Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
P
python3-imagej-tiff
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Elphel
python3-imagej-tiff
Commits
09000d5a
Commit
09000d5a
authored
Aug 04, 2018
by
Oleg Dzhimiev
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
testing train&test
parent
be6b2244
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
11 additions
and
179 deletions
+11
-179
nn_ds_inmem_tmp.py
nn_ds_inmem_tmp.py
+11
-179
No files found.
nn_ds_inmem_tmp.py
View file @
09000d5a
...
...
@@ -297,7 +297,6 @@ t_vars=tf.trainable_variables()
lr
=
tf
.
placeholder
(
tf
.
float32
)
G_opt
=
tf
.
train
.
AdamOptimizer
(
learning_rate
=
lr
)
.
minimize
(
G_loss
)
saver
=
tf
.
train
.
Saver
()
ROOT_PATH
=
'./attic/nn_ds_inmem_graph1/'
...
...
@@ -327,15 +326,15 @@ with tf.Session() as sess:
while
True
:
# overall are 307, start 'testing' testing from START_TEST
START_TEST
=
3
00
START_TEST
=
2
00
# Train run
if
i
<
START_TEST
:
try
:
# _, G_current, output, disp_slice, d_gt_slice, out_diff, out_diff2, w_norm, out_wdiff2, out_cost1, corr2d325_out, target_disparity_out, gt_ds_out = sess.run(
_
,
G_current
,
output
,
disp_slice
,
d_gt_slice
,
out_diff
,
out_diff2
,
w_norm
,
out_wdiff2
,
out_cost1
,
corr2d325_out
=
sess
.
run
(
[
train_summary
,
_
,
G_loss_trained
,
output
,
disp_slice
,
d_gt_slice
,
out_diff
,
out_diff2
,
w_norm
,
out_wdiff2
,
out_cost1
,
corr2d325_out
=
sess
.
run
(
[
merged
,
G_opt
,
G_loss
,
out
,
...
...
@@ -354,6 +353,7 @@ with tf.Session() as sess:
# save all for now as a test
#train_writer.add_summary(summary, i)
#train_writer.add_summary(train_summary, i)
except
tf
.
errors
.
OutOfRangeError
:
break
...
...
@@ -362,7 +362,7 @@ with tf.Session() as sess:
else
:
try
:
summary
,
G_current
,
output
,
disp_slice
,
d_gt_slice
,
out_diff
,
out_diff2
,
w_norm
,
out_wdiff2
,
out_cost1
,
corr2d325_out
=
sess
.
run
(
test_summary
,
G_loss_tested
,
output
,
disp_slice
,
d_gt_slice
,
out_diff
,
out_diff2
,
w_norm
,
out_wdiff2
,
out_cost1
,
corr2d325_out
=
sess
.
run
(
[
merged
,
G_loss
,
out
,
...
...
@@ -377,13 +377,18 @@ with tf.Session() as sess:
],
feed_dict
=
{
lr
:
LR
})
#test_writer.add_summary(test_summary, i)
except
tf
.
errors
.
OutOfRangeError
:
break
i
+=
1
# print_time("%d:%d -> %f"%(epoch,i,G_current))
print_time
(
"
%
d:
%
d ->
%
f"
%
(
epoch
,
i
,
G_current
))
train_writer
.
add_summary
(
train_summary
,
epoch
)
test_writer
.
add_summary
(
test_summary
,
epoch
)
print_time
(
"
%
d:
%
d ->
%
f"
%
(
epoch
,
i
,
G_loss_trained
))
# Close writers
train_writer
.
close
()
...
...
@@ -392,176 +397,3 @@ with tf.Session() as sess:
print
(
"All done"
)
exit
(
0
)
filename_queue
=
tf
.
train
.
string_input_producer
(
[
train_filenameTFR
],
num_epochs
=
EPOCHS_TO_RUN
)
#0)
# Even when reading in multiple threads, share the filename
# queue.
corr2d325
,
target_disparity
,
gt_ds
=
read_and_decode
(
filename_queue
)
# The op for initializing the variables.
init_op
=
tf
.
group
(
tf
.
global_variables_initializer
(),
tf
.
local_variables_initializer
())
#sess = tf.Session()
out
=
network
(
corr2d325
)
#Try standard loss functions first
G_loss
,
_disp_slice
,
_d_gt_slice
,
_out_diff
,
_out_diff2
,
_w_norm
,
_out_wdiff2
,
_cost1
=
batchLoss
(
out_batch
=
out
,
# [batch_size,(1..2)] tf_result
target_disparity_batch
=
target_disparity
,
### target_d, # [batch_size] tf placeholder
gt_ds_batch
=
gt_ds
,
### gt, # [batch_size,2] tf placeholder
absolute_disparity
=
ABSOLUTE_DISPARITY
,
use_confidence
=
USE_CONFIDENCE
,
# True,
lambda_conf_avg
=
0.01
,
lambda_conf_pwr
=
0.1
,
conf_pwr
=
2.0
,
gt_conf_offset
=
0.08
,
gt_conf_pwr
=
1.0
)
t_vars
=
tf
.
trainable_variables
()
lr
=
tf
.
placeholder
(
tf
.
float32
)
G_opt
=
tf
.
train
.
AdamOptimizer
(
learning_rate
=
lr
)
.
minimize
(
G_loss
)
saver
=
tf
.
train
.
Saver
()
# ?!!!!!
#merged = tf.summary.merge_all()
#train_writer = tf.summary.FileWriter(result_dir + '/train', sess.graph)
#test_writer = tf.summary.FileWriter(result_dir + '/test')
#http://rtfcode.com/xref/tensorflow-1.4.1/tensorflow/docs_src/api_guides/python/reading_data.md
with
tf
.
Session
()
as
sess
:
sess
.
run
(
tf
.
global_variables_initializer
())
sess
.
run
(
tf
.
local_variables_initializer
())
# sess.run(init_op) # Was reporting beta1 not initialized in Adam
coord
=
tf
.
train
.
Coordinator
()
threads
=
tf
.
train
.
start_queue_runners
(
coord
=
coord
)
writer
=
tf
.
summary
.
FileWriter
(
'./attic/nn_ds_inmem_graph1'
,
sess
.
graph
)
writer
.
close
()
# for i in range(1000):
loss_hist
=
np
.
zeros
(
RUN_TOT_AVG
,
dtype
=
np
.
float32
)
i
=
0
try
:
while
not
coord
.
should_stop
():
print_time
(
"
%
d: Run "
%
(
i
),
end
=
""
)
_
,
G_current
,
output
,
disp_slice
,
d_gt_slice
,
out_diff
,
out_diff2
,
w_norm
,
out_wdiff2
,
out_cost1
,
corr2d325_out
,
target_disparity_out
,
gt_ds_out
=
sess
.
run
(
[
G_opt
,
G_loss
,
out
,
_disp_slice
,
_d_gt_slice
,
_out_diff
,
_out_diff2
,
_w_norm
,
_out_wdiff2
,
_cost1
,
corr2d325
,
target_disparity
,
gt_ds
],
feed_dict
=
{
lr
:
LR
})
# print_time("loss=%f, running average=%f"%(G_current,mean_loss))
loss_hist
[
i
%
RUN_TOT_AVG
]
=
G_current
if
(
i
<
RUN_TOT_AVG
):
loss_avg
=
np
.
average
(
loss_hist
[:
i
])
else
:
loss_avg
=
np
.
average
(
loss_hist
)
print_time
(
"loss=
%
f, running average=
%
f"
%
(
G_current
,
loss_avg
))
# print ("%d: corr2d_out.shape="%(i),corr2d325_out.shape)
## print ("target_disparity_out.shape=",target_disparity_out.shape)
## print ("gt_ds_out.shape=",gt_ds_out.shape)
i
+=
1
except
tf
.
errors
.
OutOfRangeError
:
print
(
'Done training -- epoch limit reached'
)
finally
:
# When done, ask the threads to stop.
coord
.
request_stop
()
coord
.
join
(
threads
)
#sess.close() ('whith' does that)
'''
ckpt=tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt:
print('loaded '+ckpt.model_checkpoint_path)
saver.restore(sess,ckpt.model_checkpoint_path)
allfolders = glob.glob('./result/*0')
lastepoch = 0
for folder in allfolders:
lastepoch = np.maximum(lastepoch, int(folder[-4:]))
recorded_loss = []
recorded_mean_loss = []
recorded_gt_d = []
recorded_gt_c = []
recorded_pr_d = []
recorded_pr_c = []
LR = 1e-3
print(bcolors.HEADER+"Last Epoch = "+str(lastepoch)+bcolors.ENDC)
if DEBUG_PLT_LOSS:
plt.ion() # something about plotting
plt.figure(1, figsize=(4,12))
pass
training_tiles = np.array([])
training_values = np.array([])
graph_saved = False
for epoch in range(20): #MAX_EPOCH):
print_time("epoch="+str(epoch))
train_seed_list = np.arange(len(ex_data.files_train))
np.random.shuffle(train_seed_list)
g_loss = np.zeros(len(train_seed_list))
for nscene, seed_index in enumerate(train_seed_list):
corr2d_batch, target_disparity_batch, gt_ds_batch = ex_data.prepareBatchData(seed_index)
num_tiles = corr2d_batch.shape[0] # 1000
num_tile_slices = corr2d_batch.shape[1] # 4
num_cell_in_slice = corr2d_batch.shape[2] # 81
in_data = np.empty((num_tiles, num_tile_slices*num_cell_in_slice + 1), dtype = np.float32)
in_data[...,0:num_tile_slices*num_cell_in_slice] = corr2d_batch.reshape((corr2d_batch.shape[0],corr2d_batch.shape[1]*corr2d_batch.shape[2]))
in_data[...,num_tile_slices*num_cell_in_slice] = target_disparity_batch
st=time.time()
#run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
#run_metadata = tf.RunMetadata()
#_,G_current,output = sess.run([G_opt,G_loss,out],feed_dict={in_tile:input_patch,gt:gt_patch,lr:LR},options=run_options,run_metadata=run_metadata)
print_time("
%
d:
%
d Run "
%
(epoch, nscene), end = "")
_,G_current,output, disp_slice, d_gt_slice, out_diff, out_diff2, w_norm = sess.run([G_opt,G_loss,out,_disp_slice, _d_gt_slice, _out_diff, _out_diff2, _w_norm],
feed_dict={in_tile: in_data,
gt: gt_ds_batch,
target_d: target_disparity_batch,
lr: LR})
if not graph_saved:
writer = tf.summary.FileWriter('./attic/nn_ds_single_graph1', sess.graph)
writer.close()
graph_saved = True
# exit(0)
g_loss[nscene]=G_current
mean_loss = np.mean(g_loss[np.where(g_loss)])
print_time("loss=
%
f, running average=
%
f"
%
(G_current,mean_loss))
pass
'''
#if wait_and_show: # wait and show images
# plt.show()
print_time
(
"All done, exiting..."
)
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment