge_all
()
merged
=
tf
.
summary
.
merge_all
()
vis_placeholder
=
tf
.
placeholder
(
tf
.
float32
,
[
1
,
32
,
325
,
3
])
# display weights, part 1 begin
some_image2
=
tf
.
summary
.
image
(
'custom_test'
,
vis_placeholder
)
import
numpy_visualize_weights
as
npw
l1
=
NN_LAYOUT1
.
index
(
next
(
filter
(
lambda
x
:
x
!=
0
,
NN_LAYOUT1
)))
l1
=
NN_LAYOUT1
.
index
(
next
(
filter
(
lambda
x
:
x
!=
0
,
NN_LAYOUT1
)))
l2
=
NN_LAYOUT2
.
index
(
next
(
filter
(
lambda
x
:
x
!=
0
,
NN_LAYOUT2
)))
l2
=
NN_LAYOUT2
.
index
(
next
(
filter
(
lambda
x
:
x
!=
0
,
NN_LAYOUT2
)))
with
tf
.
variable_scope
(
'g_fc_sub'
+
str
(
l1
),
reuse
=
tf
.
AUTO_REUSE
):
w
=
tf
.
get_variable
(
'weights'
,
shape
=
[
325
,
32
])
wimg1_placeholder
=
tf
.
placeholder
(
tf
.
float32
,
[
1
,
160
,
80
,
3
])
wd
=
w
[
...
,
tf
.
newaxis
]
wimg1
=
tf
.
summary
.
image
(
'weights/sub_'
+
str
(
l1
),
wimg1_placeholder
)
wds
=
tf
.
stack
([
wd
]
*
3
,
axis
=
0
)
#print(wd.shape
)
wimg2_placeholder
=
tf
.
placeholder
(
tf
.
float32
,
[
1
,
120
,
60
,
3
]
)
#some_image = tf.summary.image("tfsi_test",wds.eval(),max_outputs=1
)
wimg2
=
tf
.
summary
.
image
(
'weights/inter_'
+
str
(
l2
),
wimg2_placeholder
)
some_image
=
tf
.
summary
.
image
(
"tfsi_test"
,
wds
,
max_outputs
=
1
)
# display weights, part 1 end
train_writer
=
tf
.
summary
.
FileWriter
(
TRAIN_PATH
,
sess
.
graph
)
train_writer
=
tf
.
summary
.
FileWriter
(
TRAIN_PATH
,
sess
.
graph
)
test_writer
=
tf
.
summary
.
FileWriter
(
TEST_PATH
,
sess
.
graph
)
test_writer
=
tf
.
summary
.
FileWriter
(
TEST_PATH
,
sess
.
graph
)
...
@@ -899,8 +989,8 @@ with tf.Session() as sess:
...
@@ -899,8 +989,8 @@ with tf.Session() as sess:
for
i
in
range
(
dataset_train_size
):
for
i
in
range
(
dataset_train_size
):
try
:
try
:
# train_summary,_, G_loss_trained, output, disp_slice, d_gt_slice, out_diff, out_diff2, w_norm, out_wdiff2, out_cost1, corr2d325_out = sess.run(
# train_summary,_, G_loss_trained, output, disp_slice, d_gt_slice, out_diff, out_diff2, w_norm, out_wdiff2, out_cost1, corr2d325_out = sess.run(
_
,
train_summary
,
_
,
G_loss_trained
,
output
,
disp_slice
,
d_gt_slice
,
out_diff
,
out_diff2
,
w_norm
,
out_wdiff2
,
out_cost1
,
gt_variance
=
sess
.
run
(
train_summary
,
_
,
G_loss_trained
,
output
,
disp_slice
,
d_gt_slice
,
out_diff
,
out_diff2
,
w_norm
,
out_wdiff2
,
out_cost1
,
gt_variance
=
sess
.
run
(
[
test_op
,
merged
,
[
merged
,
G_opt
,
G_opt
,
G_loss
,
G_loss
,
out
,
out
,
...
@@ -970,23 +1060,27 @@ with tf.Session() as sess:
...
@@ -970,23 +1060,27 @@ with tf.Session() as sess:
# _,_=sess.run([tf_ph_G_loss,tf_ph_sq_diff],feed_dict={tf_ph_G_loss:test_avg, tf_ph_sq_diff:test2_avg})
# _,_=sess.run([tf_ph_G_loss,tf_ph_sq_diff],feed_dict={tf_ph_G_loss:test_avg, tf_ph_sq_diff:test2_avg})
#train_writer.add_summary(some_image.eval(), epoch)
#train_writer.add_summary(some_image.eval(), epoch)
# display weights, part 2 begin
l1
=
NN_LAYOUT1
.
index
(
next
(
filter
(
lambda
x
:
x
!=
0
,
NN_LAYOUT1
)))
l1
=
NN_LAYOUT1
.
index
(
next
(
filter
(
lambda
x
:
x
!=
0
,
NN_LAYOUT1
)))
l2
=
NN_LAYOUT2
.
index
(
next
(
filter
(
lambda
x
:
x
!=
0
,
NN_LAYOUT2
)))
l2
=
NN_LAYOUT2
.
index
(
next
(
filter
(
lambda
x
:
x
!=
0
,
NN_LAYOUT2
)))
with
tf
.
variable_scope
(
'g_fc_sub'
+
str
(
l1
),
reuse
=
tf
.
AUTO_REUSE
):
w
=
tf
.
get_variable
(
'weights'
,
shape
=
[
325
,
32
])
wd
=
w
[
tf
.
newaxis
,
...
]
wds
=
tf
.
stack
([
wd
]
*
3
,
axis
=-
1
)
timg_min
=
tf
.
reduce_min
(
w
)
.
eval
()
with
tf
.
variable_scope
(
'g_fc_sub'
+
str
(
l1
),
reuse
=
tf
.
AUTO_REUSE
):
timg_max
=
tf
.
reduce_max
(
w
)
.
eval
()
w
=
tf
.
get_variable
(
'weights'
,
shape
=
[
325
,
NN_LAYOUT1
[
l1
]])
w
=
tf
.
transpose
(
w
,(
1
,
0
))
img1
=
npw
.
tiles
(
npw
.
coldmap
(
w
.
eval
(),
zero_span
=
0.0002
),(
1
,
4
,
9
,
9
),
tiles_per_line
=
2
,
borders
=
True
)
img1
=
img1
[
np
.
newaxis
,
...
]
timg
=
wds
.
eval
(
)
train_writer
.
add_summary
(
wimg1
.
eval
(
feed_dict
=
{
wimg1_placeholder
:
img1
}),
epoch
)
timg
[:,:,:,
0
]
=
timg_min
with
tf
.
variable_scope
(
'g_fc_inter'
+
str
(
l2
),
reuse
=
tf
.
AUTO_REUSE
):
timg
[:,:,:,
1
]
=
timg_min
w
=
tf
.
get_variable
(
'weights'
,
shape
=
[
144
,
NN_LAYOUT1
[
l2
]])
timg
=
np
.
transpose
(
timg
,(
0
,
2
,
1
,
3
))
w
=
tf
.
transpose
(
w
,(
1
,
0
))
img2
=
npw
.
tiles
(
npw
.
coldmap
(
w
.
eval
(),
zero_span
=
0.0002
),(
3
,
3
,
4
,
4
),
tiles_per_line
=
4
,
borders
=
True
)
img2
=
img2
[
np
.
newaxis
,
...
]
train_writer
.
add_summary
(
some_image2
.
eval
(
feed_dict
=
{
vis_placeholder
:
timg
}),
epoch
)
train_writer
.
add_summary
(
wimg2
.
eval
(
feed_dict
=
{
wimg2_placeholder
:
img2
}),
epoch
)
# display weights, part 2 end
train_writer
.
add_summary
(
train_summary
,
epoch
)
train_writer
.
add_summary
(
train_summary
,
epoch
)
test_writer
.
add_summary
(
test_summaries
[
0
],
epoch
)
test_writer
.
add_summary
(
test_summaries
[
0
],
epoch
)
...
...
numpy_visualize_weights.py
0 → 100644
View file @
17e64c60
#!/usr/bin/env python3
import
numpy
as
np
import
matplotlib.pyplot
as
plt
import
math
# input: np.array(a,b) - 1 channel
# output: np.array(a,b,3) - 3 color channels
def
coldmap
(
img
,
zero_span
=
0.2
):
out
=
np
.
dstack
(
3
*
[
img
])
img_min
=
np
.
nanmin
(
img
)
img_max
=
np
.
nanmax
(
img
)
#print("min: "+str(img_min)+", max: "+str(img_max))
ch_r
=
out
[
...
,
0
]
ch_g
=
out
[
...
,
1
]
ch_b
=
out
[
...
,
2
]
# blue for <0
ch_r
[
img
<
0
]
=
0
ch_g
[
img
<
0
]
=
0
ch_b
[
img
<
0
]
=
-
ch_b
[
img
<
0
]
# red for >0
ch_r
[
img
>
0
]
=
ch_b
[
img
>
0
]
ch_g
[
img
>
0
]
=
0
ch_b
[
img
>
0
]
=
0
# green for 0
ch_r
[
img
==
0
]
=
0
ch_g
[
img
==
0
]
=
img_max
ch_b
[
img
==
0
]
=
0
# green for zero vicinity
ch_r
[
abs
(
img
)
<
zero_span
/
2
]
=
0
ch_g
[
abs
(
img
)
<
zero_span
/
2
]
=
img_max
/
2
ch_b
[
abs
(
img
)
<
zero_span
/
2
]
=
0
return
out
# has to be pre transposed
# it just suppose to match
def
tiles
(
img
,
shape
,
tiles_per_line
=
1
,
borders
=
True
):
# shape is (n0,n1,n2,n3)
# n0*n1*n2*n3 = img.shape[1]
img_min
=
np
.
nanmin
(
img
)
img_max
=
np
.
nanmax
(
img
)
outer_color
=
[
img_max
,
img_max
,
img_min
]
outer_color
=
[
img_max
,
img_max
,
img_max
]
inner_color
=
[
img_max
/
4
,
img_max
/
4
,
img_min
]
inner_color
=
[
img_min
,
img_min
,
img_min
]
#inner_color = [img_max,img_max,img_min]
group_h
=
shape
[
0
]
group_w
=
shape
[
1
]
group_size
=
group_h
*
group_w
tile_h
=
shape
[
2
]
tile_w
=
shape
[
3
]
tile_size
=
tile_h
*
tile_w
tpl
=
tiles_per_line
# main
tmp1
=
[]
for
i
in
range
(
img
.
shape
[
0
]):
if
i
%
tpl
==
0
:
tmp2
=
[]
tmp3
=
[]
for
igh
in
range
(
group_h
):
tmp4
=
[]
for
igw
in
range
(
group_w
):
si
=
(
group_w
*
igh
+
igw
+
0
)
*
tile_size
ei
=
(
group_w
*
igh
+
igw
+
1
)
*
tile_size
tile
=
img
[
i
,
si
:
ei
]
tile
=
np
.
reshape
(
tile
,(
tile_h
,
tile_w
,
tile
.
shape
[
1
]))
if
borders
:
if
igw
==
group_w
-
1
:
b_h_inner
=
[[
inner_color
]
*
(
tile_w
+
0
)]
*
(
1
)
b_h_outer
=
[[
outer_color
]
*
(
tile_w
+
0
)]
*
(
1
)
b_v_outer
=
[[
outer_color
]
*
(
1
)]
*
(
tile_h
+
1
)
# outer hor
if
igh
==
group_h
-
1
:
tile
=
np
.
concatenate
([
tile
,
b_h_outer
],
axis
=
0
)
# inner hor
else
:
tile
=
np
.
concatenate
([
tile
,
b_h_inner
],
axis
=
0
)
# outer vert
tile
=
np
.
concatenate
([
tile
,
b_v_outer
],
axis
=
1
)
else
:
b_v_inner
=
[[
inner_color
]
*
(
1
)]
*
(
tile_h
+
0
)
b_h_inner
=
[[
inner_color
]
*
(
tile_w
+
1
)]
*
(
1
)
b_h_outer
=
[[
outer_color
]
*
(
tile_w
+
1
)]
*
(
1
)
# inner vert
tile
=
np
.
concatenate
([
tile
,
b_v_inner
],
axis
=
1
)
# outer hor
if
igh
==
group_h
-
1
:
tile
=
np
.
concatenate
([
tile
,
b_h_outer
],
axis
=
0
)
# inner hor
else
:
tile
=
np
.
concatenate
([
tile
,
b_h_inner
],
axis
=
0
)
tmp4
.
append
(
tile
)
tmp3
.
append
(
np
.
concatenate
(
tmp4
,
axis
=
1
))
tmp2
.
append
(
np
.
concatenate
(
tmp3
,
axis
=
0
))
if
i
%
tpl
==
(
tpl
-
1
):
tmp1
.
append
(
np
.
concatenate
(
tmp2
,
axis
=
1
))
out
=
np
.
concatenate
(
tmp1
,
axis
=
0
)
#out = img
return
out
if
__name__
==
"__main__"
:
#image = np.zeros((32,144))
image
=
np
.
random
.
rand
(
32
,
144
)
rgb_img_0
=
tiles
(
coldmap
(
image
),(
3
,
3
,
4
,
4
),
tiles_per_line
=
8
,
borders
=
True
)
fig
=
plt
.
figure
()
fig
.
suptitle
(
"Test"
)
plt
.
imshow
(
rgb_img_0
)
plt
.
show
()
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment